首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pectoral girdle is a unique skeletal element that underwent drastic morphological changes during its evolution, especially in association with the fin-to-limb transition. Comparative studies of its development are needed to gain a deeper understanding of its evolution. Transplantation experiments using the quail-chick chimeric system have revealed that not only lateral plate mesoderm but also somites contribute to the pectoral girdle in birds. Studies in mice and turtles also document somitic contributions to the pectoral girdle, but extirpation experiments in a salamander did not affect shoulder girdle development. Somitic contributions to the pectoral girdle therefore have been interpreted as a feature unique to amniotes. Here, we present a long-term fate map of single somites in the Mexican axolotl, based on transplantations of somites two to six from GFP-transgenic donors into wild-type hosts, as well as injections of fluorescein dextran into single somites. The results show a somitic derivation of the dorsal region of the suprascapula, demonstrating that somitic contributions to the pectoral girdle are not restricted to amniotes. Comparison with the few other species studied so far leads us to suggest a position-dependent origin of the pectoral girdle. We propose that embryonic origin is determined by the proximity of the developing pectoral girdle to the somites or to the lateral plate mesoderm, respectively. This position-dependent origin and the diversity of the anatomy of the pectoral girdle among vertebrates implies that the embryonic origin of the pectoral girdle is too variable to be useful for defining homologies or for phylogenetic analysis.  相似文献   

2.
Chondrogenesis and ossification of the lissamphibian pectoral girdle   总被引:1,自引:0,他引:1  
Knowledge of amphibian shoulder development is requisite for further understanding of gnathostome pectoral girdle evolution. Fish and amniotes share few pectoral girdle elements, but modern amphibians exhibit a unique combination of traits that bridge the morphological gap between these two groups. I analyzed patterns of chondrogenesis, ossification, and bone histology of the pectoral girdles of two anuran species (Xenopus laevis and Bombina orientalis) and two urodele species (Ambystoma mexicanum and Desmognathus aeneus) to provide new insight into the evolution of the tetrapod pectoral girdle. Comparisons reveal the following: 1) variation in the pattern of chondrogenesis among the anuran species analyzed correlates to variation in adult pectoral girdle morphology; 2) morphologically similar pectoral skeletons do not necessarily have similar patterns of bone histology; and 3) the urodele and anuran pectoral girdles included herein share a common morphology despite differences in patterns of chondrogenesis.  相似文献   

3.
Goswami A 《PloS one》2007,2(10):e995
Studies of morphological integration provide valuable information on the correlated evolution of traits and its relationship to long-term patterns of morphological evolution. Thus far, studies of morphological integration in mammals have focused on placentals and have demonstrated that similarity in integration is broadly correlated with phylogenetic distance and dietary similarity. Detailed studies have also demonstrated a significant correlation between developmental relationships among structures and adult morphological integration. However, these studies have not yet been applied to marsupial taxa, which differ greatly from placentals in reproductive strategy and cranial development and could provide the diversity necessary to assess the relationships among phylogeny, ecology, development, and cranial integration. This study presents analyses of morphological integration in 20 species of australodelphian marsupials, and shows that phylogeny is significantly correlated with similarity of morphological integration in most clades. Size-related correlations have a significant affect on results, particularly in Peramelia, which shows a striking decrease in similarity of integration among species when size is removed. Diet is not significantly correlated with similarity of integration in any marsupial clade. These results show that marsupials differ markedly from placental mammals in the relationships of cranial integration, phylogeny, and diet, which may be related to the accelerated development of the masticatory apparatus in marsupials.  相似文献   

4.

Background

Theria (marsupials and placental mammals) are characterized by a highly mobile pectoral girdle in which the scapula has been shown to be an important propulsive element during locomotion. Shoulder function and kinematics are highly conservative during locomotion within quadrupedal therian mammals. In order to gain insight into the functional morphology and evolution of the pectoral girdle of the two-toed sloth we here analyze the anatomy and the three-dimensional (3D) pattern of shoulder kinematics during quadrupedal suspensory ('upside-down') locomotion.

Methods

We use scientific rotoscoping, a new, non-invasive, markerless approach for x-ray reconstruction of moving morphology (XROMM), to quantify in vivo the 3D movements of all constituent skeletal elements of the shoulder girdle. Additionally we use histologic staining to analyze the configuration of the sterno-clavicular articulation (SCA).

Results

Despite the inverse orientation of the body towards gravity, sloths display a 3D kinematic pattern and an orientation of the scapula relative to the thorax similar to pronograde claviculate mammalian species that differs from that of aclaviculate as well as brachiating mammals. Reduction of the relative length of the scapula alters its displacing effect on limb excursions. The configuration of the SCA maximizes mobility at this joint and demonstrates a tensile loading regime between thorax and limbs.

Conclusions

The morphological characteristics of the scapula and the SCA allow maximal mobility of the forelimb to facilitate effective locomotion within a discontinuous habitat. These evolutionary changes associated with the adoption of the suspensory posture emphasized humeral influence on forelimb motion, but allowed the retention of the plesiomorphic 3D kinematic pattern.  相似文献   

5.
The architecture of the shoulder in some mammals   总被引:2,自引:0,他引:2  
A series of nine features of the shoulder girdle, chosen as having functional significance in relation to the movements of the shoulder in arboreal locomotion, have been studied in 1188 specimens of 194 genera of mammals. The features were defined metrically and examined by means of a multivariate statistical technique: viz. canonical analysis. The study has shown that those mammals which are nonarboreal differ considerably among themselves and form the arboreal forms. But the myriad shapes of the shoulder girdle in a wide range of mammals (e.g. some marsupials, edentates, rodents, carnivores and primates) which climb or forage in trees, can be summarized mathematically by a very small number of similar canonical variates. This information correlates well with that of a previous series of studies carried out on the primates alone. The biological information that was postulated as being reflected by the individual canonical variates for the primates is also apparent for the arboreal mammals. The different variates separate the forms in ways which are consonant with what is known about the function of the shoulder in locomotion. Aspects of the shape of the shoulder defined by the analysis appear to be discernible from an examination of the contribution of the original variables to each individual canonical variate. This seems to confirm that the shape of the shoulder girdle within a very wide range of mammals is limited by a very small number of underlying factors of biological significance. One interpretation of the results suggests that the genetic model of the mammalian shoulder may have been sufficiently fixed at an early stage in the evolution of the class as to place considerable constraints upon the subsequent evolution of the shoulder in the different Orders.  相似文献   

6.

Background

A major step during the evolution of tetrapods was their transition from water to land. This process involved the reduction or complete loss of the dermal bones that made up connections to the skull and a concomitant enlargement of the endochondral shoulder girdle. In the mouse the latter is derived from three separate embryonic sources: lateral plate mesoderm, somites, and neural crest. The neural crest was suggested to sustain the muscle attachments. How this complex composition of the endochondral shoulder girdle arose during evolution and whether it is shared by all tetrapods is unknown. Salamanders that lack dermal bone within their shoulder girdle were of special interest for a possible contribution of the neural crest to the endochondral elements and muscle attachment sites, and we therefore studied them in this context.

Results

We grafted neural crest from GFP+ fluorescent transgenic axolotl (Ambystoma mexicanum) donor embryos into white (d/d) axolotl hosts and followed the presence of neural crest cells within the cartilage of the shoulder girdle and the connective tissue of muscle attachment sites of the neck-shoulder region. Strikingly, neural crest cells did not contribute to any part of the endochondral shoulder girdle or to the connective tissue at muscle attachment sites in axolotl.

Conclusions

Our results in axolotl suggest that neural crest does not serve a general function in vertebrate shoulder muscle attachment sites as predicted by the “muscle scaffold theory,” and that it is not necessary to maintain connectivity of the endochondral shoulder girdle to the skull. Our data support the possibility that the contribution of the neural crest to the endochondral shoulder girdle, which is observed in the mouse, arose de novo in mammals as a developmental basis for their skeletal synapomorphies. This further supports the hypothesis of an increased neural crest diversification during vertebrate evolution.  相似文献   

7.
Morphological evolution is accelerated among island mammals   总被引:4,自引:4,他引:0       下载免费PDF全文
Millien V 《PLoS biology》2006,4(10):e321
Dramatic evolutionary changes occur in species isolated on islands, but it is not known if the rate of evolution is accelerated on islands relative to the mainland. Based on an extensive review of the literature, I used the fossil record combined with data from living species to test the hypothesis of an accelerated morphological evolution among island mammals. I demonstrate that rates of morphological evolution are significantly greater—up to a factor of 3.1—for islands than for mainland mammal populations. The tendency for faster evolution on islands holds over relatively short time scales—from a few decades up to several thousands of years—but not over larger ones—up to 12 million y. These analyses form the first empirical test of the long held supposition of accelerated evolution among island mammals. Moreover, this result shows that mammal species have the intrinsic capacity to evolve faster when confronted with a rapid change in their environment. This finding is relevant to our understanding of species' responses to isolation and destruction of natural habitats within the current context of rapid climate warming.  相似文献   

8.
Throughout their evolutionary histories, marsupial mammals have been taxonomically and morphologically less diverse than their sister taxa the placentals. Because of this, it has been proposed that the evolution of marsupials has been constrained by the functional requirements of their mode of reproduction. Marsupials give birth after short gestation times to immature neonates that immediately crawl, under the power of their precociously developed shoulder girdles, to the teat where they attach and complete their early development. Using a novel approach incorporating adult and embryological morphological data, this study is the first to both: (1) statistically support adult patterns of morphological divergence consistent with the constraint hypothesis, and (2) identify ontogenetic patterns of morphological change that demonstrate that the constraint was responsible, at least in part, for their formation. As predicted by the marsupial constraint, the shoulder girdles of adult marsupials are less diverse than those of adult placentals, and adult marsupial scapulae are less morphologically diverse than adult marsupial pelves. Furthermore, marsupials that complete an extensive crawl to the teat are restricted to a common pattern of ontogenetic scapular shape change, strongly supporting the hypothesis that the morphological development of the marsupial scapula has been limited evolutionarily by its obligate role in the crawl to the teat. Because this study establishes that ontogenetic and evolutionary morphological change is correlated within mammalian scapulae, it is probable that the marsupial constraint also restricted the morphological divergence of the scapula over evolutionary time by limiting ontogenetic change in the scapula. These findings, coupled with the importance of the shoulder girdle in mammalian locomotor specialization, support the conclusion that the low morphological diversity of marsupial forms over evolutionary time could be directly due to the constraint on marsupial morphological evolution caused by the functional requirements of the crawl to the teat.  相似文献   

9.
In vertebrates, changes in cranial modularity can evolve rapidly in response to selection. However, mammals have apparently maintained their pattern of cranial integration throughout their evolutionary history and across tremendous morphological and ecological diversity. Here, we use phylogenetic, geometric morphometric and comparative analyses to test the hypothesis that the modularity of the mammalian skull has been remodelled in rhinolophid bats due to the novel and critical function of the nasal cavity in echolocation. We predicted that nasal echolocation has resulted in the evolution of a third cranial module, the ‘nasal dome’, in addition to the braincase and rostrum modules, which are conserved across mammals. We also test for similarities in the evolution of skull shape in relation to habitat across rhinolophids. We find that, despite broad variation in the shape of the nasal dome, the integration of the rhinolophid skull is highly consistent with conserved patterns of modularity found in other mammals. Across their broad geographical distribution, cranial shape in rhinolophids follows two major divisions that could reflect adaptations to dietary and environmental differences in African versus South Asian distributions. Our results highlight the potential of a relatively simple modular template to generate broad morphological and functional variation in mammals.  相似文献   

10.
The turtle shell and the relationship of the shoulder girdle inside or ‘deep’ to the ribcage have puzzled neontologists and developmental biologists for more than a century. Recent developmental and fossil data indicate that the shoulder girdle indeed lies inside the shell, but anterior to the ribcage. Developmental biologists compare this orientation to that found in the model organisms mice and chickens, whose scapula lies laterally on top of the ribcage. We analyse the topological relationship of the shoulder girdle relative to the ribcage within a broader phylogenetic context and determine that the condition found in turtles is also found in amphibians, monotreme mammals and lepidosaurs. A vertical scapula anterior to the thoracic ribcage is therefore inferred to be the basal amniote condition and indicates that the condition found in therian mammals and archosaurs (which includes both developmental model organisms: chickens and mice) is derived and not appropriate for studying the developmental origin of the turtle shell. Instead, among amniotes, either monotreme mammals or lepidosaurs should be used.  相似文献   

11.
A fundamental challenge of morphology is to identify the underlying evolutionary and developmental mechanisms leading to correlated phenotypic characters. Patterns and magnitudes of morphological integration and their association with environmental variables are essential for understanding the evolution of complex phenotypes, yet the nature of the relevant selective pressures remains poorly understood. In this study, the adaptive significance of morphological integration was evaluated through the association between feeding mechanics, ingestive behavior and craniofacial variation. Five capuchin species were examined, Cebus apella sensu stricto, Cebus libidinosus, Cebus nigritus, Cebus olivaceus and Cebus albifrons. Twenty three-dimensional landmarks were chosen to sample facial regions experiencing high strains during feeding, characteristics affecting muscular mechanical advantage and basicranial regions. Integration structure and magnitude between and within the oral and zygomatic subunits, between and within blocks maximizing modularity and within the face, the basicranium and the cranium were examined using partial-least squares, eigenvalue variance, integration indices compared inter-specifically at a common level of sampled population variance and cluster analyses. Results are consistent with previous findings reporting a relative constancy of facial and cranial correlation patterns across mammals, while covariance magnitudes vary. Results further suggest that food material properties structure integration among functionally-linked facial elements and possibly integration between the face and the basicranium. Hard-object-feeding capuchins, especially C.apella s.s., whose faces experience particularly high biomechanical loads are characterized by higher facial and cranial integration especially compared to C.albifrons, likely because morphotypes compromising feeding performance are selected against in species relying on obdurate fallback foods. This is the first study to report a link between food material properties and facial and cranial integration. Furthermore, results do not identify the consistent presence of cranial modules yielding support to suggestions that despite the distinct embryological imprints of its elements the cranium of placental mammals is not characterized by a modular architecture.  相似文献   

12.

Enigmatic rod-like skeletal structures that support compliant membranes (patagia) in aerial mammals have been often considered as neomorphic elements or as evolutionary novelties, and their origin has remained poorly understood. A potential source of skeletal plasticity and, probably, of morphofunctional innovations are sesamoids, which were recently demonstrated to have a common cellular origin with bone eminences. In this review, I compile information regarding anatomy, evolution, and development of rod-like skeletal elements in extant gliding and flying mammals and propose a working hypothesis on the origin of these structures. Rod-like skeletal elements, namely, the calcar in bats (Chiroptera), the unciform element in Anomaluridae (Rodentia), and the styliform cartilage in Pteromyini (Rodentia: Sciuridae), would derive from sesamoids, which, in turn, would have the same origin as eminences of long bones (or bones with a long-bone-like growth), i.e., calcaneus, ulna, and pisiform, respectively. Rod-like skeletal elements exhibit several features of sesamoids. However, further developmental data are needed to confirm this hypothesis, particularly whether these structures share a cellular origin and molecular developmental pathways with sesamoids and bone eminences. If this hypothesis were supported, a new role for sesamoids in generating morphofunctional innovations in mammals and, potentially, in other aerial amniotes, would be recognized. Rod-like skeletal elements, which are key in the evolution of aerial locomotion, might constitute an example of pre-existing traits that acquire novel functions through relatively little developmental plasticity.

  相似文献   

13.
Phenotypic integration and modularity represent important factors influencing evolutionary change. The mammalian cervical vertebral column is particularly interesting in regards to integration and modularity because it is highly constrained to seven elements, despite widely variable morphology. Previous research has found a common pattern of integration among quadrupedal mammals, but integration patterns also evolve in response to locomotor selective pressures like those associated with hominin bipedalism. Here, I test patterns of covariation in the cervical vertebrae of three hominoid primates (Hylobates, Pan, Homo) who engage in upright postures and locomotion. Patterns of integration in the hominoid cervical vertebrae correspond generally to those previously found in other mammals, suggesting that integration in this region is highly conserved, even among taxa that engage in novel positional behaviors. These integration patterns reflect underlying developmental as well as functional modules. The strong integration between vertebrae suggests that the functional morphology of the cervical vertebral column should be considered as a whole, rather than in individual vertebrae. Taxa that display highly derived morphologies in the cervical vertebrae are likely exploiting these integration patterns, rather than reorganizing them. Future work on vertebrates without cervical vertebral number constraints will further clarify the evolution of integration in this region.  相似文献   

14.
During their embryogenesis, marsupials develop a unique structure, the shoulder arch, which provides the structural and muscle‐attachment support necessary for the newborn's crawl to the teat. One of the most pronounced and important aspects of the shoulder arch is an enlarged coracoid. After marsupial newborns reach the teat, the shoulder arch is remodeled and the coracoid is reduced to a small process on the scapula. Although an understanding of marsupial coracoid reduction has the potential to provide insights into both, marsupial evolution and the origin of mammals, little is known about the morphological and cellular processes controlling this process. To remedy this situation, this study examined the morphological and cellular mechanisms behind coracoid reduction in the gray short‐tailed opossum, Monodelphis domestica. A quantitative, morphometric study of shoulder girdle development revealed that the coracoid is reduced in size relative to other aspects of the shoulder girdle by growing at a slower rate. Using a series of molecular assays for cell death, no evidence was found for programmed cell death playing a role in the reduction of coracoid size in marsupials (in contrast to hypotheses of previous researchers). Although it is likely the case that coracoid growth is reduced through a relatively lower rate of cellular proliferation, differences in proliferative rates in the coracoid and scapula were not great enough to be quantified using standard molecular assays. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
Fundamental, long-term genetic trade-offs constrain life-history evolution in wild crucifer populations. I studied patterns of genetic constraint in Brassica rapa by estimating genetic correlations among life-history components by quantitative genetic analyses among ten wild populations, and within four populations. Genetic correlations between age and size at first reproduction were always greater than +0.8 within and among all populations studied. Although quantitative genetics might provide insight about genetic constraints if genetic parameters remain approximately constant, little evidence has been available to determine the constancy of genetic correlations. I found strong and consistent estimates of genetic correlations between life-history components, which were very similar within four natural populations. Population differentiation also showed these same trade-offs, resulting from long-term genetic constraint. For some traits, evolutionary changes among populations were incompatible with a model of genetic drift. Historical patterns of natural selection were inferred from population differentiation, suggesting that correlated response to selection has caused some traits to evolve opposite to the direct forces of natural selection. Comparison with Arabidopsis suggests that these life-history trade-offs are caused by genes that regulate patterns of resource allocation to different components of fitness. Ecological and energetic models may correctly predict these trade-offs because there is little additive genetic variation for rates of resource acquisition, but resource allocation is genetically variable.  相似文献   

16.
The evolutionary integration of complex morphological structures is a macroevolutionary pattern in which morphogenetic components evolve in a coordinated fashion, which can result from the interplay among processes of developmental, genetic integration, and different types of selection. We tested hypotheses of ecological versus developmental factors underlying patterns of within‐species and evolutionary integration in the mandible of phyllostomid bats, during the most impressive ecological and morphological radiation among mammals. Shape variation of mandibular morphogenetic components was associated with diet, and the transition of integration patterns from developmental to within‐species to evolutionary was examined. Within‐species (as a proxy to genetic) integration in different lineages resembled developmental integration regardless of diet specialization, however, evolutionary integration patterns reflected selection in different mandibular components. For dietary specializations requiring extensive functional changes in mastication patterns or biting, such as frugivores and sanguivores, the evolutionary integration pattern was not associated with expected within‐species or developmental integration. On the other hand, specializations with lower mastication demands or without major functional reorganization (such as nectarivores and carnivores), presented evolutionary integration patterns similar to the expected developmental pattern. These results show that evolutionary integration patterns are largely a result of independent selection on specific components regardless of developmental modules.  相似文献   

17.
It has been hypothesized that most morphological evolution occurs by allometric differentiation. Because rodents encapsulate a phenomenal amount of taxonomic diversity and, among several clades, contrasting levels of morphological diversity, they represent an excellent subject to address the question: how variable are allometric patterns during evolution? We investigated the influence of phylogenetic relations and ecological factors on the results of the first quantification of allometric disparity among rodents by exploring allometric space, a multivariate morphospace here derived from, and encapsulating all, the ontogenetic trajectories of 34 rodent species from two parallel phylogenetic radiations. Disparity was quantified using angles between ontogenetic trajectories for different species and clades. We found an overlapping occupation of allometric space by muroid and hystricognath species, revealing both clades possess similar abilities to evolve in different directions of phenotypic space, and anatomical diversity does not act to constrain the labile nature of allometric patterning. Morphological features to enable efficient processing of food serve to group rodents in allometric space, reflecting the importance of convergent morphology, rather than shared evolutionary history, in the generation of allometric patterns. Our results indicate that the conserved level of morphological integration found among primates cannot simply be extended to all mammals.  相似文献   

18.
The mammalian mandible is a developmentally modular but functionally integrated system. Whether morphological integration can evolve to match the optimal pattern of functional integration may depend on the developmental origin of integration, specifically, on the role that direct epigenetic interactions play in shaping integration. These interactions are hypothesized to integrate modules and also to be highly conservative, potentially constraining the evolution of integration. Using the fox squirrel (Sciurus niger) mandible as a model system, we test five a priori developmental hypotheses that predict mandibular integration and we also explore for correlations between shapes of mandibular regions not anticipated by any of the developmental models. To determine whether direct epigenetic interactions are highly conserved in rodents, we examine the correlation structure of fluctuating asymmetry, and compare integration patterns between fox squirrels and prairie deer mice (Peromyscus maniculatus bairdii). In fox squirrels, we find a correlation structure unanticipated by all a priori developmental models: adjacent parts along the proximodistal jaw axis are correlated whereas more distant ones are not. The most notable exception is that the shape of the anterior incisor alveolus is correlated with the shape of the ramus (FA component) or coronoid (symmetric component). Those exceptions differ between species; in prairie deer mice, the molar alveolus is connected to more parts, and the incisor alveolus to fewer, than in fox squirrels. The structure of integration suggests that the mandible cannot be decomposed into parts but rather is a single connected unit, a result consistent with its functional integration. That match between functional and developmental integration may arise, at least in part, from function-induced growth, building developmental integration into the functional system and enabling direct epigenetic interactions to evolve when function does.  相似文献   

19.
Mitochondrial genomes encode fundamental subunits of the basic energy producing machinery of eukaryotic cells that are under strong functional constraint. Paradoxically, these genes evolve rapidly in general, and there is substantial variation in evolutionary rates among genes within genomes. In order to investigate spatial variation in selection intensity, we conducted tests of neutrality using ratios of synonymous to nonsynonymous substitutions (dN/dS = omega) on numerous protein gene segments from fishes and mammals. Values of omega were very low for nearly all genomic regions. However, values of both omega and dN varied in a clinal pattern with increasing distance from the light-strand origin of replication. Spatial heterogeneity of nonsynonymous substitution rates exhibits a significantly positive correlation with variation in mutation rates that are related to the mode of mitochondrial DNA replication. The finding that nonsynonymous substitution rates are proportional to mutation rates is expected if a majority of substitutions are selectively neutral or slightly deleterious. Spatial patterns of among-gene variation in nonsynonymous rates were highly similar between fishes and mammals, suggesting that forces governing mitochondrial gene evolution have remained relatively constant over 450 Myr of vertebrate evolution. Conservation of substitution patterns despite major shifts in thermal habit and metabolic demands among taxa implicates a conserved replication mechanism controlling relative mutation rates as a major determinant of mitochondrial protein evolution.  相似文献   

20.
High-speed, biplanar X-ray motion analysis, X-ray reconstruction of moving morphology (XROMM) and morphological studies have led to the identification of those traits which are considered to be crucial for the evolution of arboreal locomotion in chameleons. The loss of the extensive lateral undulation typical of reptiles needs to be compensated by high mobility in the shoulder girdle and a clear functional regionalization of the trunk. Large limb excursion angles provide a compliant gait and are made possible by a functional parasagittalization of fore- and hind limbs, at least temporarily. All these evolutionary novelties parallel very similar modifications in the evolution of the locomotor apparatus in therian mammals. We propose that the convergent “invention” of dynamic stability and a compliant gait seem to be responsible for the locomotor similarities between chameleons and mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号