首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
1. The distribution and abundance of the European eel, Anguilla anguilla, were investigated in the Mondego River, a strongly modified river in central Portugal. Nine freshwater sites, located below the first impassable obstacle to eel migration, were surveyed for 2 years. The study was conducted monthly during the first year and seasonally during the second year. Fish were caught by electric fishing and, physical and biotic variables potentially influencing eel length distribution and abundance were determined at each sampling session. 2. Canonical correspondence analysis (CCA) was used to explain the relationships between abiotic and biotic habitat variables, and eel length distribution. Spatial variation was strongly associated with distance from the sea, number of obstacles, river width and percentage of instream cover. Depth, river flow, water temperature and cannibalism had weaker effects on the longitudinal distribution, but contributed as explanatory variables for the model. The influence of spatial variables outweighed the importance of temporal variables as predictors in this model. 3. Length distribution changed in space from a dominance of small eels (<100 mm) closer to the sea to larger eels (≥250 mm) in the upper reaches of the river. The smallest length class (eels <100 mm) was strongly associated with wider stretches where instream cover, mainly composed of aquatic submerged macrophytes, was abundant (>75% area coverage). On the contrary, larger eels (≥250 mm) preferred deeper stretches with stronger river flow and less instream cover. 4. The effect of biotic interactions with conspecifics as well as with the non‐native red swamp crayfish Procambarus clarkii, in sites with poor instream cover, modified this general pattern of distribution leading to fewer eels <100 mm at some sites closer to the sea. Therefore, despite the ubiquity and plasticity shown by this species, there were clear ontogenetic variations in habitat use such that the first two canonical axes of a CCA accounted for 58.4% of the spatial variability in size structure.  相似文献   

2.
The occurrence, distribution, and biological characteristics of non-native freshwater eels were analyzed using 5524 eels collected from 16 sites in Japan between 1997 and 2005. Three hundred seventy-four fishes (6.8%) were identified as non-native European eels, Anguilla anguilla, while the remainder (93.2%) were native Japanese eels, A. japonica. The European eel was found at 7 sites (44%), including 3 rivers, 2 freshwater lakes, one brackish lake, and one sea bay, suggesting a wide rage of habitat use. This variability of habitat use was also evidenced by the otolith microchemistry, which showed that they had lived in not only freshwater but also in seawater habitats. The sites with European eel were localized within the vicinity of southern Japan where a number of these eels were cultivated in the early 1970’s, suggesting that some had escaped from the culture ponds or were released intentionally into nearby natural waters. The large body size (mean total length: 803 mm), pigmented skin, enlarged eyes, and relatively matured gonads (mean gonad somatic index: 1.9) found in non-native European eels indicated that most had metamorphosed into the migratory silver phase, suggesting their ability to initiate spawning migration. However, the proportion of European eels in Mikawa Bay in 1997 was more than 12%, which decreased markedly to less than 2% after 2001, corresponding to the recent decline in import of European glass eels for aquaculture. This suggests that the population of European eels will decrease in Japanese waters in the future.  相似文献   

3.
Freshwater eels (Anguilla sp.) have large economic, cultural, ecological and aesthetic importance worldwide, but they suffered more than 90% decline in global stocks over the past few decades. Proper genetic resources, such as sequenced, assembled and annotated genomes, are essential to help plan sustainable recoveries by identifying physiological, biochemical and genetic mechanisms that caused the declines or that may lead to recoveries. Here, we present the first sequenced genome of the American eel. This genome contained 305 043 contigs (N50 = 7397) and 79 209 scaffolds (N50 = 86 641) for a total size of 1.41 Gb, which is in the middle of the range of previous estimations for this species. In addition, protein‐coding regions, including introns and flanking regions, are very well represented in the genome, as 95.2% of the 458 core eukaryotic genes and 98.8% of the 248 ultra‐conserved subset were represented in the assembly and a total of 26 564 genes were annotated for future functional genomics studies. We performed a candidate gene analysis to compare three genes among all three freshwater eel species and, congruent with the phylogenetic relationships, Japanese eel (A. japanica) exhibited the most divergence. Overall, the sequenced genome presented in this study is a crucial addition to the presently available genetic tools to help guide future conservation efforts of freshwater eels.  相似文献   

4.
Catadromous fishes migrate between ocean and freshwater during particular phases of their life cycle. The dramatic environmental changes shape their physiological features, e.g. visual sensitivity, olfactory ability, and salinity tolerance. Anguilla marmorata, a catadromous eel, migrates upstream on dark nights, following the lunar cycle. Such behavior may be correlated with ontogenetic changes in sensory systems. Therefore, this study was designed to identify changes in spectral sensitivity and opsin gene expression of A. marmorata during upstream migration. Microspectrophotometry analysis revealed that the tropical eel possesses a duplex retina with rod and cone photoreceptors. The λmax of rod cells are 493, 489, and 489 nm in glass, yellow, and wild eels, while those of cone cells are 508, and 517 nm in yellow, and wild eels, respectively. Unlike European and American eels, Asian eels exhibited a blue-shifted pattern of rod photoreceptors during upstream migration. Quantitative gene expression analyses of four cloned opsin genes (Rh1f, Rh1d, Rh2, and SWS2) revealed that Rh1f expression is dominant at all three stages, while Rh1d is expressed only in older yellow eel. Furthermore, sequence comparison and protein modeling studies implied that a blue shift in Rh1d opsin may be induced by two known (N83, S292) and four putative (S124, V189, V286, I290) tuning sites adjacent to the retinal binding sites. Finally, expression of blue-shifted Rh1d opsin resulted in a spectral shift in rod photoreceptors. Our observations indicate that the giant mottled eel is color-blind, and its blue-shifted scotopic vision may influence its upstream migration behavior and habitat choice.  相似文献   

5.
Otolith microchemistry studies indicate that growth-phase (yellow stage) anguillid eels commonly shift at irregular intervals between fresh and saline waters, but this technique has not detected regular seasonal migrations across salinity zones. We tested the ability of otolith microchemistry and stable isotope analysis to detect migrations of American eels (Anguilla rostrata) between salinity boundaries in two small stream–estuary systems in Canada’s Bay of Fundy. Although the two methods showed concordant classifications of recent residence history, most eels caught in fresh water in spring (68.8–89.7 %) and fall (78.8–83.3 %) showed microchemical and isotopic signatures that reflected occupancy of saline waters. These eels were classified as migrants which had summered in saline waters and then migrated to freshwater wintering grounds where they retained their saline signatures. In summer, most eels (85.0–100.0 %) captured in fresh and saline water had recent microchemical and isotopic signatures matching the habitat of capture. Our results suggest that lifetime otolith microchemistry profiles are unable to detect eel wintering migrations, a failure that is likely due to winter depression of otolith accretion. Elucidation of seasonal eel movements requires cross-seasonal and cross-site sampling for the microchemistry and stable isotope methods, or tagging studies. Seasonal saline–fresh eel migrations may be more common than previously appreciated, underlining the need for conservation of both habitats, and connectivity between the two.  相似文献   

6.
American eel (Anguilla rostrata Lesueur) is born in the Atlantic Ocean, but larvae redistribute throughout diverse habitats of North American estuaries and freshwater streams. We hypothesized that early stage A. rostrata differed in abundance among sites within a single coastal lagoon, Newport Bay (Maryland) for two sampling seasons (March–May in 2007 and 2008). Catch per unit effort (CPUE) of early stage A. rostrata was usually similar between years at a site, except that it was higher at one site in 2008 than in 2007. The CPUE varied among sites within Newport Bay, but not significantly so because of high, intra-annual variance in CPUE at a site. As reported for New Jersey coastal estuaries, variation in the CPUE tended to be higher in brackish water habitats. Intra-annual variation in CPUE from March until May was partially explained by oxygenation and salinity. The CPUE of settling eels was greatest when water was well-oxygenated (dissolved oxygen >8 mg·L−1) and mildly brackish (0.3–3.2 ppt). While larval supply to a coastal estuary may annually influence the magnitude of potential settlers, temporal differences in habitat conditions within Newport Bay also influenced settlement patterns. Differences in habitat conditions can affect the pigmentation rates of settling early stage eels. We measured rates of pigmentation, which corresponded with age of the fish. However, rates did not differ among sites or vary with habitat conditions. Pigmentation levels from March to May increased at a rate of about 0.02% per week. Monitoring programs for early phase American eel should consider the steepness of habitat gradients within estuaries and habitat covariates when assessing population status.  相似文献   

7.
Although the Japanese eel Anguilla japonica is a commercially important species, its habitat use is not well understood during its life stages in the river. In this study, we investigated the longitudinal distribution and microhabitat use of young Japanese eels (<200 mm in total length [TL], which correspond to elver and early yellow stages) using 180 quadrates (1 m × 1 m) in six stations in a small river (approximately 11.5 km long, 3.0–25.0 m wide) that flows through paddy areas in Fukushima Prefecture, Japan. No differences were observed in the TL of eels among the sampling stations. The analysis using generalized linear models showed that eel density increased as number of weirs decreased. The analysis using generalized additive models showed that water depth, current velocity, and substrate complexity were important factors determining microhabitat use. Eels used shallow habitats (<35 cm) with slow currents (5–40 cm/s) and high complex riverbeds (>0.35 in index of substrate complexity). These findings provide useful information to conserve and manage wild eels inhabiting small rivers flowing through paddy areas.  相似文献   

8.
Temporal patterns in otolith Sr:Ca and Ba:Ca ratio values of American eels Anguilla rostrata from two sites in western Newfoundland gave insight into the use of freshwater and saline habitats. Mean Sr:Ca and Ba:Ca values at the core zone did not differ between sites, indicative of a common oceanic origin. At the otolith edge, representing continental life, both Sr:Ca and Ba:Ca values varied between sites consistent with ambient element:Ca ratio values and salinity, with typically higher Sr:Ca and lower Ba:Ca values in saline than in fresh waters. Most eels (73%) from Muddy Hole, an estuarine site, were evaluated as estuarine residents while most (70%) eels from Castors River, a freshwater site, were evaluated as freshwater residents, with the remaining eels from each site evaluated as inter-habitat migrants. An otolith element:Ca critical value appropriate for distinguishing between fresh and saline water residence is fundamental for estimating the proportion of eel residence in freshwater and their subsequent classification into habitat residence groups. Such classification is moderately robust to the critical value selected. For inter-habitat migrants, moderate otolith Sr:Ca values between the elver check and otolith edge suggestive of estuarine residence may coincide with Ba:Ca values suggestive of freshwater residence. No general critical value for separating fresh and estuarine habitats was found for otolith Ba:Ca. Otolith Ba:Ca temporal patterns may assist the use of Sr:Ca in the evaluation of historical habitat residence and inter-habitat movement but the use of otolith Ba:Ca values should be applied cautiously for American eels and perhaps of other estuarine/freshwater migratory fishes.  相似文献   

9.
This study monitored post-release movements of 20 wild Japanese eels (Anguilla japonica) [mean ± S.D. 520.8 ± 92.3 mm total length (TL), 217.9 ± 146.3 g body mass (BM)] in a brackish water lagoon in northeastern Japan using acoustic telemetry to elucidate how wild Japanese eels use different river, estuary and marine environments. In addition, 12 cultured Japanese eels (TL = 578.9 ± 18.0 mm, BM = 344.9 ± 25.5 g) were released to understand the comparative behaviours of wild and cultured eels. Both types of eels were simultaneously released in the southern inner part of the lagoon in September 2016 where there are freshwater influences from a river. Following release, eight of the wild eels (40%) were largely sedentary near the released point (river mouth) and stayed at the site for overwinter. Nonetheless, several individuals showed behavioural plasticity of habitat use: three wild eels moved towards the northern part of the lagoon with stronger influence from the sea during May–July 2017. Two wild eels showed clear repeated movements from the lagoon to a river at night and returned to the lagoon by dawn for more than a week every day, and one wild eel migrated upstream for overwintering. Signals from 55% of the wild eels could be detected for more than 6 months, whereas those from all of the cultured eels were lost by December 2016, indicating a short resident time of large cultured eels (BM > 200 g) released in a brackish water area. One wild silver eel migrated to the outer sea during the ebb tide at night in November 2016, probably triggered by the decrease in water temperature (from c. 20°C to c. 13°C), and seven cultured eels similarly moved to the outer sea during October–November 2016. The results revealed the similarities (e.g., nocturnal movements) and differences (e.g., stay period and seasonal movements) in the behavioural characteristics of wild and cultured eels and indicated that habitat connectivity among river, estuary and coastal waters is crucial for enabling eels to efficiently utilise these productive habitats through their behavioural plasticity.  相似文献   

10.
The role of intracontinental migration patterns of European eel (Anguilla anguilla) receives more and more recognition in both ecological studies of the European eel and possible management measures, but small-scale patterns proved to be challenging to study. We experimentally investigated the suitability of fatty acid trophic markers to elucidate the utilization of feeding habitats. Eight groups of juvenile European eels were fed on eight different diets in a freshwater recirculation system at 20°C for 56 days. Three groups were fed on freshwater diets (Rutilus rutilus, Chironomidae larvae, and Gammarus pulex) and four groups were reared on diets of a marine origin (Clupea harengus, Crangon crangon, Mysis spec., and Euphausia superba) and one on commercial pellets used in eel aquaculture. Fatty acid composition (FAC) of diets differed significantly with habitat. FAC of eel muscle tissue seemed to be rather insensitive to fatty acids supplied with diet, but the general pattern of lower n3:n6 and EPA:ARA ratios in freshwater prey organisms could be traced in the respective eels. Multivariate statistics of the fatty acid composition of the eels resulted in two distinct groups representing freshwater and marine treatments. Results further indicate the capability of selectively restraining certain fatty acids in eel, as e.g. the n3:n6 ratio in all treatments was <4, regardless of dietary n3:n6. In future studies on wild eel, these measures can be used to elucidate the utilization of feeding habitats of individual European eel.  相似文献   

11.
In an attempt to document the migratory pathways and the environmental conditions encountered by American eels during their oceanic migration to the Sargasso Sea, we tagged eight silver eels with miniature satellite pop-up tags during their migration from the St. Lawrence River in Québec, Canada. Surprisingly, of the seven tags that successfully transmitted archived data, six were ingested by warm-gutted predators, as observed by a sudden increase in water temperature. Gut temperatures were in the range of 20 to 25°C—too cold for marine mammals but within the range of endothermic fish. In order to identify the eel predators, we compared their vertical migratory behavior with those of satellite-tagged porbeagle shark and bluefin tuna, the only endothermic fishes occurring non-marginally in the Gulf of St. Lawrence. We accurately distinguished between tuna and shark by using the behavioral criteria generated by comparing the diving behavior of these two species with those of our unknown predators. Depth profile characteristics of most eel predators more closely resembled those of sharks than those of tuna. During the first days following tagging, all eels remained in surface waters and did not exhibit diel vertical migrations. Three eels were eaten at this time. Two eels exhibited inverse diel vertical migrations (at surface during the day) during several days prior to predation. Four eels were eaten during daytime, whereas the two night-predation events occurred at full moon. Although tagging itself may contribute to increasing the eel''s susceptibility to predation, we discuss evidence suggesting that predation of silver-stage American eels by porbeagle sharks may represent a significant source of mortality inside the Gulf of St. Lawrence and raises the possibility that eels may represent a reliable, predictable food resource for porbeagle sharks.  相似文献   

12.
We investigated the environmental factors that affected temporal variability of eel recruitment and upstream migration in a freshwater coastal river along the southeastern US. Glass eels Anguilla rostrata were collected through ichthyoplankton sampling in the lower Roanoke River, North Carolina. Monthly samples were taken from fixed stations from May 2001 through June 2003. There was no evidence of consistent seasonal migration patterns for glass eels in Roanoke River. From May through December in 2001, glass eels were captured only during August. In 2002, glass eels arrived in February and remained in ichthyoplankton samples through October, with the exception of samples from September. Peak catch occurred in March at 4.02 ± 1.2 and declined through June to 0.18 ± 0.07 (#/1,000 m3). By August, the mean density increased to 0.96 ± 0.82 and to 3.59 ± 2.77 by October. In 2003 from January through June, glass eels were captured only during February and March. Glass eels were routinely collected when river discharge rates were <150 m3 s−1. River discharge rates >650 m−3 s−1 resulted in no glass eels in our samples. Upstream migration during 2002 was not correlated with water temperature or related to lunar phase. Glass eel freshwater upstream migration was initiated when water temperatures exceeded a threshold range of 10°C to 15°C; however, glass eels continued to migrate when water temperatures approached 30°C. The overall negative effect of river discharge suggests that changes in the water release schedules of upstream hydroelectric facilities during glass eel migration could strongly influence their recruitment success.  相似文献   

13.
The European eel (Anguilla anguilla) is a fascinating species, exhibiting a complex life cycle. The species is, however, listed as critically endangered on the IUCN Red List due to an amalgam of factors, including habitat loss. This study investigated the burrowing behaviour and substrate preference of glass, elver and yellow stages of A. anguilla. Preference was determined by introducing eels in aquaria with different substrates and evaluating the chosen substrate for burrowing. In addition, burrowing was recorded using a camera in all substrate types and analysed for kinematics. The experiments showed that all of these life stages sought refuge in the sediments with particle sizes ranging from sand to coarse gravel. Starting from a resting position, they shook their head horizontally in combination with rapid body undulations until half of their body was within the substrate. High-speed X-ray videography revealed that once partly in the sediment, eels used only horizontal head sweeps to penetrate further, without the use of their tail. Of the substrates tested, burrowing performance was highest in fine gravel (diameter 1–2 mm; lower burrowing duration, less body movements and/or lower frequency of movements), and all eels readily selected this substrate for burrowing. However, glass eels and elvers were able to use coarse gravel (diameter >8 mm) because their smaller size allowed manoeuvring through the spaces between the grains. Further, burrowing performance increased with body size: glass eels required more body undulations compared to yellow eels. Interestingly, the urge to hide within the sediment was highest for glass eels and elvers. Documentation of substrate preference and burrowing behaviour of A. anguilla provides new information about their potential habitat use. Considering that habitat alterations and deteriorations are partly responsible for the decline of the eel, this information can contribute to the development of more effective conservation measures.  相似文献   

14.
15.
Why do some predator species specialize on only a single type of prey whereas others take a broad range? One critical determinant may be the ontogenetic range of body sizes of the predator compared to that of its prey. If any single prey taxon spans only part of the range of prey sizes ingestible by the predator, then the predator will be more likely to take multiple prey taxa. We exploit a model system that provides a robust opportunity to test this hypothesis. We studied two sympatric species of predatory sea snakes, similar in size and general ecology that feed on anguilliform fishes from different habitats in the Great Lagoon of New Caledonia. Eel species from soft‐bottom habitats must construct their own burrows, and thus tend to be more slender‐bodied and less variable in body size than eel species that inhabit variable‐sized crevices among hard coral. As a result, a laticaudine sea snake species (Laticauda saintgironsi) that feeds on hard‐coral‐dwelling eels relies primarily on a single prey species: juveniles take young eels whereas adults consume adult eels of the same species. In contrast, a laticaudine species (L. laticaudata) that forages on soft‐bottom eels switches its prey ontogenetically: juveniles take small eel species whereas adults consume large eel species. Thus, habitat‐imposed constraints on the range of body sizes within each prey taxon generate a striking difference in the degree of dietary specialization of two closely related, sympatric predator species.  相似文献   

16.
Fyke nets were used to sample longfin eels Anguilla die.enbachii in fourth order stream sites with contrasting riparian land use (native tussock, exotic pasture and pasture plus willows Salix spp.) in Lee Stream, a tributary of the Taieri River, New Zealand. Total lengths (LT) of longfin eels from locations inaccessible to eel fishers were normally distributed whereas those from accessible locations had a non-normal, positively skewed distribution. Mean LT and body condition were higher in inaccessible than accessible sites, consistent with considerable fishing exploitation in the latter. Mean LT of the fish was greatest in pasture, intermediate in willow and smallest in tussock sites. Larger longfin eels (≥535 mm) were associated with a riffle-type habitat consisting of shallow, faster-flowing water with coarse, variable sediment and were taken farther from cover. In contrast, smaller longfin eels were associated with a pool-type habitat consisting of slower-flowing, deeper water, with fine, homogenous sediment and were captured closer to cover. This pattern of habitat use differed from some previous reports and probably reflects differences in methodology: fyke nets set over 48 h to sample actively moving longfin eels compared to daytime electric fishing, which samples longfin eels that are more likely to be at rest.  相似文献   

17.
Freshwater eels of the Anguillidae are diadromous because they migrate between ocean and freshwater environments, but other anguilliform fishes are generally considered to be strictly marine species. A few marine eels of the Muraenidae and Ophichthidae have occasionally been found in freshwater or estuaries, indicating that anguillids are not the only anguilliform eels that can use freshwater in some parts of the world. The moray eel Gymnothorax polyuranodon is one species that is known to be present in freshwater in the Indo-Pacific, but its life history is unknown. One way to evaluate what types of habitats are used by fishes is to determine the ratio of strontium (Sr) to calcium (Ca) in their otoliths, because this can show if they have used freshwater or saltwater environments. To evaluate the patterns of freshwater use by this unusual species of marine eel, the otolith Sr/Ca ratios of four G. polyuranodon (275–344 mm) caught in a freshwater stream of Fiji were analyzed. The consistently low Sr/Ca values (0–4) indicated upstream movement after settlement and freshwater or estuarine residence of all four individuals. These eels did not appear to have entered freshwater just for a short time period, which is consistent with other reports that this species is present in estuarine and freshwater habitats. This suggests that G. polyuranodon may be a catadromous species of marine eel. The similarities and differences between the life histories of anguillid eels and the few marine eels that have evolved the ability to invade freshwater habitats is discussed in relation to the evolutionary origin of diadromy in anguilliform fishes that originated in the marine environment.  相似文献   

18.
Yellow-phase American eel (Anguilla rostrata) upstream migration is temporally punctuated, yet migration chronology within diel time periods is not well-understood. This study examined diel periodicity, chronology, and total length (TL) of six multi-day, high-count (285–1,868 eels) passage events of upstream migrant yellow-phase American eels at the Millville Dam eel ladder, lower Shenandoah River, West Virginia during 2011–2014. We categorized passage by diel periods (vespertine, nocturnal, matutinal, diurnal) and season (spring, summer, late summer/early fall, fall). We depicted passage counts as time-series histograms and used time-series spectral analysis (Fast Fourier Transformation) to identify cyclical patterns and diel periodicity of upstream migration. We created histograms to examine movement patterns within diel periods for each passage event and fit normal mixture models (2–9 mixtures) to describe multiple peaks of passage counts. Periodicity of movements for each passage event followed a 24-h activity cycle with mostly nocturnal movement. Multimodal models were supported by the data; most modes represented nocturnal movements, but modes at or near the transition between twilight and night were also common. We used mixed-model methodology to examine relationships among TL, diel period, and season. An additive-effects model of diel period + season was the best approximating model. A decreasing trend of mean TL occurred across diel movement periods, with the highest mean TL occurring during fall relative to similar mean values of TL for spring, summer, and late summer/early fall. This study increased our understanding of yellow-phase American eels by demonstrating the non-random nature of their upstream migration.  相似文献   

19.
We synthesized information on temporal and spatial patterns of salt marsh habitat use by nekton in order to infer the importance of five main types of marsh function: reproduction, foraging, refuge from predation, refuge from stressful environmental conditions and environmental enhancement of physiology. We then extended the concept that intertidal gradients regulate habitat use patterns of nekton to a more universal concept that applies to all salt marsh habitats. We contend that all marsh habitats are linked to each other and to adjacent estuarine habitats along a depth gradient that mediates gradients in abiotic and biotic conditions. Tidal, diel and seasonal shifts in the magnitude and direction of these gradients result in gradients in tidal, diel and seasonal variation in biotic and abiotic conditions within the salt marsh. Collectively these gradients form the `marsh gradient'. We propose that patterns of marsh use and ecological function for nekton result primarily from physiological and behavioral responses to this marsh gradient. A comparison of habitat use patterns in the context of the marsh gradient is an important – and underutilized – method to study marsh function and essential fish habitat. We note that our limited insight into the function of the marsh habitat results from a significant lack of information on the occurrence and causes of tidal, diel and ontogenetic marsh use patterns by nekton; this is particularly relevant with respect to data on the variation in environmental conditions along marsh gradients over tidal, diel and seasonal cycles and on how environmental variation on these scales influences nekton behavior, growth and survival.  相似文献   

20.
After Schmidt’s discovery of the spawning area of the Atlantic eels Anguilla anguilla and A. rostrata, the search for the Japanese eel A. japonica began in the Pacific Ocean. In 1991, the spawning area of the Japanese eel was determined to be the western North Pacific. Because of enthusiastic research, eggs and maturing eels have been collected in the Japanese eel. These findings are the first for one of the 19 freshwater eels. The population sizes of the Japanese and Atlantic eels are linearly decreasing. Thus, these eel population sizes are considered outside of safe biological limits, and the current fisheries are not sustainable. Artificial propagation has not yet succeeded for the freshwater eels. Stock assessment and management of the European eel have received increasing attention; however, such assessments and management of the Japanese eel have not yet been seriously considered. This paper is an overview of the results of intensive spawning ground investigations of the Japanese eel and describes how the outcomes of these studies have contributed not only to biological interests but also to stock enhancement. During the past 20 years of expeditions, noticeable findings have only been collected for wild eggs and mature adult specimens in spite of the expenditure of large research grants and the large amounts of time invested. The outcomes throughout an expedition do not necessarily contribute to the development and improvement of artificial breeding techniques and stock enhancement. Thus, eel research should be more focused on the studies related to eel stock management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号