共查询到20条相似文献,搜索用时 15 毫秒
1.
Noor MA Pascual M Smith KR 《Evolution; international journal of organic evolution》2000,54(2):696-703
Abstract.— Drosophila subobscura was first identified in North America in the early 1980s, and a newer D. subobscura population in Utah appears to have been established more than 10 years later. In this study, we use nuclear microsatellite allele frequencies, mitochondrial restriction fragment length polymorphism (RFLP) allele frequencies, and computer simulations to investigate possible scenarios of how this species has spread across North America. Our method develops a 95% confidence interval for the maximum and minimum number of founders that could have colonized the new population given various scenarios for spread. Unlike many other methods, it may be applied to nonequilibrium source populations given certain conditions. We find that observed allele frequency differences between newer and older D. subobscura populations are consistent with very few inseminated females being transported east from the coast in a single step or with larger numbers of colonizers invading after several intermediate steps. They are not consistent with a large, panmictic population of D. subobscura colonizing Utah in a single step. 相似文献
2.
Tommi Nyman Mia Valtonen Jouni Aspi Minna Ruokonen Mervi Kunnasranta Jukka U. Palo 《Ecology and evolution》2014,4(17):3420-3434
Island populations are on average smaller, genetically less diverse, and at a higher risk to go extinct than mainland populations. Low genetic diversity may elevate extinction probability, but the genetic component of the risk can be affected by the mode of diversity loss, which, in turn, is connected to the demographic history of the population. Here, we examined the history of genetic erosion in three Fennoscandian ringed seal subspecies, of which one inhabits the Baltic Sea ‘mainland’ and two the ‘aquatic islands’ composed of Lake Saimaa in Finland and Lake Ladoga in Russia. Both lakes were colonized by marine seals after their formation c. 9500 years ago, but Lake Ladoga is larger and more contiguous than Lake Saimaa. All three populations suffered dramatic declines during the 20th century, but the bottleneck was particularly severe in Lake Saimaa. Data from 17 microsatellite loci and mitochondrial control‐region sequences show that Saimaa ringed seals have lost most of the genetic diversity present in their Baltic ancestors, while the Ladoga population has experienced only minor reductions. Using Approximate Bayesian computing analyses, we show that the genetic uniformity of the Saimaa subspecies derives from an extended founder event and subsequent slow erosion, rather than from the recent bottleneck. This suggests that the population has persisted for nearly 10,000 years despite having low genetic variation. The relatively high diversity of the Ladoga population appears to result from a high number of initial colonizers and a high post‐colonization population size, but possibly also by a shorter isolation period and/or occasional gene flow from the Baltic Sea. 相似文献
3.
The well documented historical translocations of the European rabbit (Oryctolagus cuniculus) offer an excellent framework to test the genetic effects of reductions in effective population size. It has been proposed that rabbits went through an initial bottleneck at the time of their establishment in Australia, as well as multiple founder events during the rabbit's colonization process. To test these hypotheses, genetic variation at seven microsatellite loci was measured in 252 wild rabbits from five populations across Australia. These populations were compared to each other and to data from Europe. No evidence of a genetic bottleneck was observed with the movement of 13 rabbits from Europe to Australia when compared to French data. Within Australia the distribution of genetic diversity did not reflect the suggested pattern of sequential founder effects. In fact, the current pattern of genetic variation in Australia is most likely a result of multiple factors including mutation, genetic drift and geographical differentiation. The absence of reduced genetic diversity is almost certainly a result of the rabbit's rapid population expansion at the time of establishment in Australia. These results highlight the importance of population growth following a demographic bottleneck, which largely determines the severity of genetic loss. 相似文献
4.
Drastic reductions in population size, or bottlenecks, are thought to significantly erode genetic variability and reduce fitness. However, it has been suggested that a population can be purged of the genetic load responsible for reduced fitness when subjected to bottlenecks. To investigate this phenomenon, we put a number of Drosophila melanogaster isofemale lines known to differ in inbreeding depression through four ‘founder‐flush’ bottleneck cycles with flush sizes of 5 or 100 pairs and assayed for relative fitness (single‐pair productivity) after each cycle. Following the founder‐flush phase, the isofemale lines, with a large flush size and a history of inbreeding depression, recovered most of the fitness lost from early inbreeding, consistent with purging. The same isofemale lines, with a small flush size, did not regain fitness, consistent with the greater effect of genetic drift in these isofemale lines. On the other hand, the isofemale lines that did not show initial inbreeding depression declined in fitness after repeated bottlenecks, independent of the flush size. These results suggest that the nature of genetic variation in fitness may greatly influence the way in which populations respond to bottlenecks and that stochastic processes play an important role. Consequently, an attempt intentionally to purge a population of detrimental variation through inbreeding appears to be a risky strategy, particularly in the genetic management of endangered species. 相似文献
5.
Morihiko Tomozawa Mitsuo Nunome Hitoshi Suzuki Hirotake Ono 《Biological journal of the Linnean Society. Linnean Society of London》2014,113(2):522-535
To infer the evolutionary mechanism of phenotypic variation among isolated island populations, we investigated coat colour and genetic variation in the large Japanese field mouse (Apodemus speciosus) on the Izu Islands (Ohshima, Niijima, Kouzushima, and Miyakejima). Coat colour in the most remote population (Miyakejima) was unique and significantly darker than that in the other populations. Ohshima that is closest to the source population showed variation in coat colour within its population. Phylogeographical analyses using mitochondrial and microsatellite markers suggested that the island populations (except Kouzushima) were founded sequentially from the closest Ohshima to remote Niijima and Miyakejima during or before the penultimate interglacial period. Secondary gene flow from the source population was rare and occurred only for the closest (Ohshima) population. In addition, we found that an amino acid mutation in the Agouti signalling protein gene (Asip) was associated with coat colour variation among the island populations. The mutation was rare in the source population but completely fixed in the Miyakejima population. The phenotypic and genetic variation suggested that severe reduction of genetic variation and changes in allele frequency as a result of sequential colonization (i.e. the founder effect) had significant effects on colour polymorphism. The findings of the present study suggest that the founder effect, in addition to natural selection, facilitated the morphological changes below the species level over a relatively long time scale. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 522–535. 相似文献
6.
Shohei Komaki Si‐Min Lin Masafumi Nozawa Shohei Oumi Masayuki Sumida Takeshi Igawa 《Journal of Biogeography》2017,44(7):1586-1597
7.
8.
Bottlenecks can have lasting effects on genetic population structure that obscure patterns of contemporary gene flow and drift. Sockeye salmon are vulnerable to bottleneck effects because they are a highly structured species with excellent colonizing abilities and often occupy geologically young habitats. We describe genetic divergence among and genetic variation within spawning populations of sockeye salmon throughout the Lake Clark area of Alaska. Fin tissue was collected from sockeye salmon representing 15 spawning populations of Lake Clark, Six-mile Lake, and Lake Iliamna. Allele frequencies differed significantly at 11 microsatellite loci in 96 of 105 pairwise population comparisons. Pairwise estimates of FST ranged from zero to 0.089. Six-mile Lake and Lake Clark populations have historically been grouped together for management purposes and are geographically proximate. However, Six-mile Lake populations are genetically similar to Lake Iliamna populations and are divergent from Lake Clark populations. The reduced allelic diversity and strong divergence of Lake Clark populations relative to Six-mile Lake and Lake Iliamna populations suggest a bottleneck associated with the colonization of Lake Clark by sockeye salmon. Geographic distance and spawning habitat differences apparently do not contribute to isolation and divergence among populations. However, temporal isolation based on spawning time and founder effects associated with ongoing glacial retreat and colonization of new spawning habitats contribute to the genetic population structure of Lake Clark sockeye salmon. Nonequilibrium conditions and the strong influence of genetic drift caution against using estimates of divergence to estimate gene flow among populations of Lake Clark sockeye salmon. 相似文献
9.
An isolated population of dark-eyed juncos, Junco hyemalis, became established on the campus of the University of California at San Diego (UCSD), probably in the early 1980s. It now numbers about 70 breeding pairs. Populations across the entire natural range of the subspecies J. h. thurberi are weakly differentiated from each other at five microsatellite loci (FST = 0.01). The UCSD population is significantly different from these populations, the closest of which is 70 km away. It has 88% of the genetic heterozygosity and 63% of the allelic richness of populations in the montane range of the subspecies, consistent with a harmonic mean effective population size of 32 (but with 95% confidence limits from four to > 70) over the eight generations since founding. Results suggest a moderate bottleneck in the early establishment phase but with more than seven effective founders. Individuals in the UCSD population have shorter wings and tails than those in the nearby mountains and a common garden experiment indicates that the morphological differences are genetically based. The moderate effective population size is not sufficient for the observed morphological differences to have evolved as a consequence of genetic drift, indicating a major role for selection subsequent to the founding of the UCSD population. 相似文献
10.
Francesco Nonnis Marzano Nicolas Corradi Riccardo Papa James Tagliavini Gilberto Gandolfi 《Environmental Biology of Fishes》2003,68(4):349-356
We assessed structural gene variation (allozymes and mtDNA) of brown trout to evaluate the genetic variability of Apennine stream populations (Northern and Central Italy) and the possibility of introgression by alien genomes after massive restocking with hatchery strains (Atlantic stocks). Genetic variability within and between Apennine populations was extremely low in our samples. Only two allozyme loci were polymorphic and mean hetero-zygosity was also reduced compared to other brown trout populations. Allelic frequencies determined for both loci were similar to the ones detected in the corresponding hatchery spawners. The reduction or total absence of the Mediterranean nuclear (LDH-5) and mitochondrial (16S rDNA) diagnostic markers suggests the domestic origin of most populations, and the introgression effects carried out by non-native genomes. From a taxonomic point of view, a clear differentiation emerges among basins placed on opposite sides of the Apennine chain (Tyrrhenian and Adriatic regions). In particular, the presence of Mediterranean genotypes and haplotypes characterizing Salmo (trutta) macrostigma is sporadic along the eastern Apennine side, adding additional doubts on the original presence and wide distribution of this salmonid along the Adriatic side of the mountain chain. In spite of conservation programs devoted to preservation of local genetic characteristics of S. t. macrostigma, massive restocking practices with hatchery strains obtained by a few spawners is the major cause of significant `founder effect' and `inbreeding depression' even in Apennine regions. 相似文献
11.
Lewis G. Spurgin Juan Carlos Illera Tove H. Jorgensen Deborah A. Dawson David S. Richardson 《Molecular ecology》2014,23(5):1028-1039
Discerning the relative roles of adaptive and nonadaptive processes in generating differences among populations and species, as well as how these processes interact, is a fundamental aim in biology. Both genetic and phenotypic divergence across populations can be the product of limited dispersal and gradual genetic drift across populations (isolation by distance), of colonization history and founder effects (isolation by colonization) or of adaptation to different environments preventing migration between populations (isolation by adaptation). Here, we attempt to differentiate between these processes using island populations of Berthelot's pipit (Anthus berthelotii), a passerine bird endemic to three Atlantic archipelagos. Using microsatellite markers and approximate Bayesian computation, we reveal that the northward colonization of this species ca. 8500 years ago resulted in genetic bottlenecks in the colonized archipelagos. We then show that high levels of genetic structure exist across archipelagos and that these are consistent with a pattern of isolation by colonization, but not with isolation by distance or adaptation. Finally, we show that substantial morphological divergence also exists and that this is strongly concordant with patterns of genetic structure and bottleneck history, but not with environmental differences or geographic distance. Overall, our data suggest that founder effects are responsible for both genetic and phenotypic changes across archipelagos. Our findings provide a rare example of how founder effects can persist over evolutionary timescales and suggest that they may play an important role in the early stages of speciation. 相似文献
12.
The impact of founder events on levels of genetic variation in natural populations remains a topic of significant interest. Well-documented introductions provide a valuable opportunity to examine how founder events influence genetic diversity in invasive species. House finches (Carpodacus mexicanus) are passerine birds native to western North America, with the large eastern North American population derived from a small number of captive individuals released in the 1940s. Previous comparisons using amplified fragment length polymorphism (AFLP) markers found equivalent levels of diversity in eastern and western populations, suggesting that any genetic effects of the founder event were ameliorated by the rapid growth of the newly established population. We used an alternative marker system, 10 highly polymorphic microsatellites, to compare levels of genetic diversity between four native and five introduced house finch populations. In contrast to the AFLP comparisons, we found significantly lower allelic richness and heterozygosity in introduced populations across all loci. Three out of five introduced populations showed significant reductions in the ratio of the number of alleles to the allele size range, a within-population characteristic of recent bottlenecks. Finally, native and introduced populations showed significant pairwise differences in allele frequencies in every case, with stronger isolation by distance within the introduced than native range. Overall, our results provide compelling molecular evidence for a founder effect during the introduction of eastern house finches that reduced diversity levels at polymorphic microsatellite loci and may have contributed to the emergence of the Mycoplasma epidemic which recently swept the eastern range of this species. 相似文献
13.
The population of Nicobar is not a single random mating population but divided into a number of subpopulations within each of which essentially random mating takes place. Heterogeneity tests indicate that there is a significant difference among subpopulations for the ABO blood group system but not for the MN system. The overall gene frequencies of the ABO system were: r = 0·914; p = 0·033; q = 0·053. The gene frequencies of the MN system are much more consistent in the area as a whole than in the ABO system. The gene frequencies of the MN system were: M = 0·92 and N = 0·08. The Wahlund's principle yields the value of Ø = 0·0358 for the MN system and the unweighted mean value of Øs equals 0·0301 for the ABO system. The founder effect may have a far greater effect than the effects of chance in the genetical structure of Nicobar subpopulations. 相似文献
14.
Low levels of genetic variation are thought to contribute significantly to the higher extinction rates of endemic island populations
compared to their mainland counterparts. We used six microsatellite loci to compare the genetic structure of the endangered
silver rice rat (Oryzomys argentatus) population in Saddlebunch Key, Florida to the mainland population of the closely related marsh rice rat (Oryzomys palustris natator) in Everglades National Park. Allelic richness and gene diversity are significantly lower in Saddlebunch Key than in the
larger mainland population, and the two populations are significantly differentiated as measured by both F-statistics and Bayesian clustering methods. These findings support the classification of the Keys population as a “distinct
vertebrate population” by the U.S. Fish and Wildlife Service. Current gene diversity (H
E) is higher than expected under mutation-drift equilibrium in Saddlebunch Key, indicating a genetic bottleneck. The Keys population
also exhibits a mode shift in its allele frequency distribution which suggests a very recent bottleneck has occurred and is
consistent with reports of recent population declines. Although habitat loss and exotic species pose a more immediate and
serious threat to silver rice rats, the continued loss of genetic variation may contribute to their long-term extinction risk
due to inbreeding or by lowering the population’s ability to adapt to future environmental changes. The protection of habitat
and the removal of introduced predators and competitors may help increase the population size of silver rice rats and lower
their risk of extinction, both from a demographic and a genetic perspective. 相似文献
15.
S. M. Plank C. G. Lowe K. A. Feldheim R. R. Wilson Jr. J. A. Brusslan 《Journal of fish biology》2010,77(2):329-340
The round stingray, Urobatis halleri, is a viviparous elasmobranch that inhabits inshore, benthic habitats ranging from the western U.S.A. to Panama. The population genetic structure of this species was inferred with seven polymorphic microsatellite loci in samples collected at three sites in coastal southern California, one near Santa Catalina Island, California and one in the eastern Gulf of California. Urobatis halleri is relatively common, but little is known of its movement patterns or population structure. Small FST values (?0·0017 to 0·0005) suggested little structure among coastal populations of southern and Baja California. The population sampled at Santa Catalina Island, which is separated by a deep‐water channel from the coastal sites, however, was significantly divergent (large FST, 0·0251) from the other populations, suggesting low connectivity with coastal populations. The Santa Catalina Island population also had the lowest allele richness and lowest average heterozygosity, suggesting recent population bottlenecks in size. 相似文献
16.
Late Pleistocene human population bottlenecks, volcanic winter, and differentiation of modern humans
Stanley H. Ambrose 《Journal of human evolution》1998,34(6):623-651
The “Weak Garden of Eden” model for the origin and dispersal of modern humans (Harpendinget al., 1993) posits that modern humans spread into separate regions from a restricted source, around 100 ka (thousand years ago), then passed through population bottlenecks. Around 50 ka, dramatic growth occurred within dispersed populations that were genetically isolated from each other. Population growth began earliest in Africa and later in Eurasia and is hypothesized to have been caused by the invention and spread of a more efficient Later Stone Age/Upper Paleolithic technology, which developed in equatorial Africa.Climatic and geological evidence suggest an alternative hypothesis for Late Pleistocene population bottlenecks and releases. The last glacial period was preceded by one thousand years of the coldest temperatures of the Later Pleistocene (∼71–70 ka), apparently caused by the eruption of Toba, Sumatra. Toba was the largest known explosive eruption of the Quaternary. Toba's volcanic winter could have decimated most modern human populations, especially outside of isolated tropical refugia. Release from the bottleneck could have occurred either at the end of this hypercold phase, or 10,000 years later, at the transition from cold oxygen isotope stage 4 to warmer stage 3. The largest populations surviving through the bottleneck should have been found in the largest tropical refugia, and thus in equatorial Africa. High genetic diversity in modern Africans may thus reflect a less severe bottleneck rather than earlier population growth.Volcanic winter may have reduced populations to levels low enough for founder effects, genetic drift and local adaptations to produce rapid population differentiation. If Toba caused the bottlenecks, then modern human races may have differentiated abruptly, only 70 thousand years ago. 相似文献
17.
Maté ML Bustamante A Giovambattista G de Lamo D von Thüngen J Zambelli A Vidal-Rioja L 《Animal genetics》2005,36(4):316-321
Genotype data from 14 microsatellite markers were used to assess the genetic diversity and differentiation of four guanaco populations from Argentine Patagonia. These animals were recently captured in the wild and maintained in semi-captivity for fibre production. Considerable genetic diversity in these populations was suggested by the finding of a total of 162 alleles, an average mean number of alleles per locus ranging from 6.50 to 8.19, and H(e) values ranging from 0.66 to 0.74. Assessment of population differentiation showed moderate but significant values of F(ST)=0.071 (P=0.000) and R(ST)=0.083 (P=0.000). An amova test showed that the genetic variation among populations was 5.6% while within populations it was 94.4%. A number of 6.6 migrants per generation may support these results. Unambiguous individual assignment to original populations was obtained for the Pilcaniyeu, Las Heras and La Esperanza populations. The erroneous assignment of 18.75% Rio Mayo individuals to the Las Heras population can be explained by the low genetic differentiation found between these two populations. Thirty-nine of 56 loci per population combinations were in Hardy--Weinberg disequilibrium because of guanaco heterozygote deficiency, which may be explained by population subdivision. The high level of genetic diversity of the guanacos analysed here indicates that the Patagonian guanaco constitutes an important genetic resource for conservation or economic utilization programmes. 相似文献
18.
《Animal : an international journal of animal bioscience》2017,11(1):24-32
Salers are a native French breed used for beef and dairy production that has expanded to all the continents. The Salers breed was introduced to the north of Spain in 1985 with only 15 individuals from France and has successfully increased to over 20 000 animals. Although over time new animals have been imported from France for breeding, it is possible that the limiting number of founder animals could have resulted in a reduction of the genetic diversity found in Spanish Salers. Thus, the purpose of the present study has been to characterize the genetic diversity of Salers breed in Spain and evaluate a possible founder effect due to reduced number of the first reproducers. A total of 403 individuals from 12 Salers herds were analyzed using 12 microsatellite markers and compared with phylogenetically and geographically close related Blonde d’Aquitaine, Limousin and Charolais French breeds but also other 16 European breeds. Microsatellites in Salers were polymorphic, with a mean allelic richness of 5.129 and an expected heterozygosity of 0.621 across loci (0.576 to 0.736 among all breeds). Average observed heterozygosity was 0.618. All the loci fit the Hardy–Weinberg (HW) equilibrium except TGLA227 locus due to a significant deficit of heterozygotes in only one of the herds, probably attributable to a sampling effect. When all loci were combined, Salers inbreeding coefficient did not differ statistically from 0 (FIS=0.005), indicating not significant excess or deficit of heterozygotes (P=0.309). Based in allelic distribution, Salers revealed a frequency of 0.488 in BM2113-131 and 0.064 in BM2113-143 diagnostic alleles, which are specific to the African zebu. These zebu alleles are also found in some French breeds, supported by STR data previously postulated hypothesis of a migration route through Mediterranean route by which North African cattle may have left a genetic signature in southern Europe. Phylogenetic tree and population structure analyses could unambiguously differentiate Salers cattle from the other populations and 10% of the total genetic variability could be attributed to differences among breeds (mean RST=0.105; P<0.01). Mutation-drift equilibrium tests (sign test and Wilcoxon’s sign rank test) were in correspondence to the absence of founder effect when Bonferroni was applied. Gene diversity previously reported in French Salers was comparable with the observed in our population. Thus, high genetic diversity in Spanish Salers highlights the resources of this population, which looks toward future breeding and selection programs. 相似文献
19.
The genetic structure of contemporary populations can be shaped by both their history and current ecological conditions. We assessed the relative importance of postglacial colonization history and habitat type in the patterns and degree of genetic diversity and differentiation in northern European nine‐spined sticklebacks (Pungitius pungitius), using mitochondrial DNA (mtDNA) sequences and 12 nuclear microsatellite and insertion/deletion loci. The mtDNA analyses identified – and microsatellite analyses supported – the existence of two historically distinct lineages (eastern and western). The analyses of nuclear loci among 51 European sites revealed clear historically influenced and to minor degree habitat dependent, patterns of genetic diversity and differentiation. While the effect of habitat type on the levels of genetic variation (coastal > freshwater) and differentiation (freshwater > coastal) was clear, the levels of genetic variability and differentiation in the freshwater sites were independent of habitat type (viz. river, lake and pond). However, levels of genetic variability, together with estimates of historical effective population sizes, decreased dramatically and linearly with increasing latitude. These geographical patterns of genetic variability and differentiation suggest that the contemporary genetic structure of freshwater nine‐spined sticklebacks has been strongly impacted by the founder events associated with postglacial colonization and less by current ecological conditions (cf. habitat type). In general, the results highlight the strong and persistent effects of postglacial colonization history on genetic structuring of northern European fauna and provide an unparalleled example of latitudinal trends in levels of genetic diversity. 相似文献
20.
The Finnish wolf population (Canis lupus) was sampled during three different periods (1996-1998, 1999-2001 and 2002-2004), and 118 individuals were genotyped with 10 microsatellite markers. Large genetic variation was found in the population despite a recent demographic bottleneck. No spatial population subdivision was found even though a significant negative relationship between genetic relatedness and geographic distance suggested isolation by distance. Very few individuals did not belong to the local wolf population as determined by assignment analyses, suggesting a low level of immigration in the population. We used the temporal approach and several statistical methods to estimate the variance effective size of the population. All methods gave similar estimates of effective population size, approximately 40 wolves. These estimates were slightly larger than the estimated census size of breeding individuals. A Bayesian model based on Markov chain Monte Carlo simulations indicated strong evidence for a long-term population decline. These results suggest that the contemporary wolf population size is roughly 8% of its historical size, and that the population decline dates back to late 19th century or early 20th century. Despite an increase of over 50% in the census size of the population during the whole study period, there was only weak evidence that the effective population size during the last period was higher than during the first. This may be caused by increased inbreeding, diminished dispersal within the population, and decreased immigration to the population during the last study period. 相似文献