首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The disk abalone Haliotis discus discus and the spiny top shell Turbo cornutus are edible gastropod species of high economic value, mainly in Asia. Mortality outbreaks and variations in worldwide stock abundance have been reported and suggested to be associated, at least in part, with pathogenic infections. Ecology, biology and immunology of both species are currently not well documented. The characterisation of the immune systems of these species is necessary to further assess the responses of H. discus discus and T. cornutus to environmental, chemical and disease stresses. In the present study, we investigated the morphology and immune-related activities of hemocytes in both species using light microscopy and flow cytometry. Two types of hemocytes were identified in the disk abalone hemolymph, blast-like cells and hyalinocytes; whereas four main hemocyte types were distinguished in the spiny top shell, blast-like cells, type I and II hyalinocytes, and granulocytes. Flow cytometric analysis also revealed differences between cell types in immune-related activities. Three subsets of hemocytes, defined by differing lysosomal characteristics, were observed in the hemolymph of the spiny top shell, and only one in the disk abalone. Phagocytic activity was higher in H. discus discus hemocytes than in T. cornutus hemocytes, and the kinetics of PMA-stimulated oxidative activity was different between hemocytes of the disk abalone and the spiny top shell. Finally our results suggest for the first time a predominant mitochondrial origin of oxidative activity in gastropod hemocytes.  相似文献   

2.
The Pacific oyster Crassostrea gigas is a sessile bivalve mollusc whose homeostasis relies, at least partially, upon cells circulating in hemolymph and referred to as hemocytes. Oyster’s hemocytes have been reported to produce reactive oxygen species (ROS), even in absence of stimulation. Although ROS production in bivalve molluscs is mostly studied for its defence involvement, ROS may also be involved in cellular and tissue homeostasis. ROS sources have not yet been described in oyster hemocytes. The objective of the present work was to characterize the ROS sources in unstimulated hemocytes. We studied the effects of chemical inhibitors on the ROS production and the mitochondrial membrane potential (Δψm) of hemocytes. First, this work confirmed the specificity of JC-10 probe to measure Δψm in oyster hemocytes, without being affected by ΔpH, as reported in mammalian cells. Second, results show that ROS production in unstimulated hemocytes does not originate from cytoplasmic NADPH-oxidase, nitric oxide synthase or myeloperoxidase, but from mitochondria. In contrast to mammalian cells, incubation of hemocytes with rotenone (complex I inhibitor) had no effect on ROS production. Incubation with antimycin A (complex III inhibitor) resulted in a dose-dependent ROS production decrease while an over-production is usually reported in vertebrates. In hemocytes of C. gigas, the production of ROS seems similarly dependent on both Δψm and ΔpH. These findings point out differences between mammalian models and bivalve cells, which warrant further investigation about the fine characterization of the electron transfer chain and the respective involvement of mitochondrial complexes in ROS production in hemocytes of bivalve molluscs.  相似文献   

3.
In vertebrates, hematopoiesis is regulated by inductive microenvironments (niches). Likewise, in the invertebrate model organism Drosophila melanogaster, inductive microenvironments known as larval Hematopoietic Pockets (HPs) have been identified as anatomical sites for the development and regulation of blood cells (hemocytes), in particular of the self-renewing macrophage lineage. HPs are segmentally repeated pockets between the epidermis and muscle layers of the larva, which also comprise sensory neurons of the peripheral nervous system. In the larva, resident (sessile) hemocytes are exposed to anti-apoptotic, adhesive and proliferative cues from these sensory neurons and potentially other components of the HPs, such as the lining muscle and epithelial layers. During normal development, gradual release of resident hemocytes from the HPs fuels the population of circulating hemocytes, which culminates in the release of most of the resident hemocytes at the beginning of metamorphosis. Immune assaults, physical injury or mechanical disturbance trigger the premature release of resident hemocytes into circulation. The switch of larval hemocytes between resident locations and circulation raises the need for a common standard/procedure to selectively isolate and quantify these two populations of blood cells from single Drosophila larvae. Accordingly, this protocol describes an automated method to release and quantify the resident and circulating hemocytes from single larvae. The method facilitates ex vivo approaches, and may be adapted to serve a variety of developmental stages of Drosophila and other invertebrate organisms.  相似文献   

4.
Molluscs are invertebrates of great relevance for economy, environment and public health. The numerous studies on molluscan immunity and physiology registered an impressive variability of circulating hemocytes. This study is focused on the first characterization of the circulating hemocytes of the freshwater gastropod Pomacea canaliculata, a model for several eco-toxicological and parasitological researches.Flow cytometry analysis identified two populations of hemocytes on the basis of differences in size and internal organization. The first population contains small and agranular cells. The second one displays major size and a more articulated internal organization. Light microscopy evidenced two principal morphologies, categorized as Group I (small) and II (large) hemocytes. Group I hemocytes present the characteristics of blast-like cells, with an agranular and basophilic cytoplasm. Group I hemocytes can adhere onto a glass surface but seem unable to phagocytize heat-inactivated Escherichia coli. The majority of Group II hemocytes displays an agranular cytoplasm, while a minority presents numerous granules. Agranular cytoplasm may be basophilic or acidophilic. Granules are positive to neutral red staining and therefore acidic. Independently from their morphology, Group II hemocytes are able to adhere and to engulf heat-inactivated E. coli. Transmission electron microscopy analysis clearly distinguished between agranular and granular hemocytes and highlighted the electron dense content of the granules. After hemolymph collection, time-course analysis indicated that the Group II hemocytes are subjected to an evident dynamism with changes in the percentage of agranular and granular hemocytes. The ability of circulating hemocytes to quickly modify their morphology and stainability suggests that P. canaliculata is endowed with highly dynamic hemocyte populations able to cope with rapid environmental changes as well as fast growing pathogens.  相似文献   

5.
In mussel (Mytilus sp.) hemocytes, differential functional responses to injection with different types of live and heat-killed Vibrio species have been recently demonstrated.In this work, responses of Mytilus hemocytes to heat-killed Vibrio splendidus LGP32 and the mechanisms involved were investigated in vitro and the results were compared with those obtained with Vibrio anguillarum (ATCC 19264). Adhesion of hemocytes after incubation with bacteria was evaluated by flow cytometry: both total hemocyte counts (THC) and percentage of hemocyte sub-populations were determined in non-adherent cells. Functional parameters such as lysosomal membrane stability, lysozyme release, extracellular ROS production and NO production were evaluated, as well as the phosphorylation state of the stress-activated p38 MAPK and PKC. Neither Vibrio affected total hemocyte adhesion, while both induced similar lysosomal destabilization and NO production. However, V. splendidus decreased adhesion of large granulocytes, induced rapid and persistent lysozyme release and stimulated extracellular ROS production: these effects were associated with persistent activation of p38 MAPK and PKC. In contrast, V. anguillarum decreased adhesion of large semigranular hemocytes and increased that of hyalinocytes, had no effect on the extracellular ROS production, and induced significantly lower lysozyme release and phosphorylation of p-38 MAPK and PKC than V. splendidus. These data reinforced the existence of specific interactions between mussel hemocytes and V. splendidus LGP32 and suggest that this Vibrio strain affects bivalve hemocytes through disregulation of immune signaling. The results support the hypothesis that responses of bivalve hemocytes to different bacterial stimuli may depend not only on the nature of the stimulus, but also on the cell subtype, thus leading to differential activation of signaling components.  相似文献   

6.
A tetrazolium dye reduction assay was used to study factors governing the killing of bacteria by oyster hemocytes. In vitro tests were performed on bacterial strains by using hemocytes from oysters collected from the same location in winter and summer. Vibrio parahaemolyticus strains, altered in motility or colonial morphology (opaque and translucent), and Listeria monocytogenes mutants lacking catalase, superoxide dismutase, hemolysin, and phospholipase activities were examined in winter and summer. Vibrio vulnificus strains, opaque and translucent (with and without capsules), were examined only in summer. Among V. parahaemolyticus and L. monocytogenes, significantly (P < 0.05) higher levels of killing by hemocytes were observed in summer than in winter. L. monocytogenes was more resistant than V. parahaemolyticus or V. vulnificus to the bactericidal activity of hemocytes. In winter, both translucent strains of V. parahaemolyticus showed significantly (P < 0.05) higher susceptibility to killing by hemocytes than did the wild-type opaque strain. In summer, only one of the V. parahaemolyticus translucent strains showed significantly (P < 0.05) higher susceptibility to killing by hemocytes than did the wild-type opaque strain. No significant differences (P > 0.05) in killing by hemocytes were observed between opaque (encapsulated) and translucent (nonencapsulated) pairs of V. vulnificus. Activities of 19 hydrolytic enzymes were measured in oyster hemolymph collected in winter and summer. Only one enzyme, esterase (C4), showed a seasonal difference in activity (higher in winter than in summer). These results suggest that differences existed between bacterial genera in their ability to evade killing by oyster hemocytes, that a trait(s) associated with the opaque phenotype may have enabled V. parahaemolyticus to evade killing by the oyster’s cellular defense, and that bactericidal activity of hemocytes was greater in summer than in winter.  相似文献   

7.
The levels of aminopeptidase activity in the whole hemolymph, serum, hemocytes, headfoot, and visceral mass of Biomphalaria glabrata were determined. The highest enzyme level occurs in the serum and the lowest in the hemocytes. Both the headfoot and visceral mass include subequal levels of aminopeptidase activity. From our data, it now appears possible that the serum aminopeptidase in B. glabrata, which has an open circulatory system, could have originated in hemocytes as well as in other tissues. The biologic function of serum aminopeptides is uncertain; however, because of the known chemical function of this enzyme, it could serve to degrade foreign proteins in serum prior to phagocytosis.  相似文献   

8.
Cuticular structures of arthropods undergo dramatic molt-related changes from being soft to becoming hard. The shell-hardening process of decapod crustaceans includes sclerotization and mineralization. Hemocyte PPO plays a central role in melanization and sclerotization particularly in wound healing in crustaceans. However, little is known about its role in the crustacean initial shell-hardening process. The earlier findings of the aggregation of heavily granulated hemocytes beneath the hypodermis during ecdysis imply that the hemocytes may be involved in the shell-hardening process. In order to determine if hemocytes and hemocyte PPO have a role in the shell-hardening of crustaceans, a knockdown study using specific CasPPO-hemo-dsRNA was carried out with juvenile blue crabs, Callinectes sapidus. Multiple injections of CasPPO-hemo-dsRNA reduce specifically the levels of CasPPO-hemo expression by 57% and PO activity by 54% in hemocyte lysate at the postmolt, while they have no effect on the total hemocyte numbers. Immunocytochemistry and flow cytometry analysis using a specific antiserum generated against CasPPO show granulocytes, semigranulocytes and hyaline cells as the cellular sources for PPO at the postmolt. Interestingly, the type of hemocytes, as the cellular sources of PPO, varies by molt stage. The granulocytes always contain PPO throughout the molt cycle. However, semigranulocytes and hyaline cells become CasPPO immune-positive only at early premolt and postmolt, indicating that PPO expression in these cells may be involved in the shell-hardening process of C. sapidus.  相似文献   

9.
10.
The in vitro effects of the Perkinsus marinus serine protease on the intracellular survival of Vibrio vulnificus in oyster hemocytes were examined by using a time-course gentamicin internalization assay. Results showed that protease-treated hemocytes were initially slower to internalize V. vulnificus than untreated hemocytes. After 1 h, the elimination of V. vulnificus by treated hemocytes was significantly suppressed compared with hemocytes infected with invasive and noninvasive controls. Our data suggest that the serine protease produced by P. marinus suppresses the vibriocidal activity of oyster hemocytes to effectively eliminate V. vulnificus, potentially leading to conditions favoring higher numbers of vibrios in oyster tissues.  相似文献   

11.
Macrophagelike hemocytes of the pond snail Lymnaea stagnalis were stimulated in vitro with various particulate agents (latex, Escherichia coli, Staphylococcus saprophyticus, zymosan) and with phorbol myristate acetate in order to determine whether these blood cells show biochemical reactions reminiscent of a respiratory burst. Phagocytic stimulation of the hemocytes resulted in a superoxide dismutase-sensitive reduction of nitroblue tetrazolium, which is indicative of the generation of superoxide anions. Moreover, the hemocytes also produced hydrogen peroxide, and they showed a sodium azide-sensitive diaminobenzidine reaction. The hemocytes displayed a luminol-dependent chemiluminescence that differed for each stimulus used. Zymosan elicited a relatively high dose-dependent response. The chemiluminescence was (partly) inhibited by superoxide dismutase, azide, and cyanide. These data indicate the possible involvement of toxic oxygen intermediates in phagocytic defense reactions of L. stagnalis hemocytes.  相似文献   

12.
Trehalose in ectoderms functions in energy metabolism and protection in extreme environmental conditions. We structurally characterized trehalose 6-phosphate synthase (TPS) from hemocytes of the blue crab, Callinectes sapidus. C. sapidus Hemo TPS (CasHemoTPS), like insect TPS, encodes both TPS and trehalose phosphate phosphatase domains. Trehalose seems to be a major sugar, as it shows higher levels than does glucose in hemocytes and hemolymph. Increases in HemoTPS expression, TPS enzyme activity in hemocytes, and hemolymph trehalose levels were determined 24 h after lipopolysaccharide challenge, suggesting that both TPS and TPP domains of CasHemoTPS are active and functional. The TPS gene has a wide tissue distribution in C. sapidus, suggesting multiple biosynthetic sites. A correlation between TPS activity in hemocytes and hemolymph trehalose levels was found during the molt cycle. The current study provides the first evidence of presence of trehalose in hemocytes and TPS in tissues of C. sapidus and implicates its functional role in energy metabolism and physiological adaptation.  相似文献   

13.
QX disease is a fatal disease in Sydney rock oysters caused by the protozoan parasite Marteilia sydneyi. The current study investigates the phagocytosis of M. sydneyi by Sydney rock oyster hemocytes. It also compares the in vitro phagocytic activities of hemocytes from oysters bred for QX disease resistance (QXR) with those of wild-type oysters. After ingestion of M. sydneyi, hemocyte granules fused with phagosome membranes and the pH of phagosomes decreased. Significantly (p = <0.05) more phagosomes in QXR hemocytes showed obvious changes in pH within 40 min of phagocytosis, when compared with wild-type hemocytes. Phenoloxidase deposition was also evident in phagosomes after in vitro phagocytosis. Most importantly, ingested and melanised M. sydneyi were detected in vivo among hemocytes from infected oysters. Overall, the data suggest that Sydney rock oyster hemocytes can recognise and phagocytose M. sydneyi, and that resistance against QX disease may be associated with enhanced phagolysosomal activity in QXR oysters.  相似文献   

14.
Histological response of lobsters to injection of Aerococcus viridans var. homari, cause of gaffkemia, was followed over a 14-day period. Salient features in infected lobsters, Homarus americanus, were: aggregations of hemocytes occurring in hemal spaces throughout the tissues and increasing in number and size with time; the early phagocytosis of bacteria by the system of fixed phagocytes (FPs) present in hemal spaces of the hepatopancreas; and premature release of differentiating hemocytes from the hemopoietic tissue, so that by 14 days that tissue consisted mainly of large stem cells. Mass release of differentiating hemocytes presumably occurred to replace hemocytes lost from the circulation by their incorporation into aggregations or by lysis of individual cells ruptured through the pressure of phagocytized bacteria that were multiplying in them. Bacteria and their remains were present in FPs at 2 days but not visible in single or aggregated hemocytes until 6 days, when free bacteria were also present in the hemolymph. By 6 days, all bacteria, whether phagocytized or free, appeared normal and were surrounded by nonstaining halos that extended well beyond the stainable capsular material. As predicted earlier in physiological studies, gaffkemia is a nontoxic, noninvasive bacteremia. There was hemal stasis and consequent injury in the antennal gland due to free and aggregated hemocytes that occluded hemal spaces of that organ, but other tissues and organs appeared normal except for depletion of glycogen. Aggregations of hemocytes were present in lobsters 2 and 12 days after injection of a nonpathogenic, Gram-negative bacterium, Pseudomonas perolens. Unlike the case with gaffkemia, necrotic hemocytes were common in the aggregations, presumably in response to damage by endotoxin. A further difference was that aggregations were common in the heart of P. perolens-injected lobsters but rare in the heart of gaffkemic lobsters. Bacteria were not seen in hemolymph, hemocytes, or other cells of P. perolens-injected lobsters.  相似文献   

15.
The cellular immune response against parasitoid wasps in Drosophila involves the activation, mobilization, proliferation and differentiation of different blood cell types. Here, we have assessed the role of Edin (elevated during infection) in the immune response against the parasitoid wasp Leptopilina boulardi in Drosophila melanogaster larvae. The expression of edin was induced within hours after a wasp infection in larval fat bodies. Using tissue-specific RNAi, we show that Edin is an important determinant of the encapsulation response. Although edin expression in the fat body was required for the larvae to mount a normal encapsulation response, it was dispensable in hemocytes. Edin expression in the fat body was not required for lamellocyte differentiation, but it was needed for the increase in plasmatocyte numbers and for the release of sessile hemocytes into the hemolymph. We conclude that edin expression in the fat body affects the outcome of a wasp infection by regulating the increase of plasmatocyte numbers and the mobilization of sessile hemocytes in Drosophila larvae.  相似文献   

16.
The cellular arm of the insect immune response is mediated by the activity of hemocytes. While hemocytes have been well-characterized morphologically and functionally in model insects, few studies have characterized the hemocytes of non-model insects. Further, the role of ontogeny in mediating immune response is not well understood in non-model invertebrate systems. The goals of the current study were to (1) determine the effects of caterpillar size (and age) on hemocyte density in naïve caterpillars and caterpillars challenged with non-pathogenic bacteria, and (2) characterize the hemocyte activity and diversity of cell types present in two forest caterpillars: Euclea delphinii and Lithacodes fasciola (Limacodidae). We found that although early and late instar (small and large size, respectively) naïve caterpillars had similar constitutive hemocyte densities in both species, late instar Lithacodes caterpillars injected with non-pathogenic E. coli produced more than a twofold greater density of hemocytes than those in early instars. We also found that both caterpillar species contained plasmatocytes, granulocytes and oenocytoids, all of which are found in other lepidopteran species, but lacked spherulocytes. Granulocytes and plasmatocytes were found to be strongly phagocytic in both species, but granulocytes exhibited a higher phagocytic activity than plasmatocytes. Our results strongly suggest that for at least one measure of immunological response, the production of hemocytes in response to infection, response magnitudes can increase over ontogeny. While the underlying raison d’ être for this improvement remains unclear, these findings may be useful in explaining natural patterns of stage-dependent parasitism and pathogen infection.  相似文献   

17.
The M22.8 monoclonal antibody (mAb) developed against an antigen expressed at the mussel larval and postlarval stages of Mytilus galloprovincialis was studied on adult samples. Antigenic characterization by Western blot showed that the antigen MSP22.8 has a restricted distribution that includes mantle edge tissue, extrapallial fluid, extrapallial fluid hemocytes, and the shell organic matrix of adult samples. Other tissues such as central mantle, gonadal tissue, digestive gland, labial palps, foot, and byssal retractor muscle did not express the antigen. Immunohistochemistry assays identified MSP22.8 in cells located in the outer fold epithelium of the mantle edge up to the pallial line. Flow cytometry analysis showed that hemocytes from the extrapallial fluid also contain the antigen intracellularly. Furthermore, hemocytes from hemolymph have the ability to internalize the antigen when exposed to a cell-free extrapallial fluid solution. Our findings indicate that hemocytes could play an important role in the biomineralization process and, as a consequence, they have been included in a model of shell formation. This is the first report concerning a protein secreted by the mantle edge into the extrapallial space and how it becomes part of the shell matrix framework in M. galloprovincialis mussels.  相似文献   

18.
Injection of a culture supernatant of Serratia marcescens into the bloodstream of the silkworm Bombyx mori increased the number of freely circulating immunosurveillance cells (hemocytes). Using a bioassay with live silkworms, serralysin metalloprotease was purified from the culture supernatant and identified as the factor responsible for this activity. Serralysin inhibited the in vitro attachment of both silkworm hemocytes and murine peritoneal macrophages. Incubation of silkworm hemocytes or murine macrophages with serralysin resulted in degradation of the cellular immune factor BmSPH-1 or calreticulin, respectively. Furthermore, serralysin suppressed in vitro phagocytosis of bacteria by hemocytes and in vivo bacterial clearance in silkworms. Disruption of the ser gene in S. marcescens attenuated its host killing ability in silkworms and mice. These findings suggest that serralysin metalloprotease secreted by S. marcescens suppresses cellular immunity by decreasing the adhesive properties of immunosurveillance cells, thereby contributing to bacterial pathogenesis.  相似文献   

19.
The dampwood termite, Zootermopsis angusticollis is known to generate humoral immune responses to the entomopathogenic fungus Metarhizium anisopliae. However, little is known about how the termite's cellular immune system reacts to fungal infection. To test the effect of conidia exposure on cellular immunity, we quantified the number and types of hemocytes in the hemolymph of naïve nymphs and compared their circulating counts with those of nestmates exposed to 0, 2 × 103, 2 × 106 or 2 × 108 conidia/ml doses. These termites were then bled and their hemocytes counted on days 1, 2, 3, 4, 7 post-exposure. Our results show, first, that naïve Z. angusticollis nymphs have three different blood cell types tentatively identified as granular hemocytes, prohemocytes and plasmatocytes. In these individuals, plasmatocytes were on average 13.5 and 3.3 times more numerous than granular hemocytes and prohemocytes, respectively. Second, a full factorial general linear analysis indicated that hemocyte type, time elapsed since conidia exposure and conidia dosage as well as all their interactions explained 43% of the variability in hemocyte density. The numbers of prohemocytes and particularly plasmatocytes, but not granular hemocytes, appear to be affected by the progression of disease. The decline in hemocyte numbers coincided with the appearance of hyphal bodies and the onset of “sluggish” termite behavior that culminated in the insect's death. Hemocyte counts of infected males and females were affected to the same extent. Hence, M. anisopliae overtakes the cellular immune responses of Z. angusticollis mainly by destroying the host's most abundant hemocyte types.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号