首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 549 毫秒
1.
江苏省海滩植被演替的研究   总被引:1,自引:0,他引:1  
江苏省海滩植被可分为滨海盐土植被、盐沼植被及海滩沙生植被三个基本类型。本文论述了这些植被类型的演替规律。滨海盐土植被与盐沼植被的演替,外因于土壤盐分含量递减与有机质含量的递增;海滩沙生植被的演替,外因于土壤沙颗粒大小及其相应的土壤含水量的变化,所以海滩植被演替为外因动态演替。  相似文献   

2.
Observations during 1971 and 1972 of some of the physical, chemical, and microbiological characteristics of contrasting Anglesey beaches, Newborough and Llanddona, are reported. The fine sandy beach at Newborough was observed to be very unstable and topographical changes were recorded. In particular, the movement of a sand wave across the intertidal zone from low water to extinction at the foot of the dune system was observed. The more extensive fine sandy beach at Llanddona had greater stability.Chemically, each beach was variable both spatially and temporally, with ill-defined patterns of concentration changes. Sand from Newborough beach was low in organic carbon (0.07–0.40 mg C/g dry sand) and well aerated, and the soluble inorganic nitrogen in the ground water (up to 30 μg-at. N/l) was dominated by nitrate form (up to 22 μg NO3-N/l). By contrast, Llanddona sand had a more variable organic carbon content (0.22–2.25 mg C/g dry sand), was wetter, and poorly aerated with consequent sulphide lenses; its dissolved inorganic nitrogen (over 70 μg-at. N/l) was completely dominated by the ammonium form.Microbiologically, the beaches possessed dissimilar bacterial floras, and sediment from Llanddona gave higher bacterial counts than that from Newborough. For both beaches it is shown that estimated bacterial numbers decreased with depth as well as down the intertidal zone.  相似文献   

3.
厦门港潮间带蛇尾类动物群落生态的研究   总被引:1,自引:0,他引:1  
  相似文献   

4.
Question: How rapidly has the sandy beach and maritime forest vegetation on Phuket recovered and regenerated after the impact of the major Indian Ocean tsunami of 2004? What are the characteristics of sandy beach species for regenerating their populations and the invasion patterns of originally non-sandy beach species or other newcomers after the tsunami? Location: Phuket Island, southern Thailand. Methods: Species composition of beaches was studied on the same research plots 6 months before and 9 months after the tsunami. The changes in individual species cover before and after the tsunami were determined by χ2 tests. Change in community composition was analysed by detrended correspondence analysis. The relationship between species and environmental factors was analysed by canonical correspondence analysis. Results: The sites disturbed by the tsunami were often invaded by annuals, especially grasses and asteraceous plants, rather than by perennials. In contrast, species with clonal growth by stolons decreased significantly. Factors determining the species habitat differences were soil hardness (penetration resistance of sandy soil), per cent silt content, soil water content and beach management. Habitat differences among originally non-sandy beach herbaceous species that expanded their population or moved to the coast after the disaster were defined by sand accretion or erosion caused by the tsunami. Many sandy beach herbaceous communities changed into Dactyloctenium aegyptium communities because of the tsunami were originally constituted by non-sandy beach D. aegyptium with Cenchrus echinatus. Although the forest floors of most maritime forests were invaded by originally non-sandy beach Tridax procumbens, Eleusine indica or D. aegyptium because of the tsunami, this did not result in a change in the vegetation unit, because species' loss was restricted to the understorey. In time, these forests will recover their previous community composition. Conclusions: Our results suggest that originally non-sandy beach native species invaded the disturbed beaches rapidly after the tsunami but their habitats differ. Sites where sand accumulated on a beach because of the tsunami were invaded by D. aegyptium and E. indica, whereas soil erosion permitted invasion by Digitania adscendens. Tridax procumbens establishes rapidly on wet sites with hard soil, high per cent silt content and low beach management pressure. Sandy beach species with subterranean long rhizomes are strongly tolerant of such disasters. We concluded that the species composition of the beaches disturbed by a temporary large disaster is determined by dormancy and growth forms, with radicoid form being influential.  相似文献   

5.
Beach sand is a habitat that supports many microbes, including viruses, bacteria, fungi and protozoa (micropsammon). The apparently inhospitable conditions of beach sand environments belie the thriving communities found there. Physical factors, such as water availability and protection from insolation; biological factors, such as competition, predation, and biofilm formation; and nutrient availability all contribute to the characteristics of the micropsammon. Sand microbial communities include autochthonous species/phylotypes indigenous to the environment. Allochthonous microbes, including fecal indicator bacteria (FIB) and waterborne pathogens, are deposited via waves, runoff, air, or animals. The fate of these microbes ranges from death, to transient persistence and/or replication, to establishment of thriving populations (naturalization) and integration in the autochthonous community. Transport of the micropsammon within the habitat occurs both horizontally across the beach, and vertically from the sand surface and ground water table, as well as at various scales including interstitial flow within sand pores, sediment transport for particle-associated microbes, and the large-scale processes of wave action and terrestrial runoff. The concept of beach sand as a microbial habitat and reservoir of FIB and pathogens has begun to influence our thinking about human health effects associated with sand exposure and recreational water use. A variety of pathogens have been reported from beach sands, and recent epidemiology studies have found some evidence of health risks associated with sand exposure. Persistent or replicating populations of FIB and enteric pathogens have consequences for watershed/beach management strategies and regulatory standards for safe beaches. This review summarizes our understanding of the community structure, ecology, fate, transport, and public health implications of microbes in beach sand. It concludes with recommendations for future work in this vastly under-studied area.  相似文献   

6.
Research was undertaken to characterize Escherichia coli isolates in interstitial water samples of a sandy beach on the southeastern shore of Lake Huron, Ontario, Canada. A survey of the beach area revealed the highest abundance of E. coli in interstitial water of the foreshore beach sand next to the swash zone. Higher concentrations of E. coli (up to 1.6 x 10(6) CFU/100 ml of water) were observed in the interstitial water from the sampling holes on the beach itself compared to lake water and sediment. Repetitive extragenic palindromic PCR (REP-PCR) was used to characterize the genetic diversity of E. coli isolates from interstitial water samples on the beach. E. coli isolates from the same sampling location frequently exhibited the same REP-PCR pattern or were highly similar to each other. In contrast, E. coli isolates from different sampling locations represented populations distinct from each other. This study has identified a unique ecological niche within the foreshore area of the beach where E. coli may survive and possibly multiply outside of host organisms. The results are of interest as increasing concentrations of E. coli in recreational waters are often considered to be an indication of recent fecal pollution.  相似文献   

7.
Aims: Research into the relationship between pathogens, faecal indicator microbes and environmental factors in beach sand has been limited, yet vital to the understanding of the microbial relationship between sand and the water column and to the improvement of criteria for better human health protection at beaches. The objectives of this study were to evaluate the presence and distribution of pathogens in various zones of beach sand (subtidal, intertidal and supratidal) and to assess their relationship with environmental parameters and indicator microbes at a non‐point source subtropical marine beach. Methods and Results: In this exploratory study in subtropical Miami (Florida, USA), beach sand samples were collected and analysed over the course of 6 days for several pathogens, microbial source tracking markers and indicator microbes. An inverse correlation between moisture content and most indicator microbes was found. Significant associations were identified between some indicator microbes and pathogens (such as nematode larvae and yeasts in the genus Candida), which are from classes of microbes that are rarely evaluated in the context of recreational beach use. Conclusions: Results indicate that indicator microbes may predict the presence of some of the pathogens, in particular helminthes, yeasts and the bacterial pathogen Staphylococcus aureus including methicillin‐resistant forms. Indicator microbes may thus be useful for monitoring beach sand and water quality at non‐point source beaches. Significance and Impact of the Study: The presence of both indicator microbes and pathogens in beach sand provides one possible explanation for human health effects reported at non‐point sources beaches.  相似文献   

8.
Research was undertaken to characterize Escherichia coli isolates in interstitial water samples of a sandy beach on the southeastern shore of Lake Huron, Ontario, Canada. A survey of the beach area revealed the highest abundance of E. coli in interstitial water of the foreshore beach sand next to the swash zone. Higher concentrations of E. coli (up to 1.6 × 106 CFU/100 ml of water) were observed in the interstitial water from the sampling holes on the beach itself compared to lake water and sediment. Repetitive extragenic palindromic PCR (REP-PCR) was used to characterize the genetic diversity of E. coli isolates from interstitial water samples on the beach. E. coli isolates from the same sampling location frequently exhibited the same REP-PCR pattern or were highly similar to each other. In contrast, E. coli isolates from different sampling locations represented populations distinct from each other. This study has identified a unique ecological niche within the foreshore area of the beach where E. coli may survive and possibly multiply outside of host organisms. The results are of interest as increasing concentrations of E. coli in recreational waters are often considered to be an indication of recent fecal pollution.  相似文献   

9.
Twenty-four yrs of primary succession in a man-made beach-dune system at the Baltic coast of Denmark, built of calcareous, marine sand and the dune planted with Ammophila arenaria , was studied by qualitative observations, quantitative records in permanent plots, levelling and soil analysis within a selected area of 0.75 ha. The aim of the study was to discuss whether human initiated and influenced beach and dune dynamics mimick natural beach and dune processes, and to discuss the relationship between succession and zonation. During the study period, which started in 1979, the man-made dune stabilized rather fast. In the stabilized dune, a sand-pararendzina with a thin A-horizon developed. The beach expanded by accretion of less calcareous, marine sand. On the beach new dunes, 3 m high, successively developed. The number of species in the study area increased from 16 to 55, accompanied by species and life form dynamics, characteristic for primary succession on sandy coasts. A gradual change in species composition of the permanent plots, which appeared by a DCA analysis, could by using TWINSPAN be structured into four groups or plant communities, which reflect succession as well as zonation. Two groups represent the vegetation of sandy beaches with annual dicotyledon species, and mobile dunes dominated by rhizomatous geophytes, especially A. arenaria. The two other groups represent stabilized, calcareous dune, dominated by hemicryptophytes, specially Festuca rubra , and less stabilized dune with F. rubra and the invasive alien Rosa rugosa. It was concluded, that the main trends in the geomorphological and vegetational development of the man-made beach-dune system is similar to the development in natural dunes. In the future, further accretion and seaward dune formation may be expected, but is it also expected, that larger parts of the area gradually will be covered by low scrubs of R. rugosa.  相似文献   

10.
Meiofauna of a sewage-polluted sandy beach, where sand alone constituted > 90%, was surveyed. Nematodes dominated the fauna numerically at all stations, followed by harpacticoid copepods. Most of the animals were confined to the top 5 cm of the sediment. A seasonal pattern was observed in the distribution of the fauna. There were significant spatial and temporal variations in mean meiofauna density, attributed to organic discharge via sewage and prevailing environmental conditions in the study area.  相似文献   

11.
Microbial communities within beach sand play a key role in nutrient cycling and are important to the nearshore ecosystem function. Escherichia coli and enterococci, two common indicators of fecal pollution, have been shown to persist in the beach sand, but little is known about how microbial community assemblages are related to these fecal indicator bacteria (FIB) reservoirs. We examined eight beaches across a geographic gradient and range of land use types and characterized the indigenous community structure in the water and the backshore, berm, and submerged sands. FIB were found at similar levels in sand at beaches adjacent to urban, forested, and agricultural land and in both the berm and backshore. However, there were striking differences in the berm and backshore microbial communities, even within the same beach, reflecting the very different environmental conditions in these beach zones in which FIB can survive. In contrast, the microbial communities in a particular beach zone were similar among beaches, including at beaches on opposite shores of Lake Michigan. The differences in the microbial communities that did exist within a beach zone correlated to nutrient levels, which varied among geographic locations. Total organic carbon and total phosphorus were higher in Wisconsin beach sand than in beach sand from Michigan. Within predominate genera, fine-scale sequence differences could be found that distinguished the populations from the two states, suggesting a biogeographic effect. This work demonstrates that microbial communities are reflective of environmental conditions at freshwater beaches and are able to provide useful information regarding long-term anthropogenic stress.  相似文献   

12.
13.
Recent studies have reported high levels of fecal indicator enterococci in marine beach sand. This study aimed to determine the spatial and temporal variation of enterococcal abundance and to evaluate its relationships with microbial community parameters in Hawaii beach sand and water. Sampling at 23 beaches on the Island of Oahu detected higher levels of enterococci in beach foreshore sand than in beach water on a mass unit basis. Subsequent 8-week consecutive samplings at two selected beaches (Waialae and Kualoa) consistently detected significantly higher levels of enterococci in backshore sand than in foreshore/nearshore sand and beach water. Comparison between the abundance of enterococci and the microbial communities showed that enterococci correlated significantly with total Vibrio in all beach zones but less significantly with total bacterial density and Escherichia coli. Samples from the different zones of Waialae beach were sequenced by 16S rRNA gene pyrosequencing to determine the microbial community structure and diversity. The backshore sand had a significantly more diverse community and contained different major bacterial populations than the other beach zones, which corresponded to the spatial distribution pattern of enterococcal abundance. Taken together, multiple lines of evidence support the possibility of enterococci as autochthonous members of the microbial community in Hawaii beach sand.  相似文献   

14.
A methodology for inducing spawning in captivity of the lancelet Branchiostoma lanceolatum has been developed recently with animals collected at the Racou beach, in the southern coast of France. An increasing amount of laboratories around the world are now working on the evolution of developmental mechanisms (Evo-Devo) using amphioxus collected in this site. Thus, today, the development of new aquaculture techniques for keeping amphioxus in captivity is needed and the study of the natural conditions at which amphioxus is exposed in the Racou beach during their spawning season becomes necessary. We have investigated the amphioxus distribution, size frequency, and population structure in the Racou beach during its natural spawning season using multivariate methods (redundancy analysis and multiple regression). We found a clear preference of amphioxus for sandy sites, something that seems to be a general behaviour of different amphioxus species around the world. We have also estimated the amphioxus growth rate and we show how the animals are preferentially localized in shallow waters during April and June.  相似文献   

15.
Sandy coastlines are dynamic environments with potential for biodiverse habitats, such as green beaches. Green beach vegetation can develop on nutrient-poor beaches landward from embryo dunes. It is characterised by low-dynamic coastal wetland habitat such as salt marshes and dune slacks. It has been hypothesised that the establishment of green beach vegetation is facilitated by the shelter provided by embryo dunes, however evidence is lacking.We explored the importance of geomorphology and soil conditions on the species richness and turnover of green beach vegetation over a time period of 10 years. We recorded 107 plots along 11 transects over a gradient from beach to dune on the island of Schiermonnikoog, the Netherlands. We characterised transect geomorphology at transect level and soil conditions and vegetation at plot level in 2006 and 2016.We found that the green beach vegetation was highly dynamic, total plant cover increased by 62% within 10 years. In 2006 beach width was an important factor in explaining species richness, with the highest number of species occurring on narrow beaches with a large volume of embryo dunes. In 2016, species richness was positively associated with the build-up of organic matter. Overall species richness declined relative to 2006 and was accompanied by an increase in elevation due to sand burial and the expansion of embryo dune volume.Our data suggests that geomorphology influenced the vegetation indirectly by affecting sand burial rate. Plant species richness declined less at sheltered conditions where sand burial was limited, allowing the build-up of organic matter. This indicates a time-dependent relationship between the development of embryo dunes and plant species richness: embryo dunes can be a source of shelter, thus increasing species richness, but can compete for space over time, lowering species richness again. Our results are relevant for engineering and management of biodiverse sandy shores.  相似文献   

16.
The Volta River delta developed as an asymmetric lobe in a tectonic offset on the coast of Ghana. The delta comprises a large curvilinear spit that widens in its central portion due to the adjunction of successive sandy beach ridges. The appearance of a distinct spit, in lieu of a continuous barrier from the present mouth of the Volta River to the Bight of Benin coast, may be an outgrowth of a natural change in the location of the mouth of the Volta. The spit marks a segmentation of the unique sand drift cell that hitherto prevailed on this bight coast. Spit growth has been accompanied by a wave of erosion over the last century of the immediate downdrift sector of the bight coast, endangering the town of Keta. Erosion since the 1960s may have been aggravated by the construction of the Akosombo hydropower dam. The tip of the spit has recently welded to the shoreline, thus assuring resumption of sand supply from the Volta towards the rest of this formerly sand-starved sector of the bight coast. Blocking of sediment by the Akosombo Dam is, in due course, likely to become the overarching factor in delta shoreline stability.  相似文献   

17.
Surface moisture is an important supply limiting factor for aeolian sand transport, which is the primary driver of coastal dune development. As such, it is critical to account for the control of surface moisture on available sand for dune building. Optical remote sensing has the potential to measure surface moisture at a high spatio-temporal resolution. It is based on the principle that wet sand appears darker than dry sand: it is less reflective. The goals of this study are (1) to measure and model reflectance under controlled laboratory conditions as function of wavelength () and surface moisture () over the optical domain of 350–2500 nm, and (2) to explore the implications of our laboratory findings for accurately mapping the distribution of surface moisture under natural conditions. A laboratory spectroscopy experiment was conducted to measure spectral reflectance (1 nm interval) under different surface moisture conditions using beach sand. A non-linear increase of reflectance upon drying was observed over the full range of wavelengths. Two models were developed and tested. The first model is grounded in optics and describes the proportional contribution of scattering and absorption of light by pore water in an unsaturated sand matrix. The second model is grounded in soil physics and links the hydraulic behaviour of pore water in an unsaturated sand matrix to its optical properties. The optical model performed well for volumetric moisture content 24% ( 0.97), but underestimated reflectance for between 24–30% ( 0.92), most notable around the 1940 nm water absorption peak. The soil-physical model performed very well ( 0.99) but is limited to 4% 24%. Results from a field experiment show that a short-wave infrared terrestrial laser scanner ( = 1550 nm) can accurately relate surface moisture to reflectance (standard error 2.6%), demonstrating its potential to derive spatially extensive surface moisture maps of a natural coastal beach.  相似文献   

18.
Ecological impacts of vehicle traffic are a significant environmental management issue on many sandy shores. Impacts usually focus on lethal effects of vehicles to organisms, but sub-lethal effects which could reduce the fitness of macrofauna populations are equally possible but unknown. Consequently, we measured changes in body condition and burrowing performance of the beach clam Donax deltoides subjected to vehicle traffic on sandy shores in eastern Australia. Body mass index of clams on beaches open to traffic was 16% lower, but gonadosomatic index and relative valve thickness were not consistently linked to vehicle access to beaches. By contrast, off-road vehicles significantly impaired the burrowing performance of clams. After experimental exposure to ORV traffic (30 passes) and dislodgement from the sediment, the time taken for clams to re-bury into the sand doubled irrespective of the vehicle weight used. Because burrowing is such a critical function in the behavioural repertoire of sandy beach animals, the traffic-induced changes to organisms' performance found in this study may increase mortality by causing displacement to less favourable habitats by swash, and by intensifying the risk of predation and desiccation. When assessing the ecological impacts of vehicles on beach fauna, it is thus important to consider both lethal and sub-lethal effects.  相似文献   

19.
Soils are frequently exposed to drying and wetting events and previous studies have shown that rewetting results in a strong but short-lived flush of microbial activity. The aim of this study was to determine the effect of the water content during the dry period on the size and duration of the flush and on the rate of recovery. Two soils (a sand and a sandy loam) were maintained at different water contents (WC) 30, 28 and 25 g water kg?1 soil (sand) and 130, 105 and 95 g water kg?1 soil (sandy loam) for 14 days, then rewet to the water content at which respiration was optimal [WC 35 (sand), WC200 (sandy loam)] and maintained at this level until day 68. Ground pea straw (C/N 26) was added and incorporated on day 1. The controls were maintained at the optimal water content throughout the 68 days. Respiration rates during the dry phase (days 1?C14) decreased with decreasing water content. The flush of respiration after rewetting peaked on day 15 in the sandy loam and on day 16 in the sand; it was greatest in the soils that had been maintained at the lowest water content [WC25 (sand) and WC95 (sandy loam)]. Cumulative respiration during the remainder of the incubation period in which all soils were maintained at optimal water content increased more strongly in the soils that had been dry compared to the constantly moist control. On the final day of the dry period (day 14), cumulative respiration in the dry soils was 29?C65% (sand) and 67?C94% (sandy loam) of the constantly moist control whereas on day 68 it was 80?C84% (sand) and 86?C96% (sandy loam). The greater increase in cumulative respiration in the previously dry soils can be explained by the reduced decomposition rates during the dry period which resulted in higher substrate availability on day 14 compared to the constantly moist control. Microbial community structure assessed by phospholipid fatty acid analyses changed over time in all treatments but was less affected by water content than respiration; it differed only between the highest and the lowest water content. These differences were maintained throughout the incubation period in the sandy loam and transiently in the sand. It can be concluded that the soil water content during the dry phase affects the size of the flush in microbial activity upon rewetting and that microbial activity in previously dried soils may not be fully restored even after 54 days of moist incubation, suggesting that drying of soil can have a significant and long-lasting impact on microbial functioning.  相似文献   

20.
Sandy intertidal zones were analysed for the presence of meiofauna. The material was collected on six macro-tidal sandy beaches along the North Sea (The Netherlands, France, Belgium), in order to analyse the vertical and horizontal meiofaunal distribution patterns. Eleven higher meiofauna taxa (one represented by larval stage—Copepoda nauplii) were recorded. The maximum total meiofauna abundance was observed on the Dutch beach (4,295±911 ind. 10 cm−2) in the Westerschelde estuary, while the lowest values (361±128 ind. 10 cm−2) were recorded in France at the Audresselles beach. Meiofauna of the different localities consisted mainly of nematodes, harpacticoids and turbellarians. Nematodes numerically dominated all sampled stations, comprising more than 45% of the total meiofauna density. Meiofauna was mainly concentrated at the sand surface with about 70% present in the uppermost 5 cm. Meiofauna occurred across the entire intertidal zone. A clear zonation pattern in the distribution of meiofauna taxa across the beaches was observed. The present work suggests that designation of exposed sandy beaches as physically controlled (McLachlan 1988) does not explain their biological variability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号