首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Induction of bacteriophage λ in the presence of a P2 prophage results in inactivation of cellular transfer RNA, inhibition of amino acid and uridine incorporation in the host, as well as inhibition of phage replication. A red gam double mutation allows λ to escape from interference, and a mutation in gene O or P abolishes the effects on the host.It is shown here that phage and plasmid DNA extracted from cells undergoing P2-λ interference are still active in a transfection assay. Mutations in bacterial gene dna B or in phage site ori suppress the inhibition of amino acid incorporation, whereas genes dnaE and dna G have no such effect. Derepression of bacterial exonuclease VIII totally suppresses the interference, and mutations in genes recA and lexA, which control the SOS functions, suppress it partially if the λ phage is red+. Our results suggest that P2-λ interference is due to the action of old at an early step of the initiation of λ replication.  相似文献   

3.
P22 cro? mutants were isolated as one class of phage P22 mutants (cly mutants) that have a very high frequeney of lysogeny relative to wild-type P22. These mutants: (1) do not form plaques and over-lysogenize relative to wild-type P22 after infection of a wild-type Salmonella host; (2) are defective in anti-immunity; and (3) fail to turn off high-level synthesis of P22 c2-repressor after infection.P22 cro? mutations are recessive and map between the P22 c2 and c1 genes. P22 cro? mutations are suppressed by clear-plaque mutations in the c1 gene, one of which is simultaneously cy?. They are also suppressed, but incompletely, by mutations in the c2 (repressor) gene, especially those that do not completely abolish c2 gene function.Salmonella host mutants have been isolated that are permissive for the lytic growth of the P22 cro? mutants.  相似文献   

4.
Dong Han 《FEBS letters》2009,583(4):771-4627
Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated protein genes (cas genes) have been suggested to act as an immune system in archaea and bacteria mimicking the eukaryotic RNA interference (RNAi) system. We have investigated the properties of the protein SSO2001 from Sulfolobus solfataricus (Sso) P2, which is part of the cas gene cluster. This study shows that SSO2001 is an endonuclease specifically digesting double-stranded oligonucleotides and preferably cleaving at G:C pairs. Point mutations identify both highly conserved aspartate and glutamate residues as being crucial for the nuclease activity. The catalytic activity shows an optimum at neutral pH and pH 3.  相似文献   

5.
Pseudomonas aeruginosa is an opportunistic bacterial pathogen which is the leading cause of morbidity and mortality among cystic fibrosis patients. Although P. aeruginosa is primarily considered an extacellular pathogen, recent reports have demonstrated that throughout the course of infection the bacterium acquires the ability to enter and reside within host cells. Normally intracellular pathogens are cleared through a process called autophagy which sequesters and degrades portions of the cytosol, including invading bacteria. However the role of autophagy in host defense against P. aeruginosa in vivo remains unknown. Understanding the role of autophagy during P. aeruginosa infection is of particular importance as mutations leading to cystic fibrosis have recently been shown to cause a blockade in the autophagy pathway, which could increase susceptibility to infection. Here we demonstrate that P. aeruginosa induces autophagy in mast cells, which have been recognized as sentinels in the host defense against bacterial infection. We further demonstrate that inhibition of autophagy through pharmacological means or protein knockdown inhibits clearance of intracellular P. aeruginosa in vitro, while pharmacologic induction of autophagy significantly increased bacterial clearance. Finally we find that pharmacological manipulation of autophagy in vivo effectively regulates bacterial clearance of P. aeruginosa from the lung. Together our results demonstrate that autophagy is required for an effective immune response against P. aeruginosa infection in vivo, and suggest that pharmacological interventions targeting the autophagy pathway could have considerable therapeutic potential in the treatment of P. aeruginosa lung infection.  相似文献   

6.
7.
Physical analyses of two newly isolated oversized P1lac phage genomes showed that they are partly diploid in P1 genes and that they carry a 60–70-kb segment of host DNA. The transposable element γδ is present at one of the junctions between host and P1 DNA, and IS1 is at the other junction. These elements must thus have been actively involved in the formation of these P1lac prophages. The genome of a third oversized P1lac has a segment with dispensable P1 genes deleted. The absence of any known recombinogenic element at one of its junctions between P1 and host DNA suggests non-homologous recombination to have been involved in its formation. Non-homologous recombination might have also taken place in one of the final steps of the formation of the former P1lac genomes.  相似文献   

8.
B H Lindqvist 《Gene》1981,14(4):243-250
A helper-independent P4::P2 hybrid (Hy19), with the essential gene region of P4 linked to the late genes of P2, has been isolated by in vitro recombination techniques. This hybrid expresses a P4 Sid? phenotype since it makes large heads. The int-C region of P2 is deleted from Hy19 and its DNA replication is independent of the host rep gene, indicating that it depends on the P4 replicon.  相似文献   

9.
10.
During the last decade, microRNAs (miRNAs) have emerged as fine tuners of gene expression in various biological processes including host–pathogen interactions. Apart from the role of host encoded miRNAs in host–virus interactions, recent studies have also indicated the key role of virus-encoded miRNAs in the regulation of host defense responses. In the present study, we show that bmnpv-miR-3, a Bombyx mori nucleopolyhedrovirus (BmNPV) encoded miRNA, regulates the expression of DNA binding protein (P6.9) and other late genes, vital for the late stage of viral infection in the host, Bombyx mori. We have performed both cell culture and in vivo experiments to establish the role of bmnpv-miR-3 in the infection cycle of BmNPV. Our findings showed that bmnpv-miR-3 expresses during early stage of infection, and negatively regulates the expression of P6.9. There was an upregulation in P6.9 expression upon blocking of bmnpv-miR-3 by Locked Nucleic Acid (LNA), whereas overexpression of bmnpv-miR-3 resulted in a decreased expression of P6.9. Besides, a remarkable enhancement and reduction in the viral loads were observed upon blocking and overexpression of bmnpv-miR-3, respectively. Furthermore, we have also assessed the host immune response using one of the Lepidoptera-specific antimicrobial proteins, Gloverin-1 upon blocking and overexpression of bmnpv-miR-3, which correlated viral load with the host immune response. All these results together; clearly imply that bmnpv-miR-3-mediated controlled regulation of BmNPV late genes in the early stage of infection helps BmNPV to escape the early immune response from the host.  相似文献   

11.

Background

We have recently developed several homozygous families of transgenic rainbow trout harbouring cecropin P1 transgene. These fish exhibit resistance characteristic to infection by Aeromonas salmonicida and infectious hematopoietic necrosis virus (IHNV). In our earlier studies we have reported that treatment of a rainbow trout macrophage cell line (RTS11) with a linear cationic α-helical antimicrobial peptide (e.g., cecropin B) resulted in elevated levels of expression of two pro-inflammatory relevant genes (e.g., IL-1β and COX-2). Therefore, we hypothesized that in addition to the direct antimicrobial activity of cecropin P1 in the disease resistant transgenic rainbow trout, this antimicrobial peptide may also affect the expression of immune relevant genes in the host. To confirm this hypothesis, we launched a study to determine the global gene expression profiles in three immune competent organs of cecropin P1 transgenic rainbow trout by using a 44k salmonid microarray.

Results

From the microarray data, a total of 2480 genes in the spleen, 3022 in the kidney, and 2102 in the liver were determined as differentially expressed genes (DEGs) in the cecropin P1 transgenic rainbow trout when compared to the non-transgenics. There were 478 DEGs in common among three tissues. Enrichment analyses conducted by two different bioinformatics tools revealed a tissue specific profile of functional pathway perturbation. Many of them were directly related to innate immune system such as phagocytosis, lysosomal processing, complement activation, antigen processing/presentation, and leukocyte migration. Perturbation of other biological functions that might contribute indirectly to host immunity was also observed.

Conclusions

The gene product of cecropin P1 transgene produced in the disease resistant transgenic rainbow trout not only can kill the pathogens directly but also exert multifaceted immunomodulatory properties to boost host immunity. The identified genes involved in different pathways related to immune function are valuable indicators associated with enhanced host immunity. These genes may serve as markers for selective breeding of rainbow trout or other aquaculture important fish species bearing traits of disease resistance.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-887) contains supplementary material, which is available to authorized users.  相似文献   

12.
Identifying new target molecules through which eosinophils secrete their stored proteins may reveal new therapeutic approaches for the control of eosinophilic disorders such as host immune responses to parasites. We have recently reported the expression of the purinergic P2Y12 receptor (P2Y12R) in human eosinophils; however, its functional role in this cell type and its involvement in eosinophilic inflammation remain unknown. Here, we investigated functional roles of P2Y12R in isolated human eosinophils and in a murine model of eosinophilic inflammation induced by Schistosoma mansoni (S. mansoni) infection. We found that adenosine 5’-diphosphate (ADP) induced human eosinophils to secrete eosinophil peroxidase (EPO) in a P2Y12R dependent manner. However, ADP did not interfere with human eosinophil apoptosis or chemotaxis in vitro. In vivo, C57Bl/6 mice were infected with cercariae of the Belo Horizonte strain of S. mansoni. Analyses performed 55 days post infection revealed that P2Y12R blockade reduced the granulomatous hepatic area and the eosinophilic infiltrate, collagen deposition and IL-13/IL-4 production in the liver without affecting the parasite oviposition. As found for humans, murine eosinophils also express the P2Y12R. P2Y12R inhibition increased blood eosinophilia, whereas it decreased the bone marrow eosinophil count. Our results suggest that P2Y12R has an important role in eosinophil EPO secretion and in establishing the inflammatory response in the course of a S. mansoni infection.  相似文献   

13.
The neighbourhoods of cytochrome P450 (CYP) genes in deuterostome genomes, as well as those of the cnidarians Nematostella vectensis and Acropora digitifera and the placozoan Trichoplax adhaerens were examined to find clues concerning the evolution of CYP genes in animals. CYP genes created by the 2R whole genome duplications in chordates have been identified. Both microsynteny and macrosynteny were used to identify genes that coexisted near CYP genes in the animal ancestor. We show that all 11 CYP clans began in a common gene environment. The evidence implies the existence of a single locus, which we term the ‘cytochrome P450 genesis locus’, where one progenitor CYP gene duplicated to create a tandem set of genes that were precursors of the 11 animal CYP clans: CYP Clans 2, 3, 4, 7, 19, 20, 26, 46, 51, 74 and mitochondrial. These early CYP genes existed side by side before the origin of cnidarians, possibly with a few additional genes interspersed. The Hox gene cluster, WNT genes, an NK gene cluster and at least one ARF gene were close neighbours to this original CYP locus. According to this evolutionary scenario, the CYP74 clan originated from animals and not from land plants nor from a common ancestor of plants and animals. The CYP7 and CYP19 families that are chordate-specific belong to CYP clans that seem to have originated in the CYP genesis locus as well, even though this requires many gene losses to explain their current distribution. The approach to uncovering the CYP genesis locus overcomes confounding effects because of gene conversion, sequence divergence, gene birth and death, and opens the way to understanding the biodiversity of CYP genes, families and subfamilies, which in animals has been obscured by more than 600 Myr of evolution.  相似文献   

14.

Background

Phytophthora infestans (Mont.) de Bary causes late blight of potato and tomato, and has a broad host range within the Solanaceae family. Most studies of the Phytophthora – Solanum pathosystem have focused on gene expression in the host and have not analyzed pathogen gene expression in planta.

Methodology/Principal Findings

We describe in detail an in silico approach to mine ESTs from inoculated host plants deposited in a database in order to identify particular pathogen sequences associated with disease. We identified candidate effector genes through mining of 22,795 ESTs corresponding to P. infestans cDNA libraries in compatible and incompatible interactions with hosts from the Solanaceae family.

Conclusions/Significance

We annotated genes of P. infestans expressed in planta associated with late blight using different approaches and assigned putative functions to 373 out of the 501 sequences found in the P. infestans genome draft, including putative secreted proteins, domains associated with pathogenicity and poorly characterized proteins ideal for further experimental studies. Our study provides a methodology for analyzing cDNA libraries and provides an understanding of the plant – oomycete pathosystems that is independent of the host, condition, or type of sample by identifying genes of the pathogen expressed in planta.  相似文献   

15.
Our goal was to describe in more detail the evolutionary history of Gamma and two derived lineages (P.1.1 and P.1.2), which are part of the arms race that SARS-CoV-2 wages with its host. A total of 4,977 sequences of the Gamma strain of SARS-CoV-2 from Brazil were analyzed. We detected 194 sites under positive selection in 12 genes/ORFs: Spike, N, M, E, ORF1a, ORF1b, ORF3, ORF6, ORF7a, ORF7b, ORF8, and ORF10. Some diagnostic sites for Gamma lacked a signature of positive selection in our study, but these were not fixed, apparently escaping the action of purifying selection. Our network analyses revealed branches leading to expanding haplotypes with sites under selection only detected when P.1.1 and P.1.2 were considered. The P.1.2 exclusive haplotype H_5 originated from a non-synonymous mutational step (H3509Y) in H_1 of ORF1a. The selected allele, 3509Y, represents an adaptive novelty involving ORF1a of P.1. Finally, we discuss how phenomena such as epistasis and antagonistic pleiotropy could limit the emergence of new alleles (and combinations thereof) in SARS-COV-2 lineages, maintaining infectivity in humans, while providing rapid response capabilities to face the arms race triggered by host immuneresponses.  相似文献   

16.
17.
The bipartite immunity and repression system of the temperate Salmonella bacteriophage P22 has been analyzed by genetic means. Both parts of the immunity system, immI and immC, are necessary to confer upon lysogens immunity to superinfection with P22. The product of the c2 gene (which lies in immC) is a repressor which apparently regulates directly the expression of phage genes in a manner analogous (if not identical) with that found for coliphage λ.The immI region contains three genetic elements. One of these (mnt; Gough, 1968) appears to specify another repressor whose specific activity is continuously required for the maintenance of lysogeny. We have identified two new regulatory elements in immI through the isolation of mutants. Virulent mutations (virA) in the Vy element confer the ability to grow in immune P22 lysogens by destroying or inactivating the repression functions of the lysogen (possibly the c2-repressor itself). The third element in immI is a structural gene (ant) for a protein (antirepressor) which is regulated by mnt (repressor) and Vy (promoter/operator).We have shown that the ability of P22 to grow on immI-deletion lysogens, the dominant virulence of virA virulents, and the requirement for mnt for the maintenance of lysogeny, all depend on an intact ant+ gene. It is proposed that P22 antirepressor represents a new type of regulatory protein which acts by controlling other regulatory proteins.  相似文献   

18.
19.
20.
《Gene》1999,226(2):139-146
The halotolerant alkane-assimilating yeast Debaryomyces hansenii was examined for P450 alkane hydroxylase genes known to be required for alkane assimilation in Candida. Four distinct P450alk gene segments and an allelic segment were isolated using PCR based on degenerate primers derived from the CYP52 family of alkane-inducible P450 genes. A screen of a genomic library (15–20 kb inserts) constructed for this study, using a probe based on the PCR-isolated segments, yielded seven clones. This has led to the isolation and sequence of two full-length genes DH-ALK1 and DH-ALK2. These genes, each with an ORF of 1557 bp (519 aa), contained no apparent introns and showed 64% nucleotide sequence homology (61% based on the deduced amino acid sequences). The deduced proteins had predicted molecular weights of 59,254 Da (DH-ALK1) and 59,614 Da (DH-ALK2) and have been designated CYP52A12 and CYP52A13 by the P450 Nomenclature Committee. Phylogenetic analysis based on Neighbor Joining Tree showed that DH-ALK1 and DH-ALK2 constitute new genes located on two distinct branches and are most related to the gene CYP52A3 (60% deduced aa homology) and are least related to the gene CYP52C2 (41% deduced aa homology), both of C. maltosa. The isolated genes will provide tools to better understand the diversity of the P450alk family in eukaryotic microorganisms adapted to varied environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号