首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Environmental variables that are correlated with depth have been suggested to be among the major forces underlying speciation in the deep sea. This study incorporated phylogenetics and ecological niche models (ENM) to examine whether congeneric species of Callogorgia (Octocorallia: Primnoidae) occupy different ecological niches across the continental slope of the Gulf of Mexico (GoM) and whether this niche divergence could be important in the evolution of these closely related species. Callogorgia americana americana, Callogorgia americana delta and Callogorgia gracilis were documented at 13 sites in the GoM (250–1000 m) from specimen collections and extensive video observations. On a first order, these species were separated by depth, with C. gracilis occurring at the shallowest sites, C. a. americana at mid‐depths and C. a. delta at the deepest sites. Callogorgia a. delta was associated with areas of increased seep activity, whereas C. gracilis and C. a. americana were associated with narrow, yet warmer, temperature ranges and did not occur near cold seeps. ENM background and identity tests revealed little to no overlap in ecological niches between species. Temporal calibration of the phylogeny revealed the formation of the Isthmus of Panama was a vicariance event that may explain some of the patterns of speciation within this genus. These results elucidate the potential mechanisms for speciation in the deep sea, emphasizing both bathymetric speciation and vicariance events in the evolution of a genus across multiple regions.  相似文献   

2.
Lamellibrachia vestimentiferan tubeworms form aggregations at hydrocarbon cold seeps in the deep Gulf of Mexico (GoM), creating structures that provide living space for other fauna. In the GoM, three Lamellibrachia taxa vary in morphology and depth ranges: Lamellibrachia luymesi (300–950 m), Lamellibrachia sp. 1 (950–2,604 m), and Lamellibrachia sp. 2 (1,175–3,304 m). While Lamellibrachia sp. 2 is consistently identified as a separate species, L. luymesi and sp. 1 cannot be discriminated using barcoding markers cytochrome oxidase subunit 1 (COI) and large ribosomal subunit rDNA (16S). To determine if limited gene flow was a factor in the formation of these taxa, we employed more quickly evolving markers, including mitochondrial cytochrome B (CYTB), hemoglobin subunit B2 intron (HbB2i), and six polymorphic microsatellites; microsatellites were amplified across 45 L. luymesi and sp. 1 individuals. Additionally, we used microsatellites to ask whether populations of Lamellibrachia sp. 1 and sp. 2 show evidence of significant structure. Despite a lack of resolution seen with CYTB and HbB2i, L. luymesi and sp. 1 form genetically differentiated clusters at the cross-amplified microsatellites. Furthermore, we find no evidence for population structure for either Lamellibrachia sp. 1 or sp. 2 across the GoM.  相似文献   

3.
Benthic foraminifera are among the most abundant groups found in deep‐sea habitats, including methane seep environments. Unlike many groups, no endemic foraminiferal species have been reported from methane seeps, and to our knowledge, genetic data are currently sparse for Pacific deep‐sea foraminifera. In an effort to understand the relationships between seep and non‐seep populations of the deep‐sea foraminifera Cibicidoides wuellerstorfi, a common paleo‐indicator species, specimens from methane seeps in the Pacific were analyzed and compared to one another for genetic similarities of small subunit rDNA (SSU rDNA) sequences. Pacific Ocean C. wuellerstorfi were also compared to those collected from other localities around the world (based on 18S gene available on Genbank, e.g., Schweizer et al., 2009). Results from this study revealed that C. wuellerstorfi living in seeps near Costa Rica and Hydrate Ridge are genetically similar to one another at the species level. Individuals collected from the same location that display opposite coiling directions (dextral and sinstral) had no species level genetic differences. Comparisons of specimens with genetic information available from Genbank (SSU rDNA) showed that Pacific individuals, collected for this study, are genetically similar to those previously analyzed from the North Atlantic and Antarctic. These observations provide strong evidence for the true cosmopolitan nature of C. wuellerstorfi and highlight the importance of understanding how these microscopic organisms are able to maintain sufficient genetic exchange to remain within the same species between seep and non‐seep habitats and over global distances.  相似文献   

4.
Symbiotic relationships between vestimentiferan tubeworms and chemosynthetic Gammaproteobacteria build the foundations of many hydrothermal vent and hydrocarbon seep ecosystems in the deep sea. The association between the vent tubeworm Riftia pachyptila and its endosymbiont Candidatus Endoriftia persephone has become a model system for symbiosis research in deep‐sea vestimentiferans, while markedly fewer studies have investigated symbiotic relationships in other tubeworm species, especially at cold seeps. Here we sequenced the endosymbiont genome of the tubeworm Lamellibrachia barhami from a cold seep in the Gulf of California, using short‐ and long‐read sequencing technologies in combination with Hi‐C and Dovetail Chicago libraries. Our final assembly had a size of ~4.17 MB, a GC content of 54.54%, 137X coverage, 4153 coding sequences, and a CheckM completeness score of 97.19%. A single scaffold contained 99.51% of the genome. Comparative genomic analyses indicated that the L. barhami symbiont shares a set of core genes and many metabolic pathways with other vestimentiferan symbionts, while containing 433 unique gene clusters that comprised a variety of transposases, defence‐related genes and a lineage‐specific CRISPR/Cas3 system. This assembly represents the most contiguous tubeworm symbiont genome resource to date and will be particularly valuable for future comparative genomic studies investigating structural genome evolution, physiological adaptations and host‐symbiont communication in chemosynthetic animal‐microbe symbioses.  相似文献   

5.
Biofuel made from conventional (e.g., maize (Zea mays L.)) and cellulosic crops (e.g., switchgrass (Panicum virgatum L.) and Miscanthus (Miscanthus × giganteus)) provides alternative energy to fossil fuels and has been considered to mitigate greenhouse gas emissions. To estimate the large‐scale carbon and nitrogen dynamics of these biofuel ecosystems, process‐based models are needed. Here, we developed an agroecosystem model (AgTEM) based on the Terrestrial Ecosystem Model for these ecosystems. The model was incorporated with biogeochemical and ecophysiological processes including crop phenology, biomass allocation, nitrification, and denitrification, as well as agronomic management of irrigation and fertilization. It was used to estimate crop yield, biomass, net carbon exchange, and nitrous oxide emissions at an ecosystem level. The model was first parameterized for maize, switchgrass, and Miscanthus ecosystems and then validated with field observation data. We found that AgTEM well reproduces the annual net primary production and nitrous oxide fluxes of most sites, with over 85% of total variation explained by the model. Local sensitivity analysis indicated that the model sensitivity varies among different ecosystems. Net primary production of maize is sensitive to temperature, precipitation, cloudiness, fertilizer, and irrigation and less sensitive to atmospheric CO2 concentrations. In contrast, the net primary production of switchgrass and Miscanthus is most sensitive to temperature among all factors. Nitrous oxide fluxes are sensitive to management in maize ecosystems, and sensitive to climate factors in cellulosic ecosystems. The developed model should help advance our understanding of carbon and nitrogen dynamics of these biofuel ecosystems at both site and regional levels.  相似文献   

6.
Sequence diversity in the cytochrome c oxidase subunit 1 gene has been shown to be an effective tool for species identification and discovery in various groups of animals, but has not been extensively tested in mammals. We address this gap by examining the performance of DNA barcodes in the discrimination of 87 species of bats from Guyana. Eighty‐one of these species showed both low intraspecific variation (mean = 0.60%), and clear sequence divergence from their congeners (mean = 7.80%), while the other six showed deeply divergent intraspecific lineages suggesting that they represent species complexes. Although further work is needed to examine patterns of sequence diversity at a broader geographical scale, the present study validates the effectiveness of barcoding for the identification of regional bat assemblages, even highly diverse tropical faunas.  相似文献   

7.
The Gulf of Maine North Atlantic Time Series has been run since1998 and is the longest transect time series in the Gulf ofMaine (GoM), USA. Here we use this coastal time series to documentthe space–time variability of hydrography, nutrients,phytoplankton standing stocks and carbon fixation in the GoM,in response to several years of extreme river discharge. Wehypothesize that, during wet years, fresh water input cappedthe surface euphotic layer, impeding the upward diffusion ofnutrients, thus lowering the phytoplankton biomass and carbonfixation rates. Regional algorithms were derived to estimateparticulate organic carbon and carbon fixation. The Howard–Yoderalgorithm was implemented to predict integral primary productionusing satellite ocean color data. Calcification was significantlycorrelated to primary production, thus allowing regional, satellite-derivedcalcification estimates. Total GoM and Georges Bank phytoplanktonphotosynthesis was 38.12 Tg C year–1 and total calcificationwas 0.55 Tg C year–1, yielding an overall ratio of calcificationto photosynthesis of 1.44%. Carbon fixation in GoM coastal water(<60 m bottom depth), GoM deep water (>60 m) and GeorgesBank waters (<60 m) averaged 33, 56 and 11% of the totalprimary production of the combined GoM and Georges Bank studyarea, respectively, and 22, 67 and 11% of the total calcificationof the study area, respectively.  相似文献   

8.
Leucobryum boninense is endemic to the Bonin Islands, Japan, and its related species are widely distributed in Asia and the Pacific. We aimed to clarify the phylogenetic relationships among Leucobryum species and infer the origin of L. boninense. We also describe the utility of the chloroplast trnK intron including matK for resolving the phylogenetic relationships among Leucobryum species, as phylogenetic analyses using trnK intron and/or matK have not been performed well in bryophytes to date. Fifty samples containing 15 species of Leucobryum from Asia and the Pacific were examined for six chloroplast DNA regions including rbcL, rps4, partial 5′ trnK intron, matK, partial 3′ trnK intron, and trnLF intergenic spacer plus one nuclear DNA region including ITS. A molecular phylogenetic tree showed that L. boninense made a clade with L. scabrum from Japan, Taiwan and, Hong Kong; L. javense which is widely distributed in East and Southeast Asia, and L. pachyphyllum and L. seemannii restricted to the Hawaii Islands, as well as with L. scaberulum from the Ryukyus, Japan, Taiwan, and southeastern China. Leucobryum boninense from various islands of the Bonin Islands made a monophylic group that was closely related to L. scabrum and L. javense from Japan. Therefore, Lboninense may have evolved from L. scabrum from Japan, Taiwan, or Hong Kong, or L. javense from Japan. We also described the utility of trnK intron including matK. A percentage of the parsimony‐informative characters in trnK intron sequence data (5.8%) was significantly higher than that from other chloroplast regions, rbcL (2.4%) and rps4 (3.2%) sequence data. Nucleotide sequence data of the trnK intron including matK are more informative than other chloroplast DNA regions for identifying the phylogenetic relationships among Leucobryum species.  相似文献   

9.
R. Rouger  A. S. Jump 《Molecular ecology》2014,23(13):3158-3170
Little is known about the processes shaping population structure in saltmarshes. It is expected that the sea should act as a powerful agent of dispersal. Yet, in contrast, import of external propagules into a saltmarsh is thought to be small. To determine the level of connectivity between saltmarsh ecosystems at a macro‐geographical scale, we characterized and compared the population structure of two polyploid saltmarsh species, Puccinellia maritima and Triglochin maritima based on a seascape genetics approach. A discriminant analysis of principal components highlighted a genetic structure for both species arranged according to a regional pattern. Subsequent analysis based on isolation‐by‐distance and isolation‐by‐resistance frameworks indicated a strong role of coastal sediment transport processes in delimiting regional structure in P. maritima, while additional overland propagule dispersal was indicated for T. maritima. The identification and comparison of regional genetic structure and likely determining factors presented here allows us to understand the biogeographical units along the UK coast, between which barriers to connectivity occur not only at the species level but at the ecosystem scale. This information is valuable in plant conservation and community ecology and in the management and restoration of saltmarsh ecosystems.  相似文献   

10.
Fire is a major disturbance linked to the evolutionary history and climate of Mediterranean ecosystems, where the vegetation has evolved fire‐adaptive traits (e.g., serotiny in pines). In Mediterranean forests, mutualistic feedbacks between trees and ectomycorrhizal (ECM) fungi, essential for ecosystem dynamics, might be shaped by recurrent fires. We tested how the structure and function of ECM fungal communities of Pinus pinaster and Pinus halepensis vary among populations subjected to high and low fire recurrence in Mediterranean ecosystems, and analysed the relative contribution of environmental (climate, soil properties) and tree‐mediated (serotiny) factors. For both pines, local and regional ECM fungal diversity were lower in areas of high than low fire recurrence, although certain fungal species were favoured in the former. A general decline of ECM root‐tip enzymatic activity for P. pinaster was associated with high fire recurrence, but not for P. halepensis. Fire recurrence and fire‐related factors such as climate, soil properties or tree phenotype explained these results. In addition to the main influence of climate, the tree fire‐adaptive trait serotiny recovered a great portion of the variation in structure and function of ECM fungal communities associated with fire recurrence. Edaphic conditions (especially pH, tightly linked to bedrock type) were an important driver shaping ECM fungal communities, but mainly at the local scale and probably independently of the fire recurrence. Our results show that ECM fungal community shifts are associated with fire recurrence in fire‐prone dry Mediterranean forests, and reveal complex feedbacks among trees, mutualistic fungi and the surrounding environment in these ecosystems.  相似文献   

11.
Deep‐sea hydrothermal vents and cold seeps, limited environments without sunlight, are two types of extreme habitat for marine organisms. The differences between vents and cold seeps may facilitate genetic isolation and produce population heterogeneity. However, information on such chemosynthetic fauna taxa is rare, especially regarding the population diversity of species inhabiting both vents and cold seeps. In this study, three mitochondrial DNA fragments (the cytochrome c oxidase submit I (COI), cytochrome b gene (Cytb), and 16S) were concatenated as a mitochondrial concatenated dataset (MCD) to examine the genetic diversity, population structure, and demographic history of Shinkaia crosnieri and Bathymodiolus platifrons. The genetic diversity differences between vent and seep populations were statistically significant for S. crosnieri but not for B. platifrons. S. crosnieri showed less gene flow and higher levels of genetic differentiation between the vent and seep populations than B. platifrons. In addition, the results suggest that all the B. platifrons populations, but only the S. crosnieri vent populations, passed through a recent expansion or bottleneck. Therefore, different population distribution patterns for the two dominant species were detected; a pattern of population differentiation for S. crosnieri and a homogeneity pattern for B. platifrons. These different population distribution patterns were related to both extrinsic restrictive factors and intrinsic factors. Based on the fact that the two species were collected in almost identical or adjacent sampling sites, we speculated that the primary factors underlying the differences in the population distribution patterns were intrinsic. The historical demographics, dispersal ability, and the tolerance level of environmental heterogeneity are most likely responsible for the different distribution patterns.  相似文献   

12.
The vestimentiferan tubeworms Lamellibrachia luymesi and Seepiophila jonesi are found at hydrocarbon seeps in the Gulf of Mexico. Primers for polymorphic microsatellite loci were developed from genomic libraries of L. luymesi (five loci) and from S. jonesi tissue (eight loci) and were used to screen individuals collected from nine northern Gulf of Mexico hydrocarbon seep sites. Loci had from four to more than 50 alleles with high expected levels of heterozygosity. Cross‐species amplification, tested on seven vestimentiferan species including both hydrothermal vent and cold seep species, was generally strong in similar species but weak in more genetically distant species.  相似文献   

13.
14.
Lionfish (Pterois volitans) have rapidly invaded the tropical Atlantic and spread across the wider Caribbean in a relatively short period of time. Because of its high invasion capacity, we used it as a model to identify the connectivity among nine marine protected areas (MPAs) situated in four countries in the Gulf of Mexico and the Caribbean Sea. This study provides evidence of local genetic differentiation of P. volitans in the Gulf of Mexico and the Caribbean Sea. A total of 475 lionfish samples were characterized with 12 microsatellites, with 6–20 alleles per locus. Departures from Hardy–Weinberg equilibrium (HWE) were found in 10 of the 12 loci, all caused by heterozygous excess. Moderate genetic differentiation was observed between Chiriviche, Venezuela and Xcalak, México localities (FST = 0.012), and between the Los Roques and the Veracruz (FST = 0.074) sites. STRUCTURE analysis found that four genetic entities best fit our data. A unique genetic group in the Gulf of Mexico may imply that the lionfish invasion unfolded both in a counterclockwise manner in the Gulf of Mexico. In spite of the notable dispersion of P. volitans, our results show some genetic structure, as do other noninvasive Caribbean fish species, suggesting that the connectivity in some MPAs analyzed in the Caribbean is limited and caused by only a few source individuals with subsequent genetic drift leading to local genetic differentiation. This indicates that P. volitans dispersion could be caused by mesoscale phenomena, which produce stochastic connectivity pulses. Due to the isolation of some MPAs from others, these findings may hold a promise for local short‐term control of by means of intensive fishing, even in MPAs, and may have regional long‐term effects.  相似文献   

15.
Gulf of Mannar (GoM) in the southeast coast of India is known for its coral reefs and reef-associated biodiversity. Corals in GoM were affected to a significant extent by climate change-driven coral bleaching in 2016, and are currently recovering. After the bleaching mortality that corals suffered, the competition for space between corals and sponges is obvious in GoM. Rhabdastrella globostellata is a common marine sponge found overgrowing live coral colonies of the patch reefs in GoM at Pattinamaruthoor in March 2019. Underwater assessment of the reef revealed that 60.06% live coral cover was dominated by Acropora corals (81.91%). Among the acroporans 8.23% of colonies were found overgrown by R. globostellata. During the night dives the tiger cowrie Cypraea tigris was observed to feed on R. globostellata. From this observation the present study infers that C. tigris helps the corals fight these sponges, and concludes that tiger cowries should be protected and promoted to tackle climate change implications.  相似文献   

16.
The Crocidura obscurior or West African pygmy shrew complex is endemic to West African forests from south‐eastern Guinea, eastern Liberia, southern Côte d'Ivoire and south‐western Ghana. We explore the genetic and morphometric diversity of 239 individuals of the C. obscurior complex from 17 localities across its geographical range. Using genetic data from three mitochondrial (16S, cytochrome b and COI) and four nuclear markers (BRCA1, STAT5A, HDAC2 and RIOK3) and skull geometric morphometrics, we show that this complex is composed of two cryptic and sympatric species, C. obscurior and C. eburnea. We then test several hypotheses to infer their evolutionary history. The observed phylogeographical pattern based on cytochrome b and COI sequences fits the forest refuge theory: during arid phases of the Plio‐Pleistocene, around 3.5, 2.1, 1 and 0.5 Mya, a small number of populations survived in isolated forest patches and diverged allopatrically. During wetter climatic periods, forests expanded, leading to secondary contacts between previously isolated populations. Our results also suggest the possible contribution of episodes of isolation in subrefuges. Historical variation of the West African hydrographic network could also have contributed to the observed patterns of genetic differentiation. Rivers such as the Volta and Sassandra may act as past and/or current barriers to gene flow. Although these two species have sympatric distributions, their phylogeographical histories are somewhat dissimilar due to small differences in their dispersal abilities and ecological requirements.  相似文献   

17.
Aim To elucidate the historical phylogeography of the dusky pipefish (Syngnathus floridae) in the North American Atlantic and Gulf of Mexico ocean basins. Location Southern Atlantic Ocean and northern Gulf of Mexico within the continental United States. Methods A 394‐bp fragment of the mitochondrial cytochrome b gene and a 235‐bp fragment of the mitochondrial control region were analysed from individuals from 10 locations. Phylogenetic reconstruction, haplotype network, mismatch distributions and analysis of molecular variance were used to infer population structure between ocean basins and time from population expansion within ocean basins. Six microsatellite loci were also analysed to estimate population structure and gene flow among five populations using genetic distance methods (FST, Nei’s genetic distance), isolation by distance (Mantel’s test), coalescent‐based estimates of genetic diversity and migration patterns, Bayesian cluster analysis and bottleneck simulations. Results Mitochondrial analyses revealed significant structuring between ocean basins in both cytochrome b (ΦST = 0.361, P < 0.0001; ΦCT = 0.312, P < 0.02) and control region (ΦST = 0.166, P < 0.0001; ΦCT = 0.128, P < 0.03) sequences. However, phylogenetic reconstructions failed to show reciprocal monophyly in populations between ocean basins. Microsatellite analyses revealed significant population substructuring between all locations sampled except for the two locations that were in closest proximity to each other (global FST value = 0.026). Bayesian analysis of microsatellite data also revealed significant population structuring between ocean basins. Coalescent‐based analyses of microsatellite data revealed low migration rates among all sites. Mismatch distribution analysis of mitochondrial loci supports a sudden population expansion in both ocean basins in the late Pleistocene, with the expansion of Atlantic populations occurring more recently. Main conclusions Present‐day populations of S. floridae do not bear the mitochondrial DNA signature of the strong phylogenetic discontinuity between the Atlantic and Gulf coasts of North America commonly observed in other species. Rather, our results suggest that Atlantic and Gulf of Mexico populations of S. floridae are closely related but nevertheless exhibit local and regional population structure. We conclude that the present‐day phylogeographic pattern is the result of a recent population expansion into the Atlantic in the late Pleistocene, and that life‐history traits and ecology may play a pivotal role in shaping the realized geographical distribution pattern of this species.  相似文献   

18.
Given that forests represent the primary terrestrial sink for atmospheric CO2, projections of future carbon (C) storage hinge on forest responses to climate variation. Models of gross primary production (GPP) responses to water stress are commonly based on remotely sensed changes in canopy ‘greenness’ (e.g., normalized difference vegetation index; NDVI). However, many forests have low spectral sensitivity to water stress (SSWS) – defined here as drought‐induced decline in GPP without a change in greenness. Current satellite‐derived estimates of GPP use a vapor pressure deficit (VPD) scalar to account for the low SWSS of forests, but fail to capture their responses to water stress. Our objectives were to characterize differences in SSWS among forested and nonforested ecosystems, and to develop an improved framework for predicting the impacts of water stress on GPP in forests with low SSWS. First, we paired two independent drought indices with NDVI data for the conterminous US from 2000 to 2011, and examined the relationship between water stress and NDVI. We found that forests had lower SSWS than nonforests regardless of drought index or duration. We then compared satellite‐derived estimates of GPP with eddy‐covariance observations of GPP in two deciduous broadleaf forests with low SSWS: the Missouri Ozark (MO) and Morgan Monroe State Forest (MMSF) AmeriFlux sites. Model estimates of GPP that used VPD scalars were poorly correlated with observations of GPP at MO (r2 = 0.09) and MMSF (r2 = 0.38). When we included the NDVI responses to water stress of adjacent ecosystems with high SSWS into a model based solely on temperature and greenness, we substantially improved predictions of GPP at MO (r2 = 0.83) and for a severe drought year at the MMSF (r2 = 0.82). Collectively, our results suggest that large‐scale estimates of GPP that capture variation in SSWS among ecosystems could improve predictions of C uptake by forests under drought.  相似文献   

19.
Corallivore animals play vital role in coral reef ecology. Predation on corals by other organisms has not been studied properly in the Indian waters. This study reports the first observation of predation by cushion star (Culcita schmideliana) on coral polyps in Gulf of Mannar (GoM), southeast India. During our regular underwater surveys in GoM, C. schmideliana was found preying on hard coral Acropora formosa and soft coral Sarcophyton sp. at a depth of 3 m in Vilanguchalli patch reef. Though C. schmideliana has been sighted often under water, it has not been observed to predate on corals in GoM before. The area where predation was observed has a major population of hard corals (50.21%) besides seagrasses (8.36%) and soft corals (6.11%). Temperature anomalies and the consequent coral bleaching could be the factors making C. schmideliana prefer coral polyps.  相似文献   

20.
Recent anthropogenic climate change and the exponential increase over the past few decades of Saharan dust deposition, containing ecologically important inputs of phosphorus (P) and calcium (Ca), are potentially affecting remote aquatic ecosystems. In this study, we examine changes in cladoceran assemblage composition and chlorophyll‐a concentrations over the past ~150 years from high‐resolution, well‐dated sediment cores retrieved from six remote high mountain lakes in the Sierra Nevada Mountains of Southern Spain, a region affected by Saharan dust deposition. In each lake, marked shifts in cladoceran assemblages and chlorophyll‐a concentrations in recent decades indicate a regional‐scale response to climate and Saharan dust deposition. Chlorophyll‐a concentrations have increased since the 1970s, consistent with a response to rising air temperatures and the intensification of atmospheric deposition of Saharan P. Similar shifts in cladoceran taxa across lakes began over a century ago, but have intensified over the past ~50 years, concurrent with trends in regional air temperature, precipitation, and increased Saharan dust deposition. An abrupt increase in the relative abundance of the benthic cladoceran Alona quadrangularis at the expense of Chydorus sphaericus, and a significant increase in Daphnia pulex gr. was a common trend in these softwater lakes. Differences in the magnitude and timing of these changes are likely due to catchment and lake‐specific differences. In contrast with other alpine lakes that are often affected by acid deposition, atmospheric Ca deposition appears to be a significant explanatory factor, among others, for the changes in the lake biota of Sierra Nevada that has not been previously considered. The effects observed in Sierra Nevada are likely occurring in other Mediterranean lake districts, especially in softwater, oligotrophic lakes. The predicted increases in global temperature and Saharan dust deposition in the future will further impact the ecological condition of these ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号