首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Along with manipulating habitat, the direct release of domesticated individuals into the wild is a practice used worldwide to augment wildlife populations. We test between possible outcomes of human‐mediated secondary contact using genomic techniques at both historical and contemporary timescales for two iconic duck species. First, we sequence several thousand ddRAD‐seq loci for contemporary mallards (Anas platyrhynchos) throughout North America and two domestic mallard types (i.e., known game‐farm mallards and feral Khaki Campbell's). We show that North American mallards may well be becoming a hybrid swarm due to interbreeding with domesticated game‐farm mallards released for hunting. Next, to attain a historical perspective, we applied a bait‐capture array targeting thousands of loci in century‐old (1842–1915) and contemporary (2009–2010) mallard and American black duck (Anas rubripes) specimens. We conclude that American black ducks and mallards have always been closely related, with a divergence time of ~600,000 years before present, and likely evolved through prolonged isolation followed by limited bouts of gene flow (i.e., secondary contact). They continue to maintain genetic separation, a finding that overturns decades of prior research and speculation suggesting the genetic extinction of the American black duck due to contemporary interbreeding with mallards. Thus, despite having high rates of hybridization, actual gene flow is limited between mallards and American black ducks. Conversely, our historical and contemporary data confirm that the intensive stocking of game‐farm mallards during the last ~100 years has fundamentally changed the genetic integrity of North America's wild mallard population, especially in the east. It thus becomes of great interest to ask whether the iconic North American mallard is declining in the wild due to introgression of maladaptive traits from domesticated forms. Moreover, we hypothesize that differential gene flow from domestic game‐farm mallards into the wild mallard population may explain the overall temporal increase in differentiation between wild black ducks and mallards, as well as the uncoupling of genetic diversity and effective population size estimates across time in our results. Finally, our findings highlight how genomic methods can recover complex population histories by capturing DNA preserved in traditional museum specimens.  相似文献   

2.
While African leopard populations are considered to be continuous as demonstrated by their high genetic variation, the southernmost leopard population exists in the Eastern and Western Cape, South Africa, where anthropogenic activities may be affecting this population's structure. Little is known about the elusive, last free‐roaming top predator in the region and this study is the first to report on leopard population structuring using nuclear DNA. By analyzing 14 microsatellite markers from 40 leopard tissue samples, we aimed to understand the populations' structure, genetic distance, and gene flow (Nm). Our results, based on spatially explicit analysis with Bayesian methods, indicate that leopards in the region exist in a fragmented population structure with lower than expected genetic diversity. Three population groups were identified, between which low to moderate levels of gene flow were observed (Nm 0.5 to 3.6). One subpopulation exhibited low genetic differentiation, suggesting a continuous population structure, while the remaining two appear to be less connected, with low emigration and immigration between these populations. Therefore, genetic barriers are present between the subpopulations, and while leopards in the study region may function as a metapopulation, anthropogenic activities threaten to decrease habitat and movement further. Our results indicate that the leopard population may become isolated within a few generations and suggest that management actions should aim to increase habitat connectivity and reduce human–carnivore conflict. Understanding genetic diversity and connectivity of populations has important conservation implications that can highlight management of priority populations to reverse the effects of human‐caused extinctions.  相似文献   

3.
Invasive mammalian carnivores contribute disproportionately to declines in global biodiversity. In California, nonnative red foxes (Vulpes vulpes) have significantly impacted endangered ground‐nesting birds and native canids. These foxes derive primarily from captive‐reared animals associated with the fur‐farming industry. Over the past five decades, the cumulative area occupied by nonnative red fox increased to cover much of central and southern California. We used a landscape‐genetic approach involving mitochondrial DNA (mtDNA) sequences and 13 microsatellites of 402 nonnative red foxes removed in predator control programs to investigate source populations, contemporary connectivity, and metapopulation dynamics. Both markers indicated high population structuring consistent with origins from multiple introductions and low subsequent gene flow. Landscape‐genetic modeling indicated that population connectivity was especially low among coastal sampling sites surrounded by mountainous wildlands but somewhat higher through topographically flat, urban and agricultural landscapes. The genetic composition of populations tended to be stable for multiple generations, indicating a degree of demographic resilience to predator removal programs. However, in two sites where intensive predator control reduced fox abundance, we observed increases in immigration, suggesting potential for recolonization to counter eradication attempts. These findings, along with continued genetic monitoring, can help guide localized management of foxes by identifying points of introductions and routes of spread and evaluating the relative importance of reproduction and immigration in maintaining populations. More generally, the study illustrates the utility of a landscape‐genetic approach for understanding invasion dynamics and metapopulation structure of one of the world's most destructive invasive mammals, the red fox.  相似文献   

4.
Connectivity underpins the persistence and recovery of marine ecosystems. The Great Barrier Reef (GBR) is the world's largest coral reef ecosystem and managed by an extensive network of no‐take zones; however, information about connectivity was not available to optimize the network's configuration. We use multivariate analyses, Bayesian clustering algorithms and assignment tests of the largest population genetic data set for any organism on the GBR to date (Acropora tenuis, >2500 colonies; >50 reefs, genotyped for ten microsatellite loci) to demonstrate highly congruent patterns of connectivity between this common broadcast spawning reef‐building coral and its congener Acropora millepora (~950 colonies; 20 reefs, genotyped for 12 microsatellite loci). For both species, there is a genetic divide at around 19°S latitude, most probably reflecting allopatric differentiation during the Pleistocene. GBR reefs north of 19°S are essentially panmictic whereas southern reefs are genetically distinct with higher levels of genetic diversity and population structure, most notably genetic subdivision between inshore and offshore reefs south of 19°S. These broadly congruent patterns of higher genetic diversities found on southern GBR reefs most likely represent the accumulation of alleles via the southward flowing East Australia Current. In addition, signatures of genetic admixture between the Coral Sea and outer‐shelf reefs in the northern, central and southern GBR provide evidence of recent gene flow. Our connectivity results are consistent with predictions from recently published larval dispersal models for broadcast spawning corals on the GBR, thereby providing robust connectivity information about the dominant reef‐building genus Acropora for coral reef managers.  相似文献   

5.
This study presents genetic evidence that whale sharks, Rhincodon typus, are comprised of at least two populations that rarely mix and is the first to document a population expansion. Relatively high genetic structure is found when comparing sharks from the Gulf of Mexico with sharks from the Indo‐Pacific. If mixing occurs between the Indian and Atlantic Oceans, it is not sufficient to counter genetic drift. This suggests whale sharks are not all part of a single global metapopulation. The significant population expansion we found was indicated by both microsatellite and mitochondrial DNA. The expansion may have happened during the Holocene, when tropical species could expand their range due to sea‐level rise, eliminating dispersal barriers and increasing plankton productivity. However, the historic trend of population increase may have reversed recently. Declines in genetic diversity are found for 6 consecutive years at Ningaloo Reef in Australia. The declines in genetic diversity being seen now in Australia may be due to commercial‐scale harvesting of whale sharks and collision with boats in past decades in other countries in the Indo‐Pacific. The study findings have implications for models of population connectivity for whale sharks and advocate for continued focus on effective protection of the world's largest fish at multiple spatial scales.  相似文献   

6.
Detection of population genetic structure of zooplankton at medium‐to‐small spatial scales in the absence of physical barriers has remained challenging and controversial. The large population sizes and high rates of gene flow characteristic of zooplankton have made resolution of geographical differentiation very difficult, especially when using few genetic markers and assuming equilibrium conditions. Next‐generation sequencing now allows simultaneous sampling of hundreds to thousands of genetic markers; new analytical approaches allow studies under nonequilibrium conditions and directional migration. Samples of the North Atlantic Ocean planktonic copepod, Centropages typicus, were analysed using restriction site‐associated DNA (RAD) sequencing on a PROTON platform. Although prior studies revealed no genetic differentiation of populations across the geographical range of the species, analysis of RAD tags showed significant structure across the North Atlantic Ocean. We also compared the likelihood for models of connectivity among NW Atlantic populations under various directional flow scenarios that replicate oceanographic conditions of the sampled domain. High‐density marker sampling with RAD sequencing markedly outperformed other technical and analytical approaches in detection of population genetic structure and characterization of connectivity of this high geneflow zooplankton species.  相似文献   

7.
Freshwater green microalgae are diverse and widely distributed across the globe, yet the population structuring of these organisms is poorly understood. We assessed the degree of genetic diversity and differentiation of the desmid species, Micrasterias rotata. First, we compared the sequences of four nuclear regions (actin, gapC1, gapC2, and oee1) in 25 strains and selected the gapC1 and actin regions as the most appropriate markers for population structure assessment in this species. Population genetic structure was subsequently analyzed, based on seven populations from the Czech Republic and Ireland. Hudson's Snn statistics indicated that nearest‐neighbor sequences occurred significantly more frequently within geographical populations than within the wider panmictic population. Moreover, Irish populations consistently showed higher genetic diversity than the Czech samples. These results are in accordance with the unbalanced distribution of alleles in many land plant species; however, the large genetic diversity in M. rotata differs from levels of genetic diversity found in most land plants.  相似文献   

8.
Translocating species is an important management tool to establish or expand the range of species. Success of translocations requires an understanding of potential consequences, including whether a sufficient number of individuals were used to minimize founder effects and if interspecific hybridization poses a threat. We provide an updated and comprehensive genetic assessment of a 1970s–1980s translocation and now established mottled duck (Anas fulvigula) population in South Carolina, USA. In addition to examining the population genetics of these mottled ducks, we simulated expected genetic assignments for generational hybrids (F1–F10), permitting formal purity assignment across samples to identify true hybrids and establish hybridization rates. In addition to wild mallards (A. platyrhynchos), we tested for presence of hybrids with migrant American black ducks (A. rubripes) and released domestic game-farm mallards (A. p. domesticus). We used wild reference populations of North American mallard-like ducks and sampled game-farm mallards from 2 sites in South Carolina that could potentially interbreed with mottled ducks. Despite 2 different subspecies of mottled duck (Florida [A. f. fulvigula] and the Western Gulf Coast [A. f. maculatlus]) used in original translocations, we determined the gene pool of the Western Gulf Coast mottled duck was overwhelmingly represented in South Carolina's current population. We found no evidence of founder effects or inbreeding and concluded the original translocation of 1,285 mottled ducks was sufficient to maintain current genetic diversity. We identified 7 hybrids, including an F1 and 3 late-staged (i.e., F2–F3 backcrosses) mottled duck × black duck hybrids, 1 F2-mottled duck backcrossed with a wild mallard, and 2 F3-mottled ducks introgressed with game-farm mallard. We estimated a 15% hybridization rate in our mottled duck dataset; however, the general lack of F1 and intermediate hybrids were inconsistent with scenarios of high hybridization rates or presence of a hybrid swarm. Instead, our results suggested a scenario of infrequent interspecific hybridization between South Carolina's mottled ducks and congeners. We concluded that South Carolina's mottled duck population is sufficiently large now to absorb current hybridization rates because 85% of sampled mottled ducks were pure. These results demonstrate the importance in managing and maintaining large parental populations to counter hybridization. As such, future population management of mottled ducks in South Carolina will benefit from increased geographical and continued sampling to monitor hybridization rates with closely related congeners. We also suggest that any future translocations of mottled ducks to coastal South Carolina should originate from the Western Gulf Coast. © 2021 The Wildlife Society.  相似文献   

9.
Resolving evolutionary relationships and establishing population structure depends on molecular diagnosability that is often limited for closely related taxa. Here, we use 3,200 ddRAD‐seq loci across 290 mallards, American black ducks, and putative hybrids to establish population structure and estimate hybridization rates. We test between traditional assignment probability and accumulated recombination events based analyses to assign hybrids to generational classes. For hybrid identification, we report the distribution of recombination events complements ADMIXTURE simulation by extending resolution past F4 hybrid status; however, caution against hybrid assignment based on accumulated recombination events due to an inability to resolve F1 hybrids. Nevertheless, both analyses suggest that there are relatively few backcrossed stages before a lineage's hybrid ancestry is lost and the offspring are effectively parental again. We conclude that despite high rates of observed interspecific hybridization between mallards and black ducks in the middle part of the 20th century, our results do not support the predicted hybrid swarm. Conversely, we report that mallard samples genetically assigned to western and non‐western clusters. We indicate that these non‐western mallards likely originated from game‐farm stock, suggesting landscape level gene flow between domestic and wild conspecifics.  相似文献   

10.
The marine cave‐dwelling mysid Hemimysis margalefi is distributed over the whole Mediterranean Sea, which contrasts with the poor dispersal capabilities of this brooding species. In addition, underwater marine caves are a highly fragmented habitat which further promotes strong genetic structuring, therefore providing highly informative data on the levels of marine population connectivity across biogeographical regions. This study investigates how habitat and geography have shaped the connectivity network of this poor disperser over the entire Mediterranean Sea through the use of several mitochondrial and nuclear markers. Five deeply divergent lineages were observed among H. margalefi populations resulting from deep phylogeographical breaks, some dating back to the Oligo‐Miocene. Whether looking at the intralineage or interlineage levels, H. margalefi populations present a high genetic diversity and population structuring. This study suggests that the five distinct lineages observed in H. margalefi actually correspond to as many separate cryptic taxa. The nominal species, H. margalefi sensu stricto, corresponds to the westernmost lineage here surveyed from the Alboran Sea to southeastern Italy. Typical genetic breaks such as the Almeria‐Oran Front or the Siculo‐Tunisian Strait do not appear to be influential on the studied loci in H. margalefi sensu stricto. Instead, population structuring appears more complex and subtle than usually found for model species with a pelagic dispersal phase. The remaining four cryptic taxa are all found in the eastern basin, but incomplete lineage sorting is suspected and speciation might still be in process. Present‐day population structure of the different H. margalefi cryptic species appears to result from past vicariance events started in the Oligo‐Miocene and maintained by present‐day coastal topography, water circulation and habitat fragmentation.  相似文献   

11.
Identifying the genetic structure of a species and the factors that drive it is an important first step in modern population management, in part because populations evolving from separate ancestral sources may possess potentially different characteristics. This is especially true for climate‐sensitive species such as pikas, where the delimitation of distinct genetic units and the characterization of population responses to contemporary and historical environmental pressures are of particular interest. We combined a restriction site‐associated DNA sequencing (RADSeq) data set containing 4156 single nucleotide polymorphisms with ecological niche models (ENMs) of present and past habitat suitability to characterize population composition and evaluate the effects of historical range shifts, contemporary climates and landscape factors on gene flow in Collared Pikas, which are found in Alaska and adjacent regions of northwestern Canada and are the lesser‐studied of North America's two pika species. The results suggest that contemporary environmental factors contribute little to current population connectivity. Instead, genetic diversity is strongly shaped by the presence of three ancestral lineages isolated during the Pleistocene (~148 and 52 kya). Based on ENMs and genetic data, populations originating from a northern refugium experienced longer‐term stability, whereas both southern lineages underwent population expansion – contradicting the southern stability and northern expansion patterns seen in many other taxa. Current populations are comparable with respect to generally low diversity within populations and little‐to‐no recent admixture. The predominance of divergent histories structuring populations implies that if we are to understand and manage pika populations, we must specifically assess and accurately account for the forces underlying genetic similarity.  相似文献   

12.
Disruption of naturally evolved spatial patterns of genetic variation and local adaptations is a growing concern in wildlife management and conservation. During the last decade, releases of native taxa with potentially non-native genotypes have received increased attention. This has mostly concerned conservation programs, but releases are also widely carried out to boost harvest opportunities. The mallard, Anas platyrhynchos, is one of few terrestrial migratory vertebrates subjected to large-scale releases for hunting purposes. It is the most numerous and widespread duck in the world, yet each year more than three million farmed mallard ducklings are released into the wild in the European Union alone to increase the harvestable population. This study aimed to determine the genetic effects of such large-scale releases of a native species, specifically if wild and released farmed mallards differ genetically among subpopulations in Europe, if there are signs of admixture between the two groups, if the genetic structure of the wild mallard population has changed since large-scale releases began in the 1970s, and if the current data matches global patterns across the Northern hemisphere. We used Bayesian clustering (Structure software) and Discriminant Analysis of Principal Components (DAPC) to analyze the genetic structure of historical and present-day wild (n?=?171 and n?=?209, respectively) as well as farmed (n?=?211) mallards from six European countries as inferred by 360 single-nucleotide polymorphisms (SNPs). Both methods showed a clear genetic differentiation between wild and farmed mallards. Admixed individuals were found in the present-day wild population, implicating introgression of farmed genotypes into wild mallards despite low survival among released farmed mallards. Such cryptic introgression would alter the genetic composition of wild populations and may have unknown long-term consequences for conservation.  相似文献   

13.
Characterizing movement dynamics and spatial aspects of gene flow within a species permits inference on population structuring. As patterns of structuring are products of historical and current demographics and gene flow, assessment of structure through time can yield an understanding of evolutionary dynamics acting on populations that are necessary to inform management. Recent dramatic population declines in hibernating bats in eastern North America from white‐nose syndrome have prompted the need for information on movement dynamics for multiple bat species. We characterized population genetic structure of the little brown bat, Myotis lucifugus, at swarming sites in southeastern Canada using 9 nuclear microsatellites and a 292‐bp region of the mitochondrial genome. Analyses of FST, ΦST, and Bayesian clustering (STRUCTURE) found weak levels of genetic structure among swarming sites for the nuclear and mitochondrial genome (Global FST = 0.001, < 0.05, Global ΦST = 0.045, < 0.01, STRUCTURE = 1) suggesting high contemporary gene flow. Hierarchical AMOVA also suggests little structuring at a regional (provincial) level. Metrics of nuclear genetic structure were not found to differ between males and females suggesting weak asymmetries in gene flow between the sexes. However, a greater degree of mitochondrial structuring does support male‐biased dispersal long term. Demographic analyses were consistent with past population growth and suggest a population expansion occurred from approximately 1250 to 12,500 BP, following Pleistocene deglaciation in the region. Our study suggests high gene flow and thus a high degree of connectivity among bats that visit swarming sites whereby mainland areas of the region may be best considered as one large gene pool for management and conservation.  相似文献   

14.
Understanding spatial patterns of gene flow and genetic structure is essential for the conservation of marine ecosystems. Contemporary ocean currents and historical isolation due to Pleistocene sea level fluctuations have been predicted to influence the genetic structure in marine populations. In the Indo‐Australian Archipelago (IAA), the world's hotspot of marine biodiversity, seagrasses are a vital component but population genetic information is very limited. Here, we reconstructed the phylogeography of the seagrass Thalassia hemprichii in the IAA based on single nucleotide polymorphisms (SNPs) and then characterized the genetic structure based on a panel of 16 microsatellite markers. We further examined the relative importance of historical isolation and contemporary ocean currents in driving the patterns of genetic structure. Results from SNPs revealed three population groups: eastern Indonesia, western Indonesia (Sunda Shelf) and Indian Ocean; while the microsatellites supported five population groups (eastern Indonesia, Sunda Shelf, Lesser Sunda, Western Australia and Indian Ocean). Both SNPs and microsatellites showed asymmetrical gene flow among population groups with a trend of southwestward migration from eastern Indonesia. Genetic diversity was generally higher in eastern Indonesia and decreased southwestward. The pattern of genetic structure and connectivity is attributed partly to the Pleistocene sea level fluctuations modified to a smaller level by contemporary ocean currents.  相似文献   

15.
Gene flow in animals is limited or facilitated by different features within the landscape matrix they inhabit. The landscape representation in landscape genetics (LG) is traditionally modeled as resistance surfaces (RS), where novel optimization approaches are needed for assigning resistance values that adequately avoid subjectivity. Also, desert ecosystems and mammals are scarcely represented in LG studies. We addressed these issues by evaluating, at a microgeographic scale, the effect of landscape features on functional connectivity of the desert‐dwelling Dipodomys merriami. We characterized genetic diversity and structure with microsatellites loci, estimated home ranges and movement of individuals using telemetry—one of the first with rodents, generated a set of individual and composite environmental surfaces based on hypotheses of variables influencing movement, and assessed how these variables relate to individual‐based gene flow. Genetic diversity and structure results evidenced a family‐induced pattern driven by first‐order‐related individuals, notably determining landscape genetic inferences. The vegetation cover and soil resistance optimized surface (NDVI) were the best‐supported model and a significant predictor of individual genetic distance, followed by humidity and NDVI+humidity. Based on an accurate definition of thematic resolution, we also showed that vegetation is better represented as continuously (vs. categorically) distributed. Hence, with a nonsubjective optimization framework for RS and telemetry, we were able to describe that vegetation cover, soil texture, and climatic variables influence D. merriami's functional connectivity at a microgeographic scale, patterns we could further explain based on the home range, habitat use, and activity observed between sexes. We describe the relationship between environmental features and some aspects of D. merriami‘s behavior and physiology.  相似文献   

16.
17.
18.
Many highly mobile species, such as migratory birds, can move and disperse over long distances, yet exhibit high levels of population genetic structuring. Although movement capabilities may enable dispersal, gene flow may be restricted by behavioural constraints such as philopatry. In the present study, we examined patterns of genetic differentiation across the range of a highly mobile, colonial waterbird. American white pelicans (Pelecanus erythrorhynchos) breed across continental North America and are currently experiencing a range expansion, especially on the eastern range limit. To assess patterns of genetic structuring, we sampled 333 individuals from 19 colonies across their North American range. The use of ten variable microsatellite markers revealed high levels of allelic richness with no population differentiation. Both Bayesian and frequentist approaches to examining genetic structuring revealed a single panmictic population. We found no evidence of genetic structuring across the Continental Divide or between migratory and non‐migratory colonies. The lack of any genetic structure across the range indicates that, unlike other waterbirds with similar life‐history characteristics, extensive gene flow and presumably low philopatry appear to preclude genetic differentiation. The lack of population genetic structure in American white pelicans provides an example of range‐wide panmixia, a rare phenomenon in any terrestrial species. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 583–592.  相似文献   

19.
The southern river terrapin, Batagur affinis is one of the world's 25 most endangered freshwater turtle species. The major portion of the global population is currently found in peninsular Malaysia, with the only remnant Indochinese population in southern Cambodia. For more than a decade, wild nests in this remnant Cambodian population have been fenced and hatchlings reared in captivity. Here we amplified 10 microsatellite markers from all 136 captive individuals, obtained 2,658 presumably unlinked and neutral single nucleotide polymorphisms from 72 samples with ddRAD‐seq, and amplified 784 bp of mtDNA from 50 samples. Our results reveal that the last Indochinese population comprised only four kinship groups as of 2012, with all offspring sired from <10 individuals in the wild. We demonstrate an obvious decrease in genetic contributions of breeders in the wild from 2006–2012 and identify high‐value breeders instrumental for ex‐situ management of the contemporary genetic stock of the species.  相似文献   

20.
Statistical Analysis of Mixed‐Ploidy Populations (StAMPP) is a freely available R package for calculation of population structure and differentiation based on single nucleotide polymorphism (SNP) genotype data from populations of any ploidy level, and/or mixed‐ploidy levels. StAMPP provides an advance on previous similar software packages, due to an ability to calculate pairwise FST values along with confidence intervals, Nei's genetic distance and genomic relationship matrixes from data sets of mixed‐ploidy level. The software code is designed to efficiently handle analysis of large genotypic data sets that are typically generated by high‐throughput genotyping platforms. Population differentiation studies using StAMPP are broadly applicable to studies of molecular ecology and conservation genetics, as well as animal and plant breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号