首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Intrachromosomal gene conversion is the non-reciprocal transfer of information between a pair of repeated genes on a single chromosome. This process produces eventual sequence homogeneity within a family of repeated genes. An evolutionary model for a single chromosome lineage was formulated and analyzed. Expressions were derived for the fixation probability, mean time to fixation or loss, and mean conditional fixation time for a variant repeat with an arbitrary initial frequency. It was shown that a small conversional advantage or disadvantage for the variant repeat (higher or lower probability of producing two variant genes by conversion than two wild-type genes) can have a dramatic effect on the probability of fixation. The results imply that intrachromosomal gene conversion can act sufficiently rapidly to be an important mechanism for maintaining sequence homogeneity among repeated genes.  相似文献   

2.
The ancestral selection graph in population genetics was introduced by Krone and Neuhauser [Krone, S.M., Neuhauser, C., 1997. Ancestral process with selection. Theor. Popul. Biol. 51, 210–237] as an analogue of the coalescent genealogy of a sample of genes from a neutrally evolving population. The number of particles in this graph, followed backwards in time, is a birth and death process with quadratic death and linear birth rates. In this paper an explicit form of the probability distribution of the number of particles is obtained by using the density of the allele frequency in the corresponding diffusion model obtained by Kimura [Kimura, M., 1955. Stochastic process and distribution of gene frequencies under natural selection. Cold Spring Harbor Symposia on Quantitative Biology 20, 33–53]. It is shown that the process of fixation of the allele in the diffusion model corresponds to convergence of the ancestral process to its stationary measure. The time to fixation of the allele conditional on fixation is studied in terms of the ancestral process.  相似文献   

3.
Summary A diffusion model is derived for the evolution of a diploid monoecious population under the influence of migration, mutation, selection, and random genetic drift. The population occupies an unbounded linear habitat; migration is independent of genotype, symmetric, and homogeneous. The treatment is restricted to a single diallelic locus without dominance. With the customary diffusion hypotheses for migration and the assumption that the mutation rates, selection coefficient, variance of the migrational displacement, and reciprocal of the population density are all small and of the same order of magnitude, a boundary value problem is deduced for the mean gene frequency and the covariance between the gene frequencies at any two points in the habitat. Supported by the National Science Foundation (Grant No. DEB77-21494).  相似文献   

4.
This paper studies lines of descent in the diffusion approximation of neutral Wright-Fisher models where the mutation rate away from each gene per generation is the same. Here a line of descent begins with a single gene and has branches at each generation where genes are reproduced from a parent in the line. New mutations are not included in a line of descent but are considered to begin a new line. The joint distribution of the number of lines of descent surviving in a population from time 0 to time t and the frequencies in these lines is derived. Expected times between loss of lines of descent are found. The distribution of the number of lines of descent in a sample from the population is derived. This leads to the distribution of the number of types in a sample from a nonstationary infinite alleles population.  相似文献   

5.
The large amount and high quality of genomic data available today enable, in principle, accurate inference of evolutionary histories of observed populations. The Wright-Fisher model is one of the most widely used models for this purpose. It describes the stochastic behavior in time of allele frequencies and the influence of evolutionary pressures, such as mutation and selection. Despite its simple mathematical formulation, exact results for the distribution of allele frequency (DAF) as a function of time are not available in closed analytical form. Existing approximations build on the computationally intensive diffusion limit or rely on matching moments of the DAF. One of the moment-based approximations relies on the beta distribution, which can accurately describe the DAF when the allele frequency is not close to the boundaries (0 and 1). Nonetheless, under a Wright-Fisher model, the probability of being on the boundary can be positive, corresponding to the allele being either lost or fixed. Here we introduce the beta with spikes, an extension of the beta approximation that explicitly models the loss and fixation probabilities as two spikes at the boundaries. We show that the addition of spikes greatly improves the quality of the approximation. We additionally illustrate, using both simulated and real data, how the beta with spikes can be used for inference of divergence times between populations with comparable performance to an existing state-of-the-art method.  相似文献   

6.
The island model with stochastic migration   总被引:1,自引:0,他引:1       下载免费PDF全文
Nagylaki T 《Genetics》1979,91(1):163-176
The island model with stochastically variable migration rate and immigrant gene frequency is investigated. It is supposed that the migration rate and the immigrant gene frequency are independent of each other in each generation, and each of them is independently and identically distributed in every generation. The treatment is confined to a single diallelic locus without mutation. If the diploid population is infinite, selection is absent and the immigrant gene frequency is fixed, then the gene frequency on the island converges to the immigrant frequency, and the logarithm of the absolute value of its deviation from it is asymptotically normally distributed. Assuming only neutrality, the evolution of the exact mean and variance of the gene frequency are derived for an island with finite population. Selection is included in the diffusion approximation: if all evolutionary forces have comparable roles, the gene frequency will be normally distributed at all times. All results in the paper are completely explicit.  相似文献   

7.
Waxman D 《Genetics》2012,191(2):561-577
A fundamental result of population genetics states that a new mutation, at an unlinked neutral locus in a randomly mating diploid population, has a mean time of fixation of ~4N(e) generations, where N(e) is the effective population size. This result is based on an assumption of fixed population size, which does not universally hold in natural populations. Here, we analyze such neutral fixations in populations of changing size within the framework of the diffusion approximation. General expressions are derived for the mean and variance of the fixation time in changing populations. Some explicit results are given for two cases: (i) the effective population size undergoes a sudden change, representing a sudden population expansion or a sudden bottleneck; (ii) the effective population changes linearly for a limited period of time and then remains constant. Additionally, a lower bound for the mean time of fixation is obtained for an effective population size that increases with time, and this is applied to exponentially growing populations. The results obtained in this work show, among other things, that for populations that increase in size, the mean time of fixation can be enhanced, sometimes substantially so, over 4N(e,0) generations, where N(e,0) is the effective population size at the time the mutation arises. Such an enhancement is associated with (i) an increased probability of neutral polymorphism in a population and (ii) an enhanced persistence of high-frequency neutral variation, which is the variation most likely to be observed.  相似文献   

8.
The evolutionary rate of duplicated genes under concerted evolution   总被引:1,自引:0,他引:1       下载免费PDF全文
Mano S  Innan H 《Genetics》2008,180(1):493-505
The effect of directional selection on the fixation process of a single mutation that spreads in a multigene family by gene conversion is investigated. A simple two-locus model with two alleles, A and a, is first considered in a random-mating diploid population with size N. There are four haplotypes, AA, Aa, aA, and aa, and selection works on the number of alleles A in a diplod (i = 0, 1, 2, 3, 4). Because gene conversion is allowed between the two loci, when the mutation rate is very low, either AA or aa will fix in the population eventually. We consider a situation where a single mutant, A, arises in one locus when a is fixed in both loci. Then, we derive the fixation probability analytically, and the fixation time is investigated by simulations. It is found that gene conversion has an effect to increase the "effective" population size, so that weak selection works more efficiently in a multigene family. With these results, we discuss the effect of gene conversion on the rate of molecular evolution in a multigene family undergoing concerted evolution. We also argue about the applicability of the theoretical results to models of multigene families with more than two loci.  相似文献   

9.
The Cannings exchangeable model for a finite population in discrete time is extended to incorporate selection. The probability of fixation of a mutant type is studied under the assumption of weak selection. An exact formula for the derivative of this probability with respect to the intensity of selection is deduced, and developed in the case of a single mutant. This formula is expressed in terms of mean coalescence times under neutrality assuming that the coefficient of selection for the mutant type has a derivative with respect to the intensity of selection that takes a polynomial form with respect to the frequency of the mutant type. An approximation is obtained in the case where this derivative is a continuous function of the mutant frequency and the population size is large. This approximation is consistent with a diffusion approximation under moment conditions on the number of descendants of a single individual in one time step. Applications to evolutionary game theory in finite populations are presented.   相似文献   

10.
Using properties of moment stationarity we develop exact expressions for the mean and covariance of allele frequencies at a single locus for a set of populations subject to drift, mutation, and migration. Some general results can be obtained even for arbitrary mutation and migration matrices, for example: (1) Under quite general conditions, the mean vector depends only on mutation rates, not on migration rates or the number of populations. (2) Allele frequencies covary among all pairs of populations connected by migration. As a result, the drift, mutation, migration process is not ergodic when any finite number of populations is exchanging genes. In addition, we provide closed-form expressions for the mean and covariance of allele frequencies in Wright's finite-island model of migration under several simple models of mutation, and we show that the correlation in allele frequencies among populations can be very large for realistic rates of mutation unless an enormous number of populations are exchanging genes. As a result, the traditional diffusion approximation provides a poor approximation of the stationary distribution of allele frequencies among populations. Finally, we discuss some implications of our results for measures of population structure based on Wright's F-statistics.  相似文献   

11.
Distributions of time to fixation of neutral genes   总被引:1,自引:0,他引:1  
Exact distributions of times to fixation are derived for neutral alleles in a discrete generation, constant census model that accommodates specified variations in gametic contributions per parent. This enables an evaluation of the performance of the effective number concept, and of diffusion equation approximations, used to characterize the time scale of drift events. Following simultaneous comparisons of modes, medians, means and standard deviations of exact and approximate distributions of times to fixation, it is concluded that diffusion equation methods, in conjunction with the appropriate effective number, do produce accurate results.  相似文献   

12.
Kim Y 《Genetics》2006,172(3):1967-1978
The allele frequency of a neutral variant in a population is pushed either upward or downward by directional selection on a linked beneficial mutation ("selective sweeps"). DNA sequences sampled after the fixation of the beneficial allele thus contain an excess of rare neutral alleles. This study investigates the allele frequency distribution under selective sweep models using analytic approximation and simulation. First, given a single selective sweep at a fixed time, I derive an expression for the sampling probabilities of neutral mutants. This solution can be used to estimate the time of the fixation of a beneficial allele from sequence data. Next, I obtain an approximation to mean allele frequencies under recurrent selective sweeps. Under recurrent sweeps, the frequency spectrum is skewed toward rare alleles. However, the excess of high-frequency derived alleles, previously shown to be a signature of single selective sweeps, disappears with recurrent sweeps. It is shown that, using this approximation and multilocus polymorphism data, genomewide parameters of directional selection can be estimated.  相似文献   

13.
Teshima KM  Innan H 《Genetics》2008,178(3):1385-1398
Neofunctionalization occurs when a neofunctionalized allele is fixed in one of duplicated genes. This is a simple fixation process if duplicated genes accumulate mutations independently. However, the process is very complicated when duplicated genes undergo concerted evolution by gene conversion. Our simulations demonstrate that the process could be described with three distinct stages. First, a newly arisen neofunctionalized allele increases in frequency by selection, but gene conversion prevents its complete fixation. These two factors (selection and gene conversion) that work in opposite directions create an equilibrium, and the time during which the frequency of the neofunctionalized allele drifts around the equilibrium value is called the temporal equilibrium stage. During this temporal equilibrium stage, it is possible that gene conversion is inactivated by mutations, which allow the complete fixation of the neofunctionalized allele. And then, permanent neofunctionalization is achieved. This article develops basic population genetics theories on the process to permanent neofunctionalization under the pressure of gene conversion. We obtain the probability and time that the frequency of a newly arisen neofunctionalized allele reaches the equilibrium value. It is also found that during the temporal equilibrium stage, selection exhibits strong signature in the divergence in the DNA sequences between the duplicated genes. The spatial distribution of the divergence likely has a peak around the site targeted by selection. We provide an analytical expression of the pattern of divergence and apply it to the human red- and green-opsin genes. The theoretical prediction well fits the data when we assume that selection is operating for the two amino acid differences in exon 5, which are believed to account for the major part of the functional difference between the red and green opsins.  相似文献   

14.
Consider a haploid population and, within its genome, a gene whose presence is vital for the survival of any individual. Each copy of this gene is subject to mutations which destroy its function. Suppose one member of the population somehow acquires a duplicate copy of the gene, where the duplicate is fully linked to the original gene’s locus. Preservation is said to occur if eventually the entire population consists of individuals descended from this one which initially carried the duplicate. The system is modelled by a finite state-space Markov process which in turn is approximated by a diffusion process, whence an explicit expression for the probability of preservation is derived. The event of preservation can be compared to the fixation of a selectively neutral gene variant initially present in a single individual, the probability of which is the reciprocal of the population size. For very weak mutation, this and the probability of preservation are equal, while as mutation becomes stronger, the preservation probability tends to double this reciprocal. This is in excellent agreement with simulation studies.  相似文献   

15.
Three diffusion models are formulated for the evolution of a diploid population with K alleles at one locus with completely symmetric mutation and random genetic drift, a variable-environment, and all the above mechanisms. For the diallelic case, the transient behavior is studied by solving the corresponding diffusion equations by an asymptotic method valid for short time intervals. The transient behavior of the three models is compared for the case when their stationary distributions are identical. The expected amount of heterozygosity is computed using the asymptotic solution and is compared to an exact result. The asymptotic results are extended to the general case with K alleles at the locus for the symmetric mutation and variable-environment models.Research supported by the National Science Foundation under Grant MCS 79-01718  相似文献   

16.
Under neutrality all classes of mutation have an equal probability of becoming fixed in a population. In this article, we describe our analysis of the frequency distributions of >5000 human SNPs and provide evident of biases in the process of fixation of certain classes of point mutation that are most likely to be attributable to biased gene conversion. The results indicate an increased fixation probability of mutations that result in the incorporation of a GC base pair. Furthermore, in transcribed regions this process exhibits strand asymmetry, and is biased towards preserving a G base on the coding strand. Biased gene conversion has the potential to explain both existence of isochores and the compositional asymmetry in mammalian transcribed regions.  相似文献   

17.
Two diffusion limits were derived from a discrete Wright-Fisher model of migration, mutation, and selection with an arbitrary degree of dominance. Instantaneous killing of the process due to emigration of a mutant leads to one of two diffusion processes with a killing term. One (weak gene flow) is the boundary case of the other (strong gene flow), which can cover a wide range of gene flow. The diffusion process subject to strong gene flow is similar to that studied by S. Karlin and S. Tavaré (1983, SIAM J. Appl. Math. 43, 31-41). The spectral decomposition of the transition probability density of "private" allele frequencies is presented in the case of strong gene flow. The fate of mutant in a deme is discussed in terms of the probabilities of survival and emigration.  相似文献   

18.
We study fixation probabilities and times as a consequence of neutral genetic drift in subdivided populations, motivated by a model of the cultural evolutionary process of language change that is described by the same mathematics as the biological process. We focus on the growth of fixation times with the number of subpopulations, and variation of fixation probabilities and times with initial distributions of mutants. A general formula for the fixation probability for arbitrary initial condition is derived by extending a duality relation between forwards- and backwards-time properties of the model from a panmictic to a subdivided population. From this we obtain new formulae(formally exact in the limit of extremely weak migration) for the mean fixation time from an arbitrary initial condition for Wright's island model, presenting two cases as examples. For more general models of population subdivision, formulae are introduced for an arbitrary number of mutants that are randomly located, and a single mutant whose position is known. These formulae contain parameters that typically have to be obtained numerically, a procedure we follow for two contrasting clustered models. These data suggest that variation of fixation time with the initial condition is slight, but depends strongly on the nature of subdivision. In particular, we demonstrate conditions under which the fixation time remains finite even in the limit of an infinite number of demes. In many cases-except this last where fixation in a finite time is seen--the time to fixation is shown to be in precise agreement with predictions from formulae for the asymptotic effective population size.  相似文献   

19.
Innan H 《Genetics》2002,161(2):865-872
A simple two-locus gene conversion model is considered to investigate the amounts of DNA variation and linkage disequilibrium in small multigene families. The exact solutions for the expectations and variances of the amounts of variation within and between two loci are obtained. It is shown that gene conversion increases the amount of variation within each locus and decreases the amount of variation between two loci. The expectation and variance of the amount of linkage disequilibrium are also obtained. Gene conversion generates positive linkage disequilibrium and the degree of linkage disequilibrium decreases as the recombination rate is increased. Using the theoretical results, a method for estimating the mutation, gene conversion, and recombination parameters is developed and applied to the data of the Amy multigene family in Drosophila melanogaster. The gene conversion rate is estimated to be approximately 60-165 times higher than the mutation rate for synonymous sites.  相似文献   

20.
Gene Conversion, Linkage, and the Evolution of Multigene Families   总被引:2,自引:1,他引:1       下载免费PDF全文
T. Nagylaki 《Genetics》1988,120(1):291-301
The evolution of the probabilities of genetic identity within and between the loci of a multigene family is investigated. Unbiased gene conversion, equal crossing over, random genetic drift, and mutation to new alleles are incorporated. Generations are discrete and nonoverlapping; the diploid, monoecious population mates at random. The linkage map is arbitrary, and the location dependence of the probabilities of identity is formulated exactly. The greatest of the rates of gene conversion, random drift, and mutation is epsilon much less than 1. For interchromosomal conversion, the equilibrium probabilities of identity are within order epsilon [i.e., O(epsilon)] of those in a simple model that has no location dependence and, at equilibrium, no linkage disequilibrium. At equilibrium, the linkage disequilibria are of O(epsilon); they are evaluated explicitly with an error of O(epsilon 2); they may be negative if symmetric heteroduplexes occur. The ultimate rate and pattern of convergence to equilibrium are within O(epsilon 2) and O(epsilon), respectively, of that of the same simple model. If linkage is loose (i.e., all the crossover rates greatly exceed epsilon, though they may still be much less than 1/2), the linkage disequilibria are reduced to O(epsilon) in a time of O(-ln epsilon). If intrachromosomal conversion is incorporated, the same results hold for loose linkage, except that, if the crossover rates are much less than 1/2, then the linkage disequilibria generally exceed those for pure interchromosomal conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号