首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
General anesthetics allosterically modulate the activity of neuronal gamma-aminobutyric acid, type A (GABAA), receptors. Previous mutational studies from our laboratory and others have shown that the regions in transmembrane domain 1 (M1) and pre-M1 of alpha and beta subunits in GABA receptors are essential for positive modulation of GABA binding and function by the intravenous (IV) general anesthetics. Mutation of beta2Gly-219 to Phe corresponded in rho nearly eliminated the modulatory effect of IV anesthetics in alpha1/beta2/gamma2S combination. However, the general anesthetics retained the ability to directly open the channel of mutant G219F, and the apparent affinity for GABA was increased, and desensitization rate was reduced. In this study, we made additional single mutations such as 219 Ser, Cys, Ile, Asp, Arg, Tyr, and Trp. The larger side chains of the replacement residues produced the greatest reduction in enhancement of GABA currents by IV anesthetics at clinical concentrations (Trp > Tyr = Phe > Arg > Asp > Ile > Cys > Ser = wild type). Compared with a 2-3-fold response in wild type, pentobarbital and propofol enhanced less than 0.5-fold; etomidate and alphaxalone modulation was reduced from more than 4- to 1-fold in G219F, G219Y, and G219W. A linear correlation was observed between the volume of the residue at position 219 and the loss of modulation. An identical correlation was found for the effect of modulation on left-shift in the GABA EC50 value; furthermore, the same rank order of residues, related to size, was found for reduction in the maximal direct channel-gating by pentobarbital (1 mm) and etomidate (100 mum) and for increased apparent affinity for direct gating by the IV anesthetics.  相似文献   

2.
Allelic variants of the glycine receptor alpha1 subunit gene GLRA1 underlie the human neurological disorder hyperekplexia. Among these, the subunit variant alpha1(P250T) is characterized by an amino acid substitution within the cytoplasmic TM1-2 loop. To identify structural elements at position alpha1(250) that govern receptor function, homomeric mutant receptor channels were subjected to electrophysiological analysis after recombinant expression in HEK293 cells. Wild-type alpha1(P250) channels were nondesensitizing with an EC(50) for glycine of 8 microm, whereas bulky hydrophobic side chains of the channel variants alpha1(P250V/I/L/F) showed rapid desensitization (tau(desens), 50-250 ms) and EC(50) values of 400-1800 microm. Small side chains (P250G/A/S) gave rise to wild-type-like channels. Effects of volume were counteracted by charge: alpha1(P250E/R) were nondesensitizing; EC(50) was approximately 70 microm. The mutants alpha1(P250C/Y) displayed intermediate channel properties (EC(50), 42/70 microm; tau(desens), 3300/2800 ms, respectively). The isotropic forces volume and hydropathy were sufficient to account for the observed effects of residue alpha1(250) on receptor function. Indeed, channel behavior was best predicted by a combined hydropathy/volume index describing the hydrophobic surface of individual amino acids. These observations characterize the short intracellular TM1-2 loop as a regulatory domain for channel activation and a crucial mediator of glycine receptor desensitization.  相似文献   

3.
Two gamma-aminobutyric acid(A) (GABA(A)) receptor chimeras were designed in order to elucidate the structural requirements for GABA(A) receptor desensitization and assembly. The (alpha1/gamma2) and (gamma2/alpha1) chimeric subunits representing the extracellular N-terminal domain of alpha1 or gamma2 and the remainder of the gamma2 or alpha1 subunits, respectively, were expressed with beta2 and beta2gamma2 in Spodoptera frugiperda (Sf-9) cells using the baculovirus expression system. The (alpha1/gamma2)beta2 and (alpha1/gamma2)beta2gamma2 but not the (gamma2/alpha1)beta2 and (gamma2/alpha1)beta2gamma2 subunit combinations formed functional receptor complexes as shown by whole-cell patch-clamp recordings and [3H]muscimol and [3H]flunitrazepam binding. Moreover, the surface immunofluorescence staining of Sf-9 cells expressing the (alpha1/gamma2)-containing receptors was pronounced, as opposed to the staining of the (gamma2/alpha1)-containing receptors, which was only slightly higher than background. To explain this, the (alpha1/gamma2) and (gamma2/alpha1) chimeras may act like alpha1 and gamma2 subunits, respectively, indicating that the extracellular N-terminal segment is important for assembly. However, the (alpha1/gamma2) chimeric subunit had characteristics different from the alpha1 subunit, since the (alpha1/gamma2) chimera gave rise to no desensitization after GABA stimulation in whole-cell patch-clamp recordings, which was independent of whether the chimera was expressed in combination with beta2 or beta2gamma2. Surprisingly, the (alpha1/gamma2)(gamma2/alpha1)beta2 subunit combination did desensitize, indicating that the C-terminal segment of the alpha1 subunit may be important for desensitization. Moreover, desensitization was observed for the (alpha1/gamma2)beta2gamma2 receptor with respect to the direct activation by pentobarbital. This suggests differences in the mechanism of channel activation for pentobarbital and GABA.  相似文献   

4.
The positive allosteric effects of four structurally distinct general anaesthetics (propofol, pentobarbitone, etomidate and 5alpha-pregnan-3alpha-ol-20-one [5alpha3alpha]) upon recombinant GABA(A) (alpha6beta3gamma2L), invertebrate GABA (RDL) and glycine (alpha1) receptors expressed in Xenopus laevis oocytes have been determined. Propofol and pentobarbitone enhanced agonist (GABA or glycine as appropriate) evoked currents at GABA(A), glycine, and RDL receptors, whereas etomidate and 5alpha3alpha were highly selective for the GABA(A) receptor. Utilizing site-directed mutagenesis, we demonstrate that the nature of the interaction of propofol, pentobarbitone and etomidate (but not 5alpha3alpha) with mammalian and invertebrate ionotropic GABA receptors depends critically upon the nature of a single amino acid located in the second transmembrane region (TM2) of these receptors. These data are discussed in relation to the specificity of action of general anaesthetics.  相似文献   

5.
Mutations that impair the expression and/or function of gamma-aminobutyric acid type A (GABAA) receptors can lead to epilepsy. The familial epilepsy gamma2(K289M) mutation affects a basic residue conserved in the TM2-3 linker of most GABAA subunits. We investigated the effect on expression and function of the Lys --> Met mutation in mouse alpha1(K278M), beta2(K274M), and gamma2(K289M) subunits. Compared with cells expressing wild-type and alpha1beta2gamma2(K289M) receptors, cells expressing alpha1(K278M)beta2gamma2 and alpha1beta2(K274M)gamma2 receptors exhibited reduced agonist-evoked current density and reduced GABA potency, with no change in single channel conductance. The low current density of alpha1beta2(K274M)gamma2 receptors coincided with reduced surface expression. By contrast the surface expression of alpha1(K278M)beta2gamma2 receptors was similar to wild-type and alpha1beta2gamma2(K289M) receptors suggesting that the alpha1(K278M) impairs function. In keeping with this interpretation GABA-activated channels mediated by alpha1(K278M)beta2gamma2 receptors had brief open times. To a lesser extent gamma2(K289M) also reduced mean open time, whereas beta2(K274M) had no effect. We used propofol as an alternative GABAA receptor agonist to test whether the functional deficits of mutant subunits were specific to GABA activation. Propofol was less potent as an activator of alpha1(K278M)beta2gamma2 receptors. By contrast, neither beta2(K274M) nor gamma2(K289M) affected the potency of propofol. The beta2(K274M) construct was unique in that it reduced the efficacy of propofol activation relative to GABA. These data suggest that the alpha1 subunit Lys-278 residue plays a pivotal role in channel gating that is not dependent on occupancy of the GABA binding site. Moreover, the conserved TM2-3 loop lysine has an asymmetric function in different GABAA subunits.  相似文献   

6.
Alanine-scanning mutagenesis and the whole cell voltage clamp technique were used to investigate the function of the extracellular loop between the second and third transmembrane domains (TM2-TM3) of the gamma-aminobutyric acid type A receptor (GABA(A)-R). A conserved arginine residue in the TM2-TM3 loop of the GABA(A)-R alpha(2) subunit was mutated to alanine, and the mutant alpha(2)(R274A) was co-expressed with wild-type beta(1) and gamma(2S) subunits in human embryonic kidney (HEK) 293 cells. The GABA EC(50) was increased by about 27-fold in the mutant receptor relative to receptors containing a wild-type alpha(2) subunit. Similarly, the GABA EC(50) at alpha(2)(L277A)beta(1)gamma(2S) and alpha(2)(K279A)beta(1)gamma(2S) GABA(A)-R combinations was increased by 51- and 4-fold, respectively. The alpha(2)(R274A) or alpha(2)(L277A) mutations also reduced the maximal response of piperidine-4-sulfonic acid relative to GABA by converting piperidine-4-sulfonic acid into a weak partial agonist at the GABA(A)-R. Based on these results, we propose that alpha(2)(Arg-274) and alpha(2)(Leu-277) are crucial to the efficient transduction of agonist binding into channel gating at the GABA(A)-R.  相似文献   

7.
General anesthetics modulate the activity of ligand-gated ion channels including the GABA(A) receptor. Mutational studies mainly on the benzodiazepine-insensitive alpha(2)beta(1(M286W)) and alpha(6)beta(3(N289M))gamma(2) GABA(A) receptors revealed that a serine in transmembrane domain 2 and a methionine in transmembrane domain 3 are essential for the action of most general anesthetics. We investigated whether these residues would similarly be relevant for their action at the benzodiazepine-sensitive GABA receptor subtype, alpha(2)beta(3)gamma(2). We found that not only the N265M but also the M286W mutation nearly abolished the modulatory effect of etomidate. However, the anti-convulsant loreclezole, a structural homologue of etomidate, was inactive on the N265M mutant, but displayed normal modulatory activity on the M286W mutant. Both mutations did not affect the modulatory action of the neurosteroid alphaxalone. The direct action of alphaxalone, however, was dramatically increased in the M286W mutant to about twice the maximal GABA current but not significantly affected in the N265M mutant. These data demonstrate that the structural requirements for modulatory and direct actions of various general anesthetics are distinct. The molecular switches induced by these mutations can be exploited to identify the molecular determinants for the action of general anesthetics.  相似文献   

8.
We reported previously that tyrosine 62 of the beta2 subunit of the gamma-aminobutyric acid, type A (GABA(A)) receptor is an important determinant of high affinity agonist binding and that recombinant alpha1beta2gamma2(L) receptors carrying the Y62S mutation lack measurable high affinity sites for [3H]muscimol. We have now examined the effects of disrupting these sites on the macroscopic desensitization properties of receptors expressed in Xenopus oocytes. Desensitization was measured by the ability of low concentrations of bath-perfused agonist to reduce the current responses elicited by subsequent challenges with saturating concentrations of GABA. Wild-type receptors were desensitized by pre-perfused muscimol with an IC50 approximately 0.7 microm, which correlates well with the lower affinity sites for this agonist that are measured in direct binding studies. Receptors carrying the beta2 Y62S and Y62F mutations desensitized at slightly higher (2-7-fold) agonist concentrations. However, at low perfusate concentrations, the Y62S-containing receptor recovered from the desensitized state even in the continued presence of agonist. The characteristics of desensitization in the wild-type and mutant receptors lead us to suggest that the major role of the high affinity agonist-binding site(s) of the GABA(A) receptor is not to induce desensitization but rather to stabilize the desensitized state once it has been formed.  相似文献   

9.
We screened 124 individuals for single nucleotide polymorphisms of the alpha1, beta3 and gamma2 genes of the GABA(A) receptor in the regions corresponding to the ligand-binding domains on the protein level. In a patient with chronic insomnia, a missense mutation was found in the gene of the beta3 subunit. This mutation results in the substitution of the amino acid residue arginine for histidine in position 192 (beta3(R192H)). The patient was found to be heterozygous for this mutation. Functional analysis of human alpha1beta3(R192H)gamma2S GABA(A) receptors using ultra fast perfusion techniques revealed a slower rate of the fast phase of desensitization compared with alpha1beta3gamma2S GABA(A) receptors. Additionally, current deactivation [a major determinant of inhibitory postsynaptic current (IPSC) duration] was faster in the mutated receptors. This raises the possibility of decreased GABAergic inhibition contributing to insomnia, as some members of the patient's family also suffer from insomnia. The mutation beta3(R192H) might, therefore, be linked to this condition. The intron/exon boundaries of the alpha1 subunit gene were also established and three additional variants were found in the alpha1 and beta3 genes.  相似文献   

10.
Selective modulators of gamma-aminobutyric acid, type A (GABA(A)) receptors containing alpha(4) subunits may provide new treatments for epilepsy and premenstrual syndrome. Using mouse L(-tk) cells, we stably expressed the native GABA(A) receptor subunit combinations alpha(3)beta(3)gamma(2,) alpha(4)beta(3)gamma(2), and, for the first time, alpha(4)beta(3)delta and characterized their properties using a novel fluorescence resonance energy transfer assay of GABA-evoked depolarizations. GABA evoked concentration-dependent decreases in fluorescence resonance energy transfer that were blocked by GABA(A) receptor antagonists and, for alpha(3)beta(3)gamma(2) and alpha(4)beta(3)gamma(2) receptors, modulated by benzodiazepines with the expected subtype specificity. When combined with alpha(4) and beta(3), delta subunits, compared with gamma(2), conferred greater sensitivity to the agonists GABA, 4,5,6,7-tetrahydroisoxazolo-[5,4-c]pyridin-3-ol (THIP), and muscimol and greater maximal efficacy to THIP. alpha(4)beta(3)delta responses were markedly modulated by steroids and anesthetics. Alphaxalone, pentobarbital, and pregnanolone were all 3-7-fold more efficacious at alpha(4)beta(3)delta compared with alpha(4)beta(3)gamma(2.) The fluorescence technique used in this study has proven valuable for extensive characterization of a novel GABA(A) receptor. For GABA(A) receptors containing alpha(4) subunits, our experiments reveal that inclusion of delta instead of gamma(2) subunits can increase the affinity and in some cases the efficacy of agonists and can increase the efficacy of allosteric modulators. Pregnanolone was a particularly efficacious modulator of alpha(4)beta(3)delta receptors, consistent with a central role for this subunit combination in premenstrual syndrome.  相似文献   

11.
The major isoform of the gamma-aminobutyric acid type A (GABA(A)) receptor is thought to be composed of 2alpha(1), 2beta(2), and 1gamma(2) subunit(s), which surround the ion pore. Definite evidence for the subunit arrangement is lacking. We show here that GABA(A) receptor subunits can be concatenated to a trimer that can be functionally expressed upon combination with a dimer. Many combinations did not result in the functional expression. In contrast, four different combinations of triple subunits with dual subunit constructs, all resulting in the identical pentameric receptor gamma(2)beta(2)alpha(1)beta(2)alpha(1), could be successfully expressed in Xenopus oocytes. We characterized the functional properties of these receptors in respect to agonist, competitive antagonist, and diazepam sensitivity. All properties were similar to those of wild type alpha(1)beta(2)gamma(2) GABA(A) receptors. Thus, together with information on the crystal structure of the homologous acetylcholine-binding protein (Brejc, K., van Dijk, W. J., Klaassen, R. V., Schuurmans, M., van Der Oost, J., Smit, A. B., and Sixma, T. K., (2001) Nature 411, 269-276, we provide evidence for an arrangement gamma(2)beta(2)alpha(1)beta(2)alpha(1), counterclockwise when viewed from the synaptic cleft. Forced subunit assembly will also allow receptors containing different subunit isoforms or mutant subunits to be expressed, each in a desired position. The methods established here should be applicable to the entire ion channel family comprising nicotinic acetylcholine, glycine, and 5HT(3) receptors.  相似文献   

12.
The family of gamma-aminobutyric acid type A receptors (GABA(A)Rs) mediates two types of inhibition in the mammalian brain. Phasic inhibition is mediated by synaptic GABA(A)Rs that are mainly comprised of alpha(1), beta(2), and gamma(2) subunits, whereas tonic inhibition is mediated by extrasynaptic GABA(A)Rs comprised of alpha(4/6), beta(2), and delta subunits. We investigated the activation properties of recombinant alpha(4)beta(2)delta and alpha(1)beta(2)gamma(2S) GABA(A)Rs in response to GABA and 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3(2H)-one (THIP) using electrophysiological recordings from outside-out membrane patches. Rapid agonist application experiments indicated that THIP produced faster opening rates at alpha(4)beta(2)delta GABA(A)Rs (beta approximately 1600 s(-1)) than at alpha(1)beta(2)gamma(2S) GABA(A)Rs (beta approximately 460 s(-1)), whereas GABA activated alpha(1)beta(2)gamma(2S) GABA(A)Rs more rapidly (beta approximately 1800 s(-1)) than alpha(4)beta(2)delta GABA(A)Rs (beta < 440 s(-1)). Single channel recordings of alpha(1)beta(2)gamma(2S) and alpha(4)beta(2)delta GABA(A)Rs showed that both channels open to a main conductance state of approximately 25 pS at -70 mV when activated by GABA and low concentrations of THIP, whereas saturating concentrations of THIP elicited approximately 36 pS openings at both channels. Saturating concentrations of GABA elicited brief (<10 ms) openings with low intraburst open probability (P(O) approximately 0.3) at alpha(4)beta(2)delta GABA(A)Rs and at least two "modes" of single channel bursting activity, lasting approximately 100 ms at alpha(1)beta(2)gamma(2S) GABA(A)Rs. The most prevalent bursting mode had a P(O) of approximately 0.7 and was described by a reaction scheme with three open and three shut states, whereas the "high" P(O) mode ( approximately 0.9) was characterized by two shut and three open states. Single channel activity elicited by THIP in alpha(4)beta(2)delta and alpha(1)beta(2)gamma(2S) GABA(A)Rs occurred as a single population of bursts (P(O) approximately 0.4-0.5) of moderate duration (approximately 33 ms) that could be described by schemes containing two shut and two open states for both GABA(A)Rs. Our data identify kinetic properties that are receptor-subtype specific and others that are agonist specific, including unitary conductance.  相似文献   

13.
The gamma-aminobutyric acid, type A (GABA(A)) receptor is a chloride-conducting receptor composed of alpha, beta, and gamma subunits assembled in a pentameric structure forming a central pore. Each subunit has a large extracellular agonist binding domain and four transmembrane domains (M1-M4), with the second transmembrane (M2) domain lining the pore. Mutation of five amino acids in the M1-M2 loop of the beta(3) subunit to the corresponding amino acids of the alpha(7) nicotinic acetylcholine subunit rendered the GABA(A) receptor cation-selective upon co-expression with wild type alpha(2) and gamma(2) subunits. Similar mutations in the alpha(2) or gamma(2) subunits did not lead to such a change in ion selectivity. This suggests a unique role for the beta(3) subunit in determining the ion selectivity of the GABA(A) receptor. The pharmacology of the mutated GABA(A) receptor is similar to that of the wild type receptor, with respect to muscimol binding, Zn(2+) and bicuculline sensitivity, flumazenil binding, and potentiation of GABA-evoked currents by diazepam. There was, however, an increase in GABA sensitivity (EC(50) = 1.3 microm) compared with the wild type receptor (EC(50) = 6.4 microm) and a loss of desensitization to GABA of the mutant receptor.  相似文献   

14.
A series of azaflavone derivatives and analogues were prepared and evaluated for their affinity to the benzodiazepine binding site of the GABA(A) receptor, and compared to their flavone counterparts. Three of the compounds, the azaflavones 9 and 12 as well as the new flavone 13, were also assayed on GABA(A) receptor subtypes (alpha(1)beta(3)gamma(2s), alpha(2)beta(3)gamma(2s), alpha(4)beta(3)gamma(2s) and alpha(5)beta(3)gamma(2s)), displaying nanomolar affinities as well as selectivity for alpha1- versus alpha2- and alpha3-containing receptors by a factor of between 14 and 26.  相似文献   

15.
GABA(A) receptor function was studied in cerebral cortical vesicles prepared from rats after intracerebroventricular microinjections of antisense oligodeoxynucleotides (aODNs) for alpha1, gamma2, beta1, beta2 subunits. GABA(A) receptor alpha1 subunit aODNs decreased alpha1 subunit mRNA by 59+/-10%. Specific [3H]GABA binding was decreased by alpha1 or beta2 subunit aODNs (to 63+/-3% and 64+/-9%, respectively) but not changed by gamma2 subunit aODNs (94+/-5%). Specific [3H]flunitrazepam binding was increased by alpha1 or beta2 subunit aODNs (122+/-8% and 126+/-11%, respectively) and decreased by gamma2 subunit aODNs (50+/-13%). The "knockdown" of specific subunits of the GABA(A )receptor significantly influenced GABA-stimulated 36Cl- influx. Injection of alpha1 subunit aODNs decreased basal 36Cl- influx and the GABA Emax; enhanced GABA modulation by diazepam; and decreased antagonism of GABA activity by bicuculline. Injection of gamma2 subunit aODNs increased the GABA Emax; reversed the modulatory efficacy of diazepam from enhancement to inhibition of GABA-stimulation; and reduced the antagonist effect of bicuculline. Injection of beta2 subunit aODNs reduced the effect of diazepam whereas treatment with beta1 subunit aODNs had no effect on the drugs studied. Conclusions from our studies are: (1) alpha1 subunits promote, beta2 subunits maintain, and gamma2 subunits suppress GABA stimulation of 36Cl- influx; (2) alpha1 subunits suppress, whereas beta2, and gamma2 subunits promote allosteric modulation by benzodiazepines; (3) diazepam can act as an agonist or inverse agonist depending on the relative composition of the receptor subunits: and (4) the mixed competitive/non-competitive effects of bicuculline result from activity at alpha1 and gamma2 subunits and the lack of activity at beta1 and beta2 subunits.  相似文献   

16.
On high- and low-affinity agonist sites in GABAA receptors   总被引:1,自引:0,他引:1  
GABAA receptors are activated via low-affinity binding sites for the agonists GABA or muscimol. Evidence has been provided that the amino acid residue alpha 1F64 located at the beta2(+)/alpha1(-) subunit interface forms part of this binding site. In radioactive ligand binding studies the agonist [3H]muscimol has been found to interact with the receptor via a high-affinity binding site. This site has been interpreted as a conformational variant of the low-affinity site. Alternatively, the high-affinity binding site has been located to the alpha1(+)/beta2(-) interface and the homologous residue to alpha 1F64, beta 2Y62 has been proposed to constitute an important part of this site. Here we investigated the effect of the point mutation alpha 1F64L and the homologous mutation beta 2Y62L on agonist and antagonist binding and functional properties in alpha 1 beta 2 gamma 2 GABAA receptors. While the mutation in the alpha1 subunit had drastic consequences on all studied properties, including desensitization, the mutation in the beta2 subunit had little consequence. Our observations are relevant for the relative location of high- and low-affinity agonist sites in GABAA receptors.  相似文献   

17.
The major isoforms of GABA(A) receptors are thought to be composed of two alpha, two beta and one gamma subunit(s). GABA(A) receptors containing two beta1 subunits respond differently to the anticonvulsive compound loreclezole and the general anaesthetic etomidate than receptors containing two beta2 subunits. Receptors containing beta2 subunits show a much larger allosteric stimulation by these agents than those containing beta1 subunits. We were interested to know how receptors containing both beta1 and beta2 subunits, in different positions respond to loreclezole and etomidate. To answer this question, subunits were fused at the DNA level to form dimeric and trimeric subunits. Concatenated receptors (alpha1-beta1-alpha1/gamma2-beta1, alpha1-beta2-alpha1/gamma2-beta1, alpha1-beta1-alpha1/gamma2-beta2 and alpha1-beta2-alpha1/gamma2-beta2) were expressed in Xenopus ooctyes and functionally compared in their response to the agonist GABA and to the positive allosteric modulators, loreclezole and etomidate. We have shown that (I) in the presence of both beta1 and beta2 subunits in the same pentamer (mixed receptors) direct gating by etomidate is similar to exclusively beta1 containing receptors; (II) In mixed receptors, stimulation by etomidate assumed characteristics intermediate to exclusively beta1 or beta2 containing receptors, but the values for the concentrations < 10 microM were always much closer to those observed in alpha1-beta1-alpha1/gamma2-beta1 receptors; and (III) mixed receptors show no positional effects.  相似文献   

18.
Recent publications defined requirements for inter-subunit contacts in a benzodiazepine-sensitive GABA(A) receptor (GABA(A)R alpha 1 beta 3 gamma 2). There is strong evidence that the heteropentameric receptor contains two alpha 1, two beta 3, and one gamma 2 subunit. However, the available data do not distinguish two possibilities: When viewed clockwise from an extracellular viewpoint the subunits could be arranged in either gamma 2 beta 3 alpha 1 beta 3 alpha 1 or gamma 2 alpha 1 beta 3 alpha 1 beta 3 configurations. Here we use molecular modeling to thread the relevant GABA(A)R subunit sequences onto a template of homopentameric subunits in the crystal structure of the acetylcholine binding protein (AChBP). The GABA(A) sequences are known to have 15-18% identity with the acetylcholine binding protein and nearly all residues that are conserved within the nAChR family are present in AChBP. The correctly aligned GABA(A) sequences were threaded onto the AChBP template in the gamma 2 beta 3 alpha 1 beta 3 alpha 1 or gamma 2 alpha 1 beta 3 alpha 1 beta 3 arrangements. Only the gamma 2 alpha 1 beta 3 alpha 1 beta 3 arrangement satisfied three known criteria: (1) alpha 1 His(102) binds at the gamma 2 subunit interface in proximity to gamma 2 residues Thr(142), Phe(77), and Met(130); (2) alpha 1 residues 80-100 bind near gamma 2 residues 91-104; and (3) alpha 1 residues 58-67 bind near the beta 3 subunit interface. In addition to predicting the most likely inter-subunit arrangement, the model predicts which residues form the GABA and benzodiazepine binding sites.  相似文献   

19.
Childhood absence epilepsy (CAE) accounts for 10% to 12% of epilepsy in children under 16 years of age. We screened for mutations in the GABA(A) receptor (GABAR) beta 3 subunit gene (GABRB3) in 48 probands and families with remitting CAE. We found that four out of 48 families (8%) had mutations in GABRB3. One heterozygous missense mutation (P11S) in exon 1a segregated with four CAE-affected persons in one multiplex, two-generation Mexican family. P11S was also found in a singleton from Mexico. Another heterozygous missense mutation (S15F) was present in a singleton from Honduras. An exon 2 heterozygous missense mutation (G32R) was present in two CAE-affected persons and two persons affected with EEG-recorded spike and/or sharp wave in a two-generation Honduran family. All mutations were absent in 630 controls. We studied functions and possible pathogenicity by expressing mutations in HeLa cells with the use of Western blots and an in vitro translation and translocation system. Expression levels did not differ from those of controls, but all mutations showed hyperglycosylation in the in vitro translation and translocation system with canine microsomes. Functional analysis of human GABA(A) receptors (alpha 1 beta 3-v2 gamma 2S, alpha 1 beta 3-v2[P11S]gamma 2S, alpha 1 beta 3-v2[S15F]gamma 2S, and alpha 1 beta 3-v2[G32R]gamma 2S) transiently expressed in HEK293T cells with the use of rapid agonist application showed that each amino acid transversion in the beta 3-v2 subunit (P11S, S15F, and G32R) reduced GABA-evoked current density from whole cells. Mutated beta 3 subunit protein could thus cause absence seizures through a gain in glycosylation of mutated exon 1a and exon 2, affecting maturation and trafficking of GABAR from endoplasmic reticulum to cell surface and resulting in reduced GABA-evoked currents.  相似文献   

20.
The subunit combinations alpha1beta2gamma2, alpha6beta2gamma2, and alpha1alpha6beta2gamma2 of the GABA(A) receptor were functionally expressed in Xenopus oocytes. The properties of the resulting ion currents were characterized by using electrophysiological techniques. The concentration-response curve of the channel agonist GABA for alpha1alpha6beta2gamma2 showed a single apparent component characterized by an EC(50) of 107 +/- 26 microM (n = 4). It was different from the one for alpha1beta2gamma2, which had an EC(50) of 41 +/- 9 microM (n = 4), that for alpha6beta2gamma2, with an EC(50) of 6.7 +/- 1.9 microM (n = 5), and those for alpha1beta2 and alpha1alpha6beta2. There was no appreciable functional expression of alpha6beta2. Allosteric responses of alpha1alpha6beta2gamma2 to diazepam were intermediate to those of alpha1beta2gamma2 and alpha6beta2gamma2, and allosteric responses to flumazenil were comparable to the ones for alpha1beta2gamma2. The inhibition by furosemide of the currents elicited by GABA in alpha1alpha6beta2gamma2 [IC(50) = 298 +/- 116 microM (n = 7), assuming only one component] was not identical with inhibition of alpha6beta2gamma2 (IC(50) = 38 +/- 2 microM, n = 4), alpha1beta2gamma2 (IC(50) = 5,610 +/- 910 microM, n = 5), or a mixture of these components (assuming two components). These findings indicate unambiguously the formation of functional GABA(A) receptors containing two different alpha subunits, alpha1 and alpha6, with properties different from those of alpha1beta2gamma2 and alpha6beta2gamma2. Furthermore, we provide evidence for the facts that in the Xenopus oocyte (a) the formation of the different receptor types depends on the relative abundance of cRNAs coding for the different receptor subunits and (b) that functional dual subunit combinations alphabeta do not form in the presence of cRNA coding for the gamma subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号