首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neurofilaments in mammalian nervous tissues have three subunit proteins. These subunit proteins have apparent molecular masses of 200 (NF200), 150 (NF150) and 68 (NF68) kD. Biochemical assembly studies have indicated that the NF68 protein forms the core of the filament and that the other two proteins are associated proteins. Electron microscopy immunolocalization studies have been performed previously on isolated filaments and on filaments from neurons in culture, and have confirmed the localization of NF68 as a core filament protein and NF200 as a peripheral protein. We have raised two monoclonal antibodies to the NF200 components. Using immunogold labelled protein A, we have been able to localize these antibodies to tissue sections of adult cerebellum at the EM level. With this method, we have found that one of the monoclonal antibodies (NF2) shows a linear arrangement of gold particles directly on the filament, whereas the second monoclonal antibody (NF111) reacts with the filaments to give a periodic arrangement of gold particles. By immunoblotting against chymotryptic fragments of the NF200 protein, we have found that the mAB-NF111 reacts solely with a 160 kD piece, whereas the other monoclonal antibody reacts with both the 160 kD piece and the 40 kD piece. The latter piece was shown to be associated to the filament by binding studies with iodinated NF68. Thus the EM localization studies and the biochemical studies indicate that the two monoclonal antibodies react with different parts of the NF200 molecule, one binding to a part of the molecule which is located closer to the filament, and one to a more peripheral part of the molecule.  相似文献   

2.
Neurofilaments in mammalian nervous tissues have three subunit proteins. These subunit proteins have apparent molecular masses of 200 (NF200), 150 (NF150) and 68 (NF68) kD. Biochemical assembly studies have indicated that the NF68 protein forms the core of the filament and that the other two proteins are associated proteins. Electron microscopy immunolocalization studies have been performed previously on isolated filaments and on filaments from neurons in culture, and have confirmed the localization of NF68 as a core filament protein and NF200 as a peripheral protein. We have raised two monoclonal antibodies to the NF200 components. Using immunogold labelled protein A, we have been able to localize these antibodies to tissue sections of adult cerebellum at the EM level. With this method, we have found that one of the monoclonal antibodies (NF2) shows a linear arrangement of gold particles directly on the filament, whereas the second monoclonal antibody (NF111) reacts with the filaments to give a periodic arrangement of gold particles. By immunoblotting against chymotryptic fragments of the NF200 protein, we have found that the mAB-NF111 reacts solely with a 160 kD piece, whereas the other monoclonal antibody reacts with both the 160 kD piece and the 40 kD piece. The latter piece was shown to be associated to the filament by binding studies with iodinated NF68. Thus the EM localization studies and the biochemical studies indicate that the two monoclonal antibodies react with different parts of the NF200 molecule, one binding to a part of the molecule which is located closer to the filament, and one to a more peripheral part of the molecule.  相似文献   

3.
Ten polyclonal neurofilament antibodies were tested for domain specificity with immunoblots of chymotrypsin digests of a neurofilament protein of 150 kDa (NF 150K). In contrast to most monoclonal antibodies previously reported, the five polyclonal antibodies which showed domain specificity reacted with the 40 kDa α-helical rod domain of the molecule. (With one exception, monoclonal antibodies reacted with the 200 kDa carboxy-terminal peripheral domain.) Of these ten polyclonal antibodies only two reacted with an isoelectric variant of NK 150 K (S150) isolated by Liem and collaborators (Wong, J., Hutchison, S.B. and Liem, R.K.H. (1984) J. Biol. Chem. 259, 10867–10874) from bovine brain. 13 monoclonal antibodies were also tested for reactivity with S150 protein. With one exception, none of these antibodies reacted with this variant, not even a monoclonal antibody which we have previously shown to react with a non-phosphorylated epitope located in the rod domain of NF 150K. We suggest that either there are modifications other than dephosphorylation in the S150 isoelectric variant or, alternatively, that it is not derived from NF 150K.  相似文献   

4.
Two monoclonal antibodies that recognize Alzheimer's neurofibrillary tangles (ANTs), AD10 and AB18, have been characterized by immunoblotting against human and calf spinal cord neurofilament (NF) and calf brain microtubule preparations. Both antibodies bind to the 200-kilodalton (kd) (NF-H) and 160-kd (NF-M) but not to the 68-kd (NF-L) NF triplet proteins. They also bind to high-molecular-weight microtubule-associated proteins (MAPs) and tau. AD10 immunostains MAP2 and MAP1 families, whereas AB18 stains mainly MAP1 bands. Preincubation of intact filament preparation or nitrocellulose strips containing electroblotted NF proteins with Escherichia coli alkaline phosphatase completely blocks AD10 binding and partially blocks binding of AB18. These results suggest that the determinants recognized by these antibodies are phosphorylated. Immunoblotting of peptide fragments generated by limited proteolysis of NF proteins with alpha-chymotrypsin and Staphylococcus aureus V8 protease shows that the localization of the antigenic determinants to AD10 and AB18 in NF-H is approximately 100 and 60 kd, respectively, away from the carboxy terminal, a region previously shown to form the NF projection side arm. In NF-M, the antigenic determinants to both antibodies are located also in the projection side arm, in a 60-kd polypeptide adjacent to the alpha-helical filament core. The results show that ANTs contain at least two phosphorylated antigenic sites that are present in NF and MAPs, a finding suggesting that ANTs may be composed of proteins or their fragments with epitopes shared by cytoskeletal proteins.  相似文献   

5.
In this article, the preparation and characterization of polyclonal rabbit antisera against the individual polypeptides of bovine neurofilament (68, 150, and 200 kilodaltons) is described. Selected antisera against the 68- and 150-kilodalton neurofilament polypeptides were specific for the corresponding antigen in homogenates of bovine, rat, and human brain as judged by immunoblots. The antisera against the 200-kilodalton neurofilament polypeptide cross-reacted to some extent with the 150-kilodalton neurofilament polypeptide, especially with the human antigen. The most specific antisera were used to develop an enzyme-linked immunosorbent assay (ELISA), and the cross-reactivities between the antisera and the different bovine and rat neurofilament polypeptides were determined. Contrary to the results in the immunoblots, the antiserum against the 200-kilodalton neurofilament polypeptide was subunit-specific, as was the 150-kilodalton antiserum. The 68-kilodalton antiserum displayed a minute cross-reactivity against bovine 150- and 200-kilodalton neurofilaments, but it cross-reacted somewhat more with the rat 150- and 200-kilodalton antigens. Even so, the subunit specificity of the antisera is high enough to enable the development of a quantitative ELISA for determination of the individual bovine or rat neurofilament polypeptides in a mixture. This study is the necessary preparation for such an assay.  相似文献   

6.
Cleavage at cysteine and chymotrypsin digestion were applied to two human neurofilament (NF) subunits, low- and high-molecular-weight NF (NF-L and NF-H), to locate the regions reacting with Bodian's silver stain and with several monoclonal antibodies, including NF-specific antibodies and one that recognizes all intermediate filaments (anti-IFA). Our findings indicate that whereas anti-IFA recognizes the highly conserved rod domain, all the NF-specific antibodies, as well as Bodian's silver, react with the carboxy-terminal tailpiece of NF subunits. The silver binding sites in NF-L are located in a carboxy-terminal 12-Kd chymotrypsin fragment, a highly charged, unique domain of NF.  相似文献   

7.
Monoclonal antibodies specific for the two higher molecular weight neurofilament (NF) subunits (NF200 and NF150), and antiserum to alpha-melanocyte-stimulating hormone (alpha-MSH) were used to probe the distribution of an alpha-MSH-like epitope in NF proteins of the guinea pig central nervous system using immunoblot and immunohistochemical methods. The anti-alpha-MSH antiserum recognized the same protein band as an anti-NF150 monoclonal antibody in immunoblots of proteins extracted from guinea pig cerebellum, spinal cord, retina, optic nerve, and neurohypophysis; it also stained axons and dendrites in sections of cerebellum, retina, and optic nerve. Although all cells of the pars intermedia and some in the pars distalis exhibited immunoreactivity with this antiserum, it did not stain axons in the neurohypophysis. Our immunoblot data demonstrate an alpha-MSH-like epitope in NF150 extracted from each of the regions studied. The lack of in situ recognition of this alpha-MSH-like epitope in neurophypophyseal axons, using the same immunohistochemical methods that demonstrate this epitope in axons of the cerebellum, retina, and optic nerve, suggests that NF150 is immunochemically heterogeneous in different regions of the guinea pig central nervous system.  相似文献   

8.
Treatment of freshly isolated, bovine neurofilaments with Escherichia coli alkaline phosphatase removes over 90% of the phosphate groups from serine residues of the Mr 200,000 and 150,000 polypeptide components (NF200 and NF150). Dephosphorylated NF200 and NF150 remain associated with filaments, but migrate in sodium dodecyl sulfate gels with reduced apparent molecular weights. Unusual migration appears to be due to modification at regions of these polypeptides that are peripheral to the neurofilament backbone as defined by limited chymotryptic digestion. Over 90 monoclonal antibodies recognizing epitopes located within the peripheral domain of native NF200 all show reduced affinity for dephosphorylated NF200. A single monoclonal antibody binds within the filament-associated domain of NF200 and its recognition of NF200 is unaffected upon treatment of neurofilaments with phosphatase. Around 50% of our monoclonal antibodies that bind NF150 monospecifically and at epitopes within its peripheral domain have reduced affinities for NF150 from phosphatase-treated filaments, while the remaining 50% bind native and dephosphorylated NF150 equally well. The smallest neurofilament component (NF70) contains few phosphate groups, most of which remain after treatment of neurofilaments with phosphatase. The resulting form of NF70 migrates normally in gels and its recognition by antibodies is unchanged. We conclude that phosphorylation modifies the structure of the two larger neurofilament polypeptides along domains that are peripheral to the filamentous backbone and that these effects are more pronounced for NF200 than for NF150.  相似文献   

9.
The ontogenetic appearance of the individual triplet polypeptides that comprise mammalian neurofilaments was studied in the developing rat optic nerve. Triton-insoluble cytoskeletal preparations from the optic nerves of rats of postnatal ages 1 Day (P1), 6 days (P6), 10 days (P10), 20 days (P20), and 3 months (adult) were analyzed for protein composition by one and two-dimensional gel electrophoresis. Results indicate that at P1, both the 150- and 68-kDa neurofilament subunit proteins are present. The 200-kDa subunit first becomes discernible at P20, but, at this age, it is still present in considerably less quantity than in the adult. Immunocytochemical verification of the presence of neurofilament protein was accomplished by staining tissue sections with specific antibodies against the 150- and the 68-kDa neurofilament subunits using the peroxidase-antiperoxidase technique. Results of the morphological analyses have shown that neurofilaments are not present in quantity until P10, which coincides with the time when the 68-kDa subunit increases in quantity by one dimensional gel analysis. Thus, the 150- and 68-kDa subunits can be detected prior to the appearance of neurofilaments, and the 200-kDa protein is not observed until sometime later. The potential physiological significance of the differential subunit transport is discussed with respect to neuronal differentiation in the developing mammalian CNS.  相似文献   

10.
Glucoamylase and glucose oxidase fromAspergillus niger have been purified to homogeneity by chromatography on DEAE-cellulose and the purified enzymes have been used to investigate structural and antigenicity relationships. In structure, glucoamylase and glucose oxidase are glycoproteins containing 14% and 16% carbohydrate. Earlier methylation and reductive -elimination results have shown that glucoamylase has an unusual arrangement of carbohydrate residues, with 20 single mannose units and 25 di-, tri-, or tetrasaccharide chains of mannose, glucose, and galactose, all attached O-glycosidically to serine and threonine residues of the protein moiety. The antigenicity of the glucoamylase has now been found to reside predominantly in the types and arrangement of the carbohydrate chains. Glucose oxidase contains mannose, galactose, and glucosamine in the N-acetyl form in the native enzyme, but the complete structure of the carbohydrate chains has not yet been determined. The antigenicity of this enzyme does not reside in the carbohydrate units, but rather in the polypeptide chains of the two subunits of the enzyme. Glucose oxidase can be dissociated into subunits by mercaptoethanol and sodium dodecyl sulfate treatment, while glucoamylase cannot be dissociated, but undergoes only an unfolding of the polypeptide chain under these conditions. The subunits of glucose oxidase do not react with the anti-glucose oxidase antibodies, but the unfolded molecule and peptide fragments produced from glucoamylase by cyanogen bromide cleavage do react with antiglucoamylase antibodies.  相似文献   

11.
Summary Antisera to chicken brain antigen (CBA) isolated by hydroxyapatite chromatography from 8 M urea extracts following repeated extractions with phosphate buffer selectively decorate neurofilaments (NF) in neuronal perikarya, dendrites and axons. The antisera also reacted with GFA protein, the astrocyte-specific intermediate filament protein, as indicated by the adsorption of NF immunoreactivity following passage of the antisera through columns prepared with purified GFA protein. Moreover, the antisera stained the polypeptides of the NF triplet (70 kd, 150 kd, 200 kd) and GFA protein by the immunoblotting procedure. Monoclonal antibodies selectively decorating NF in tissue sections were isolated from a fusion of mouse myeloma cells with spleen cells of mice immunized with CBA. By the immunoblotting procedure the antibodies decorated the 150 kd NF polypeptide and GFA protein. No staining of glial filaments or any other structure on tissue sections was also observed with antibodies derived from another fusion strongly reacting with GFA protein on immunoblots. All antibodies (monoclonal and polyclonal) appeared to react with the same region of the GFA polypeptide as indicated by immunoblots of cleavage products.  相似文献   

12.
Peptide mapping of the three bovine and porcine neurofilament protein subunits ("L", "M" and "H") with apparent mol. wts of 70, 160 and 210 kDa were performed with CNBr, leading to the cleavage of methionyl bonds. We have obtained two characteristic large fragments with molecular weights of 85 kDa for the "M" bovine subunit and 135 kDa for the "H" subunit of bovine neurofilament. A comparison of the electrophoretic patterns of CNBr generated polypeptides of "L" subunit from beef and pig showed that they are highly related structures. The peptide mappings of CNBr peptides of "M" and "H" subunits from beef and pig were significantly different. Antibodies were raised against the 85 kDa and 135 kDa CNBr fragments. Immunoblotting results with anti-85 kDa and anti-135 kDa of beef are in favour of large differences of structure between the "M" subunits from pig and beef. The "H" proteins were very similar and they also showed that the C-terminal part of bovine "H" and "M" proteins share common antigenic determinants.  相似文献   

13.
The state of phosphorylation in neurofilament (NF) proteins is studied by the 31P NMR technique. The 31P NMR spectrum of intact NF proteins at pH 7.0 is comprised of a major resonance at 4.18 ppm and a minor resonance at 3.53 ppm. The chemical shifts of the major and minor resonances are strongly dependent on pH and have pKa values for phosphoserine of 5.85 and for phosphothreonine of 6.00, respectively. 31P NMR spectra of isolated NF polypeptides show nonequivalent phosphoserine clusters in NF150 and in NF200. Their chemical shifts are very similar in both polypeptides, but the intensities of homologous resonances are different. NF68 has no detectable 31P resonance signal. Phosphate-specific monoclonal antibodies to NF200 can distinguish phosphates of various clusters. Microtubule proteins can also produce specific alteration of the 31P resonances of NF200. NF proteins digested by calcium-activated neutral protease (CANP) show relatively little change in 31P resonances.  相似文献   

14.
Neurofilaments were treated with chymotrypsin or with Staphylococcus aureus V8 protease (V8 protease) and the proteolytic fragments in soluble and particulate centrifugal fractions were identified by immune blotting, using antibodies raised against the Mr = 68,000 (P68), 145,000 (P145), and 200,000 (P200) subunits. The data provide further evidence that each of the three subunits has a different disposition within the filament. A Mr = 160,000 fragment of P200, which may correspond to the side arm projections on neurofilaments, was released into solution by chymotrypsin. In contrast, the proteolytic fragments of P68 and P145 were recovered mainly in the particulate centrifugal fraction, indicating that the two subunits are more closely associated with the filament backbone. Proteolytic cleavage studies on neurofilaments that were 32P-labeled in vivo indicated that the phosphorylated domains in P200 and P145 are localized in a restricted segment of each subunit, which occurs between the chymotryptic and V8 protease cleavage sites. No 32P was associated with the bulk of chymotryptic fragments, which are found in the particulate fraction, are about 40,000 daltons in size, and derive from all three neurofilament subunits. Most of the phosphorylation sites in neurofilaments are peripherally located in the projection domain of P200, suggesting that phosphorylation may modulate interactions between neurofilaments and other neuronal components.  相似文献   

15.
The phosphorylated carboxyl-terminal "tail" domains of the neurofilament (NF) subunits, NF heavy (NF-H) and NF medium (NF-M) subunits, have been proposed to regulate axon radial growth, neurofilament spacing, and neurofilament transport rate, but direct in vivo evidence is lacking. Because deletion of the tail domain of NF-H did not alter these axonal properties (Rao, M.V., M.L. Garcia, Y. Miyazaki, T. Gotow, A. Yuan, S. Mattina, C.M. Ward, N.S. Calcutt, Y. Uchiyama, R.A. Nixon, and D.W. Cleveland. 2002. J. Cell Biol. 158:681-693), we investigated possible functions of the NF-M tail domain by constructing NF-M tail-deleted (NF-MtailDelta) mutant mice using an embryonic stem cell-mediated "gene knockin" approach that preserves normal ratios of the three neurofilament subunits. Mutant NF-MtailDelta mice exhibited severely inhibited radial growth of both motor and sensory axons. Caliber reduction was accompanied by reduced spacing between neurofilaments and loss of long cross-bridges with no change in neurofilament protein content. These observations define distinctive functions of the NF-M tail in regulating axon caliber by modulating the organization of the neurofilament network within axons. Surprisingly, the average rate of axonal transport of neurofilaments was unaltered despite these substantial effects on axon morphology. These results demonstrate that NF-M tail-mediated interactions of neurofilaments, independent of NF transport rate, are critical determinants of the size and cytoskeletal architecture of axons, and are mediated, in part, by the highly phosphorylated tail domain of NF-M.  相似文献   

16.
A battery of monoclonal antibodies (MoAbs) against human retinol-binding protein (RBP) was produced to obtain useful probes for the study of the antigenic determinants of RBP. The 12 antibodies all reacted with human RBP by immunoblotting. Based on antibody cross-competition radioimmunoassays, four distinct and different groups of antibodies were identified: group I, 1A4 and 2F4; group II, 1G10, 5C5, 6F4, and 7G3; group III, 5H6, 6C7, 10G5, and 14E3; and group IV, 5H9 and 13A1. Information about the epitopes of RBP recognized by these MoAbs was obtained by testing the reactivity of each antibody with human, rabbit, and rat RBPs by immunoblotting. Group I and group IV antibodies reacted to a similar extent with human, rabbit, and rat RBPs. Group II antibodies reacted strongly with human and rabbit RBPs, but reacted very weakly with rat RBP. Group III antibodies reacted strongly with human RBP, but did not react with rabbit or rat RBP. Thus, the epitopes for group I and group IV antibodies appear to be regions of the RBP molecule that are conserved across the three species, whereas group III antibodies recognized only human RBP. In a preliminary study, the reactivity of each antibody with purified cyanogen bromide fragments of RBP was tested by slot immunoblotting. None of the MoAbs reacted with any of the cyanogen bromide fragments. This study shows that MoAbs specific for at least four different regions of the RBP molecule can be produced; hence, RBP contains at least four major antigenic domains.  相似文献   

17.
Autoantibodies directed at the intracellular Ro ribonucleoprotein complex are found in the serum of patients with systemic lupus erythematosus (SLE) and related autoimmune diseases. The antigenic stimulus for the induction of these autoantibodies is unknown, although we have previously demonstrated that the Ro protein and immunoglobulin G (IgG) share immunologic determinants bound by anti-Ro antibodies. The present study further defines the fine specificity of this cross-reactive binding. Using both patient autoanti-Ro antibodies and antigen-induced rabbit anti-Ro serum, the binding specificity for IgG was located to the heavy chains of IgG outside the Fc domain. F(ab')2 fragments of IgG were observed to inhibit specific Ro binding by either human or antigen-induced rabbit sera, while Fc fragments of IgG failed to inhibit Ro binding. Anti-Ro sera were found to bind the heavy chains of IgG in immunoblots, and the antibodies eluted from these heavy chains were capable of immunoprecipitating the Ro particle from human cell extracts. Not all patient sera with anti-Ro antibodies possessed IgG binding antibodies. Studies of cyanogen bromide digestion fragments of IgG implicate the hinge region of IgG as the region cross-reactive with the Ro protein. The nature of this cross-reactivity may be important in understanding the induction and/or perpetuation of the anti-Ro response in patients with autoimmune disease.  相似文献   

18.
W C Kong  E Y Cho 《Life sciences》1999,64(19):1773-1778
Although neurofilament (NF) antibodies have been used to visualize ganglion cells and their axons in the retina, it is not known, however, how many ganglion cells contain NF, and how the various NF subunits are distributed in the ganglion cells. Moreover, it is not known whether displaced amacrine cells in the ganglion cell layer are also labelled. In order to see whether NF antibodies can be used as a specific marker for ganglion cells, antibodies raised against the low (NF-L), middle (NF-M) and high (NF-H) molecular weight subunits of NF were employed to stain retinal whole-mounts of adult hamsters after pre-labelling the ganglion cells with Granular Blue. It was found that NF-L and NF-H antibodies labelled 38,777 and 17,750 cells in the ganglion cell layer respectively. By co-localization with GB-labelled cells, 88% of NF-L positive cells and 91% of NF-H positive cells were found to be ganglion cells. In contrast, the NF-M antibody labelled only very few ganglion cells (418 per retina) although robust staining of axonal bundles was observed. Thus, NF antibodies may prove useful in studying this population of ganglion cells.  相似文献   

19.
Neurofilament Proteins in Cultured Chromaffin Cells   总被引:2,自引:1,他引:1  
Antibodies were raised against the 200-kd, 145-kd, and 68-kd subunits of a rat neurofilament preparation. Immunoblots showed that each antibody was specific for its antigen and that it did not cross-react with any of the two other neurofilament polypeptides. Use of the three antibody preparations to stain bovine chromaffin cells in culture by the indirect immunofluorescence technique indicated that the three neurofilament polypeptides are present in chromaffin cells maintained in culture for 3 or 7 days. The three anti-neurofilament antibodies labelled the cells in a similar pattern: very thin filaments specifically localized around the nucleus were observed whereas neurites and growth cones, developed by cultured chromaffin cells, were generally not stained. Some fibroblasts were present in our cultures but they were never stained by any of the neurofilament antibodies. This indicated that the antibodies used do not react with vimentin, the major intermediate filament protein found in fibroblasts. The three neurofilament antibodies were also used to immunoprecipitate specifically three proteins of molecular weights 210 kd, 160 kd, 70 kd from solubilized extracts of cultured chromaffin cells that were radiolabelled with [35S]methionine. These proteins correspond in molecular weight to the neurofilament triplet found in bovine brain. Finally, the presence of neurofilaments in freshly isolated chromaffin cells was tested by immunoblotting using the 68-kd antibody. A 70-kd protein was specifically stained by this antibody, suggesting that neurofilaments are not only present in cultured chromaffin cells but also in the adrenal gland in vivo. It is concluded from these results that chromaffin cells contain completely assembled neurofilaments. This additional neuronal property again illustrates that chromaffin cells are closely related to neurons and therefore represent an attractive model system for the study of functional aspects of adrenergic neurons.  相似文献   

20.
Abstract. A panel of 10 mouse monoclonal antibodies specific for glial fibrillary acidic protein (GFA) has been isolated using porcine GFA as antigen. Although all antibodies recognize GFA purified from porcine spinal cord in the western blot technique, they can be subdivided into at least three groups on the basis of their reactivity against defined fragments of the molecule. Immunofluorescence staining patterns with the monoclonal antibodies performed on tissues and cell lines resemble those reported with conventional polyclonal antibodies directed against GFA. In particular astrocytes and Bergmann glia are strongly stained. In addition mouse monoclonal antibodies specific for either the 200 kd, or the 160 kd, or the 68 kd neurofilament triplet protein have been isolated and characterized. These antibodies are specific for neuronal cells and support conclusions made with similar antigen affinity-purified polyclonal antibodies. The combined set of monoclonal antibodies seems a valuable tool to characterize the different cell types of the nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号