共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Vasoactive intestinal peptide (VIP) is a neuromediator expressed widely in the nervous, gastrointestinal, respiratory, and immune systems. Two G protein-coupled receptors (GPCRs), designated VPAC1 and VPAC2, bind VIP with high affinity and transduce increases in [cyclic AMP](i) and [Ca(2+)](i). As there are no potent VPAC1- or VPAC2-selective antagonists, a hammerhead ribozyme (Rz) strategy capable of in vivo application was adopted to inactivate individual domains of VPAC1. Three Rzs were designed to cleave mRNA encoding the amino terminus, the third intracellular loop, and the cytoplasmic tail of human VPAC1 and were introduced by transfection into HEK-293 cells expressing recombinant human VPAC1. Each Rz specifically degraded VPAC1 mRNA and down-regulated VPAC1 protein and VIP-binding activity, as assessed by ribonuclease protection assays, Western blots, and binding of (125)I-VIP. Rz-mediated down-regulation of VPAC1 was associated with up to 75% suppression of VIP signaling of increases in [cyclic AMP](i) and [IP3](i), and of cyclic AMP response element-luciferase reports. The Rz specific for the amino terminus inhibited VPAC1 expression and signaling to the greatest extent. VIP-evoked cellular responses thus appear to be proportional to the level of VPAC1 expression. Specific Rzs may be powerful tools for manipulating tissue-specific contributions of GPCRs in vitro and in vivo. 相似文献
3.
Sphingosine 1-phosphate and its G protein-coupled receptors constitute a multifunctional immunoregulatory system 总被引:5,自引:0,他引:5
Goetzl EJ Wang W McGiffert C Huang MC Gräler MH 《Journal of cellular biochemistry》2004,92(6):1104-1114
The lysophospholipid growth factors sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) are generated by many cells involved in immunity, including macrophages, dendritic cells, mast cells, and platelets, with resultant lymph and plasma concentrations of 0.1-1 microM. All immune cells express distinctive profiles of G protein-coupled receptors (GPCRs) for S1P and LPA, which are regulated developmentally and by cellular activation. For T-cells, constitutive S1P signaling through their principal S1P(1) GPCR inhibits chemotactic responses to chemokines, with lesser suppression of proliferation and cytokine production. These S1P-S1P(1) GPCR signals tonically reduce T-cell chemotactic sensitivity to chemokines and thereby limit homing of blood and spleen T-cells to secondary lymphoid tissues. S1P(1) GPCR antagonists evoke lymphopenia by permitting blood T-cells to enter lymph nodes and blocking S1P(1) GPCR-dependent T-cell efflux from lymph nodes. Inversely, there is a longer than normal persistance in blood and a decrease in lymphoid transit time for T-cells overexpressing transgenic S1P(1) GPCRs. The immunotherapeutic potential of S1P(1) GPCR antagonists derives from their capacity to limit T-cell access to organ grafts and autoimmune antigens without reducing their other intrinsic functional capabilities. Lysophospholipids and their GPCRs thus constitute an immunoregulatory system of sufficient prominence for pharmacological targeting in transplantation, autoimmunity and immunodeficiency. 相似文献
4.
5.
R J Finch S P Sreedharan E J Goetzl 《Journal of immunology (Baltimore, Md. : 1950)》1989,142(6):1977-1981
Cultured human myeloma cells of the U266 line and leukemic T cells of the Jurkat line bound synthetic [125I]Tyr10-vasoactive intestinal peptide1-28 ([125I]VIP1-28) specifically and with an affinity similar to that of neuroendocrine cells. Specific binding reached equilibrium after 2 h at 22 degrees C for both myeloma cells and T cells, attained a maximum of 57 to 71% of total binding, and was reversed in 1.5 to 3 h by an excess of non-radioactive VIP1-28. Analyses of the ligand concentration-dependence of binding of the ligand concentration-dependence of binding of [125I]VIP1-28 revealed a mean Kd of 7.6 nM for a mean of 41,207 receptors per myeloma cell and 5.2 nM for 12,266 receptors per T cell. The relative affinity of binding of mast cell-derived VIP10-28 free acid and synthetic analogues suggested differences in specificity between lymphocyte and neuroendocrine receptors. Distinct sets of receptors thus appear to mediate the effects of VIP on functions of both antibody-producing cells and T cells. 相似文献
6.
Grinninger C Wang W Oskoui KB Voice JK Goetzl EJ 《The Journal of biological chemistry》2004,279(39):40259-40262
The vasoactive intestinal peptide (VIP) and its G protein-coupled receptors VPAC1 and VPAC2 prominently mediate diverse physiological functions in the neural, endocrine, and immune systems. A deletion variant of mouse VPAC2 has been identified in immune cells that lacks amino acids 367-380 at the carboxyl-terminal end of the seventh transmembrane domain. When expressed at equivalent levels in a human Jurkat T cell line, which has very low endogenous expression of human VPAC1 and VPAC2, wild-type and deletion-variant VPAC2 bound the same amount of 125I-VIP with similar affinity. Unlike wild-type VPAC2, however, deletion-variant VPAC2 did not transduce VIP-elicited increases in intracellular concentration of cyclic AMP, chemotaxis, or suppression of generation of interleukin-2. Natural deletion of part of the last transmembrane domain of VPAC2 thus abrogates signaling functions without apparent alterations of expression or ligand binding. 相似文献
7.
Distinct roles of the two T cell G protein-coupled receptors for vasoactive intestinal peptide (VIP), termed VPAC1 and VPAC2, in VIP regulation of autoimmune diseases were investigated in the dextran sodium sulfate (DSS)-induced murine acute colitis model for human inflammatory bowel diseases. In mice lacking VPAC2 (VPAC2-KO), DSS-induced colitis appeared more rapidly with greater weight loss and severe histopathology than in wild-type mice. In contrast, DSS-induced colitis in VPAC1-KO mice was milder than in wild-type mice and VPAC2-KO mice. Tissues affected by colitis showed significantly higher levels of myeloperoxidase, IL-6, IL-1β and MMP-9 in VPAC2-KO mice than wild-type mice, but there were no differences for IL-17, IFN-γ, IL-4, or CCR6. Suppression of VPAC1 signals in VPAC2-KO mice by PKA inhibitors reduced the clinical and histological severity of DSS-induced colitis, as well as tissue levels of IL-6, IL-1β and MMP-9. Thus VIP enhancement of the severity of DSS-induced colitis is mediated solely by VPAC1 receptors. 相似文献
8.
Characterization of receptors for vasoactive intestinal peptide solubilized from the lung 总被引:4,自引:0,他引:4
The zwitterionic detergent CHAPS was used to solubilize functional receptors for vasoactive intestinal peptide (VIP) from guinea pig lung. The solubilized receptors were resolved by high performance gel filtration in 3 mM CHAPS into two active fractions with apparent Stokes radii of 5.9 +/- 0.1 and 2.3 +/- 0.1 nm. The binding of 125I-VIP to the two receptor fractions was time-dependent, reversible, and saturable. Trypsin destroyed the binding activity of the receptor fractions, indicating their proteinic nature. Unlabeled VIP competitively displaced the binding of 125I-VIP to the 5.9-nm fraction (IC50 = 240 pM) and the 2.3-nm fraction (IC50 = 1.2 microM). Scatchard analysis indicated a single class of binding sites in each receptor fraction, with Kd values 300 pM and 0.97 microM for the 5.9- and 2.3-nm Stokes radii fractions, respectively. When the high affinity, 5.9-nm Stokes radius fraction was rechromatographed in 9 nM CHAPS, 46% of the binding activity eluted in the low affinity, 2.3-nm Stokes radius fraction, indicating that the latter is a product of dissociation of the high affinity receptor complex. GTP inhibited the binding of 125I-VIP to the high affinity complex but not the low affinity species. Scatchard plots of VIP binding by the high affinity receptors treated with GTP suggested the presence of two distinct binding sites (Kd 4.4 and 153 nM), compared to a single binding site (Kd = 0.3 nM) obtained in untreated receptors. The nonhydrolyzable GTP analog, guanyl-5'-yl-imidodiphosphate, inhibited VIP binding by the high affinity receptor fraction with potency nearly equivalent to that of GTP. These observations suggest that GTP-binding regulatory proteins are functionally coupled to the VIP-binding subunit in the high affinity receptor complex. The peptide specificity characteristics of the two receptor fractions were different. Peptide histidine isoleucine and growth hormone releasing factor, peptides homologous to VIP, were 87.5- and 22.9-fold less potent than VIP in displacing 125I-VIP binding by the high affinity receptor complex, respectively. On the other hand, growth hormone-releasing factor was more potent (22.7-fold) and peptide histidine isoleucine was less potent (31.3-fold) than VIP in displacing the binding by the low affinity species. 相似文献
9.
The hVPAC1 receptor for vasoactive intestinal peptide (VIP) and pituitary adenylyl cyclase activating peptide (PACAP) has an N-terminal signal peptide like all other class II G protein-coupled receptors (GPCRs). We determined the role of the signal peptide in expression of human VPAC1 receptor in transfected CHO cells. Three constructs were transfected: Flag30-hVPAC1, a receptor containing an inserted FLAG sequence between Ala30 and Ala31 and fused in the C-terminal position to GFP; Flag30-[delta1-30]-hVPAC1, the same construct as Flag30-hVPAC1 but lacking the 1-30 putative signal peptide (SP) sequence; Flag0-hVPAC1, a receptor containing an N-terminal FLAG sequence and fused in the C-terminal position to GFP. For each construct, we determined 125I-VIP binding, VIP-induced cAMP production, GFP fluorescence and indirect immunofluorescence on nonpermeabilized cells incubated with mouse monoclonal anti-Flag antibodies. The data were consistent with a crucial role of the signal peptide for expression of functional VPAC1 receptors at the cell surface and suggested that the signal peptide is cleaved during the translocation of the receptor to the plasma membrane, probably in the endoplasmic reticulum. 相似文献
10.
Nicole P Lins L Rouyer-Fessard C Drouot C Fulcrand P Thomas A Couvineau A Martinez J Brasseur R Laburthe M 《The Journal of biological chemistry》2000,275(31):24003-24012
The widespread neuropeptide vasoactive intestinal peptide (VIP) has two receptors VPAC(1) and VPAC(2). Solid-phase syntheses of VIP analogs in which each amino acid has been changed to alanine (Ala scan) or glycine was achieved and each analog was tested for: (i) three-dimensional structure by ab initio molecular modeling; (ii) ability to inhibit (125)I-VIP binding (K(i)) and to stimulate adenylyl cyclase activity (EC(50)) in membranes from cell clones stably expressing human recombinant VPAC(1) or VPAC(2) receptor. The data show that substituting residues at 14 positions out of 28 in VIP resulted in a >10-fold increase of K(i) or EC(50) at the VPAC(1) receptor. Modeling of the three-dimensional structure of native VIP (central alpha-helice from Val(5) to Asn(24) with random coiled N and C terminus) and analogs shows that substitutions of His(1), Val(5), Arg(14), Lys(15), Lys(21), Leu(23), and Ile(26) decreased biological activity without altering the predicted structure, supporting that those residues directly interact with VPAC(1) receptor. The interaction of the analogs with human VPAC(2) receptor is similar to that observed with VPAC(1) receptor, with three remarkable exceptions: substitution of Thr(11) and Asn(28) by alanine increased K(i) for binding to VPAC(2) receptor; substitution of Tyr(22) by alanine increased EC(50) for stimulating adenylyl cyclase activity through interaction with the VPAC(2) receptor. By combining 3 mutations at positions 11, 22, and 28, we developed the [Ala(11,22,28)]VIP analog which constitutes the first highly selective (>1,000-fold) human VPAC(1) receptor agonist derived from VIP ever described. 相似文献
11.
《Biochemical and biophysical research communications》1985,132(3):1079-1087
Specific binding sites for vasoactive intestinal peptide (VIP), a potent vasodilatory polypeptide, and its effect on formation of intracellular cyclic AMP levels were studied in cultured vascular smooth muscle cells (VSMC) from rat aorta. Specific binding of 125I-labeled-VIP to cultured VSMCs was time- and temperature-dependent. Scatchard analysis of binding studies suggested the presence of two classes of high and low affinity binding sites for VIP; the apparent Kd and the number of maximal binding capacity were ∼8×10−9 M and 60,000 sites/cell (high-affinity sites) and ∼4×10−8 M and 140,000 sites/cells (low-affinity sites), respectively. Unlabeled VIP competitively inhibited the binding of 125I-labeled-VIP to its binding sites, whereas neither peptides structurally related to VIP, nor other vasoactive substances affected the binding. VIP stimulated formation of intracellular cyclic AMP in cultured VSMCs in a dose-dependent manner; the stimulatory effect of VIP on cyclic AMP formation was not blocked by propranolol and was additive with isoproterenol. The present study first demonstrates the presence of specific receptors for VIP in VSMCs functionally coupled to adenylate cyclase system. It is suggested that VIP exerts its vasodilatory effect through its specific receptors distinct from β-adrenergic receptors. 相似文献
12.
[125I]VIP (vasoactive intestinal peptide) bound to apical membranes isolated from the bovine tracheal epithelium with a half maximal inhibition by unlabeled VIP (IC50) of 0.6 x 10(-9)M and binding was reversible. Glucagon did not affect [125I]VIP binding to the membranes. [125I]VIP was covalently cross-linked to tracheal membrane proteins using disuccinimidyl suberate. SDS-polyacrylamide gel electrophoresis of labeled tracheal membranes revealed one major [125I]-receptor complex of Mr = 71,000 to which binding of [125I]VIP was inhibited by 10 microM unlabeled VIP. These results are consistent with the presence of a specific, high-affinity receptor for VIP, with a Mr = 71,000, in apical membrane vesicles isolated from the bovine tracheal epithelium. 相似文献
13.
Protease signaling to G protein-coupled receptors: implications for inflammation and pain 总被引:3,自引:0,他引:3
Proteases, like thrombin, trypsin, cathepsins, or tryptase, can signal to cells by cleaving in a specific manner, a family of G protein-coupled receptors, the protease-activated receptors (PARs). Proteases cleave the extracellular N-terminal domain of PARs to reveal tethered ligand domains that bind to and activate the receptors. Recent evidence has supported the involvement of PARs in inflammation and pain. Activation of PAR(1), PAR(2), and PAR(4) either by proteinases or by selective agonists causes inflammation inducing most of the cardinal signs of inflammation: swelling, redness, and pain. Recent studies suggest a crucial role for the different PARs in innate immune response. The role of PARs in the activation of pain pathways appears to be dual. Subinflammatory doses of PAR(2) agonists induce hyperalgesia and allodynia, and PAR(2) activation has been implicated in the generation of inflammatory hyperalgesia. In contrast, subinflammatory doses of PAR(1) or PAR(4) increase nociceptive threshold, inhibiting inflammatory hyperalgesia, thereby acting as analgesic mediators. PARs have to be considered as an additional subclass of G protein-coupled receptors that are active participants to inflammation and pain responses and that could constitute potential novel therapeutic targets. 相似文献
14.
Vasoactive intestinal peptide (VIP) receptors were solubilized from rat liver using the zwitterionic detergent CHAPS. Optimal conditions of solubilization were obtained with 5 mM CHAPS and 2.5 mg protein/ml. The binding of 125I-VIP to CHAPS extracts was time- and pH-dependent, saturable and reversible. The following order of potency of unlabeled VIP-related peptides for inhibiting 125I-VIP binding was observed: VIP greater than helodermin greater than peptide histidine isoleucine amide (PHI) greater than rat growth hormone releasing factor (rGRF) greater than secretin. This peptide specificity is identical to that of rat liver membrane-bound receptors. VIP binding activity in the CHAPS extract was destroyed by trypsin or dithiothreitol in accordance with the known sensitivity of membrane-bound receptors to these agents. VIP receptors in CHAPS extracts were stable for at least 5 days at 4 degrees C. Scatchard analysis of equilibrium binding data indicated the presence in CHAPS extracts of high (H) and low (L) affinity binding sites with the following characteristics: KdH = 0.27 nM and BmH = 34 fmol/mg protein; KdL = 51 nM and BmL = 1078 fmol/mg protein. The guanine nucleotide GTP inhibited 125I-VIP binding to soluble receptors and enhanced the dissociation of soluble VIP-receptor complexes, suggesting that GTP-binding proteins were functionally associated with VIP receptors in solution. Gel filtration of solubilized VIP receptors on Sephacryl S-300 revealed a single binding component with a Stokes radius of 6.1 nm. It is concluded that active VIP receptors can be extracted from liver membranes by CHAPS. The availability of this CHAPS-soluble, stable and functional receptor from a tissue which can be obtained in large amounts represents a major step toward the purification of VIP receptors. 相似文献
15.
F V Vega G Mithieux H Vidal J P Riou R Mornex 《Comptes rendus des séances de la Société de biologie et de ses filiales》1989,183(6):515-521
We studied the effect of VIP on the ATPase activities from basolateral membranes prepared from rat enterocytes. Under the standard conditions of assay for membrane ATPases (millimolar ATP concentration) VIP has no effect, neither on the Na, K ATPase activity (ouabain sensitive) nor on the Mg ATPase activity (ouabain insensitive). These results suggest that short-term effects of VIP on ionic permeability and metabolism of enterocytes, are not mediated through modifications of the Na/K ratio by the Na, K ATPase or through modifications of another membrane ATPase activities. 相似文献
16.
Formyl peptide receptors: a promiscuous subfamily of G protein-coupled receptors controlling immune responses 总被引:3,自引:0,他引:3
The formyl peptide receptor (FPR) family is involved in host defence against pathogens, but also in sensing internal molecules that may constitute signals of cellular dysfunction. It includes three subtypes in human and other primates. FPR responds to formyl peptides derived from bacterial and mitochondrial proteins. FPRL1 displays a large array of exogenous and endogenous ligands, including the chemokine variant sCKβ8-1, the neuroprotective peptide humanin, and lipoxin A4. Two high affinity agonists (F2L and humanin) were recently described for FPRL2. In mouse, eight FPR-related receptors have been described. Fpr1 is the ortholog of human FPR, while fpr2 appears to share many ligands with human FPRL1. Altogether, the physiological role of the FPR family is still incompletely understood, due in part to the large variety of ligands, the redundancy with other chemoattractant agents, and the lack of clear orthologs between human and mouse receptors. Newly developed tools will allow to study further this family of receptors. 相似文献
17.
Schröder R Schmidt J Blättermann S Peters L Janssen N Grundmann M Seemann W Kaufel D Merten N Drewke C Gomeza J Milligan G Mohr K Kostenis E 《Nature protocols》2011,6(11):1748-1760
Label-free dynamic mass redistribution (DMR) is a cutting-edge assay technology that enables real-time detection of integrated cellular responses in living cells. It relies on detection of refractive index alterations on biosensor-coated microplates that originate from stimulus-induced changes in the total biomass proximal to the sensor surface. Here we describe a detailed protocol to apply DMR technology to frame functional behavior of G protein-coupled receptors that are traditionally examined with end point assays on the basis of detection of individual second messengers, such as cAMP, Ca(2+) or inositol phosphates. The method can be readily adapted across diverse cellular backgrounds (adherent or suspension), including primary human cells. Real-time recordings can be performed in 384-well microtiter plates and be completed in 2 h, or they can be extended to several hours depending on the biological question to be addressed. The entire procedure, including cell harvesting and DMR detection, takes 1-2 d. 相似文献
18.
Vasoactive intestinal peptide (VIP) bound with high affinity (Kd 0.13 nmol/l) to receptors on the human glioma cell line U-343 MG Cl 2:6. The receptors bound the related peptides helodermin. PHM and secretin with 10, 400 and 5000 times lower affinity, respectively. Deamidated VIP (VIP-COOH) and [des-His1]VIP bound with 10 and 100 times lower affinity. The fragment VIP(7–28) displaced 25% of the receptor-bound 125I-VIP whereas VIP(16–28) and VIP(1–22-NH2) were inactive. The binding of 125I-VIP could be completely inhibited by 10 μmol/l of the antagonists [N-Ac-Tyr1,D-Phe2]GRF(1–29)-NH2, [pCl-D-Phe6,Leu17]VIP and VIP(10–28); in contrast, the antagonist L-8-K was inactive. Affinity labeling showed that VIP bound to proteins with Mr's of 75 kDa, 66 kDa and 50 kDa, respectively. Following binding, the peptide was rapidly internalized, and at steady-state only 20% of cell-associated 125I-VIP was bound to receptors on the cell surface. The internalized 125I-VIP was completely degraded to 125I-tyrosine which was released from the cells. Degradation of internalized 125I-VIP was significantly reduced by chloroquine phenantroline and pepstatin-A. Surface binding and internalization of 125I-VIP was increased 3 times by phenantroline, and pepstatin-A caused a 5 times increase in surface binding. Chloroquine reduced surface-bound 125I-VIP, but caused retention of internalized 125I-VIP. 相似文献
19.
Synergistic assembly of linker for activation of T cells signaling protein complexes in T cell plasma membrane domains 总被引:6,自引:0,他引:6
Hartgroves LC Lin J Langen H Zech T Weiss A Harder T 《The Journal of biological chemistry》2003,278(22):20389-20394
Transmembrane adaptor molecule LAT (linker for activation of T cells) forms a central scaffold for signaling protein complexes that accumulate in the vicinity of activated T cell antigen receptors (TCR). Here we used biochemical analysis of immunoisolated plasma membrane domains and fluorescence imaging of green fluorescence protein-tagged signaling proteins to investigate the contributions of different tyrosine-based signaling protein docking sites of LAT to the formation of LAT signaling protein assemblies in TCR membrane domains. We found that the phospholipase C gamma docking site of LAT and different Grb2/Gads docking sites function in an interdependent fashion and synergize to accumulate LAT, Grb2, and phospholipase C gamma in TCR signaling assemblies. Two-dimensional gels showed that Grb2 is a predominant cytoplasmic adaptor in the isolated LAT signaling complexes, whereas Gads, Crk-1, and Grap are present in lower amounts. Taken together our data suggest a synergistic assembly of multimolecular TCR.LAT signal transduction complexes in T cell plasma membrane domains. 相似文献
20.
Patrick Robberecht Magali Waelbroeck Jean-Claude Camus Philippe De Neef Jean Christophe 《生物化学与生物物理学报:生物膜》1984,773(2):271-278
(1) Vasoactive intestinal peptide (VIP), secretin, and C-terminal octapeptide of cholecystokinin (CCK-8) receptors were identified in rat pancreatic plasma membranes by the ability of these peptides to stimulate adenylate cyclase activity. The membrane preparation procedure was conducted through a series of steps including discontinuous sucrose density gradient fractionation. 5 mM β-mercaptoethanol was added stepwise. Membrane preparations obtained stepwise were preincubated for 10 min at 25°C in the presence of various concentrations of β-mercaptoethanol or dithiothreitol before assaying adenylate cyclase. The use of the reducing agents exerted no effect on p[NH]ppG-, NaF-, and CCK-8- stimulated activities. By contrast, stimulation of adenylate cyclase by low VIP concentrations was specifically altered when β-mercaptoethanol was used during tissue homogeneization at 5°C. (2) In addition, both VIP and secretin responses were highly sensitive towards a preincubation of 10 min at 25°C in the presence of dithiothreitol. (3) These results were likely to reflect alterations at the receptor level. 125I-VIP binding was, indeed, reduced after dithiothreitol preincubation, low concentrations of the thiol reagent decreasing the apparent number of high-affinity VIP receptors and higher dithiothreitol concentrations reducing the affinity of VIP receptors. 相似文献