首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We described previously the cloning and DNA sequence of the human gene encoding pancreatic phospholipase A2 [DNA 5, 519]. When pancreatic phospholipase A2 (PLA2) cDNA was used to screen a human genomic library, two classes of clones were obtained. One class encoded the pancreatic enzyme, and a second class encoded one exon of an apparently related PLA2. No additional PLA2 gene exons displayed sufficient homology to be detected by the probe. A homologous sequence in both rat and porcine genomic DNA was detected by DNA blot hybridization, and the corresponding gene fragments were cloned and sequenced. Within the deduced amino acid sequences, the presence of known functional residues along with the high degree of interspecies conservation suggests the genes encode a functional PLA2 enzyme form. The encoded sequence lacks Cys11, as do the "type II" viperid venom and other nonpancreatic mammalian PLA2 enzymes. The sequence is distinct from porcine intestinal PLA2 and appears not to be a direct homolog of the recently published rabbit ascites and rat platelet enzymes. Hybridization of DNA probes containing sequences from these genes to genomic DNA blots of mouse/human somatic cell hybrids permitted chromosomal assignment for both. The pancreatic gene mapped to human chromosome 12, and the homologous gene mapped to chromosome 1.  相似文献   

2.
The original report of chicken CXCR1 (Li, Q. J., Lu, S., Ye, R. D., and Martins-Green, M. (2000) Gene (Amst.) 257, 307-317) described it as a single exon gene, with two isoforms (differing in their start codon). In comparison with mammalian CXCR1, the reported chicken CXCR1 was longer at both the NH(2) and COOH termini, and it lacked the conserved (C/S)CXNP motif present in the last transmembrane region of all known chemokine receptors. A re-evaluation of chicken CXCR1, comparing known expressed sequence tags with the chicken genome sequence, suggested that the gene contains two exons. We isolated a cDNA corresponding to our prediction, which was significantly different in sequence to the reported CXCR1. In particular, there were three frameshifts in our sequence, compared with the reported sequence, that restored higher identity in the COOH-terminal half of the protein to mammalian CXCR1 (61% total amino acid identity compared with 52% for the reported CXCR1), restored the (C/S)CXNP motif, and gave a predicted protein of the same length as mammalian CXCR1. In human, CXCR1 is the receptor for CXCL8. In the chicken, there are two syntenic genes, CXCLi1 and CXCLi2, which look equally like orthologues of human CXCL8. We demonstrate that both of these chemokines are ligands for chicken CXCR1. We also demonstrate that heterophils express chicken CXCR1 and that the receptor is Galpha(i) protein-linked.  相似文献   

3.
4.
Yeast aminopeptidase I is a vacuolar enzyme, which catalyzes the removal of amino acids from the NH2 terminus of peptides and proteins (Frey, J., and Rohm, K-H. (1978) Biochim. Biophys. Acta 527, 31-41). A yeast genomic DNA encoding aminopeptidase I was cloned from a yeast EMBL3A library and sequenced. The DNA sequence encodes a precursor protein containing 514 amino acid residues. The "mature" protein, whose NH2-terminal sequence was confirmed by automated Edman degradation, consists, based only on the DNA sequence, of 469 amino acids. A 45-residue presequence contains positively and negatively charged as well as hydrophobic residues, and its NH2-terminal residues could be arrayed in an amphiphilic alpha-helix. This presequence differs from the signal sequences which direct proteins across bacterial plasma membranes and endoplasmic reticulum or into mitochondria. It remains to be established how this unique presequence targets aminopeptidase I to yeast vacuoles and how this sorting utilizes classical protein secretory pathways. Further, the aminopeptidase I gene, localized previously by genetic mapping to yeast chromosome XI and called the LAP4 gene (Trumbly, R. J., and Bradley, G. (1983) J. Bacteriol. 156, 36-48), was determined by DNA blot analyses to be a single copy gene located on chromosome XI.  相似文献   

5.
Phospholipases A2 (PLA2s) play a key role in inflammatory processes through production of precursors of eicosanoids and platelet-activating factor. Recently, we described the purification of a novel approximately 100-kDa cytosolic PLA2 (cPLA2) from human monoblast U937 cells that is activated by physiological (intracellular) concentrations of Ca2+ (Kramer, R. M., Roberts, E. F., Manetta, J., and Putnam, J. E. (1991) J. Biol. Chem. 266, 5268-5272). Here we report the isolation of the complementary DNA encoding human cPLA2 and confirm its identity by expression in bacteria and in hamster cells. The predicted 749-amino acid cPLA2 protein has no similarity to the well known secretory PLA2s, but contains a structural element homologous to the C2 region of protein kinase C. The molecular cloning of cPLA2 will allow further studies defining the structure, function, and regulation of this novel PLA2.  相似文献   

6.
7.
8.
We cloned three overlapping cDNAs covering 2,452 base pairs encoding a new basement membrane collagen chain, alpha 4(IV), from rabbit corneal endothelial cell RNA. Nucleotide sequence analysis demonstrated that the clones encoded a triple-helical domain of 392 1/3 amino acid residues and a carboxyl non-triple-helical (NC1) domain of 231 residues. We also isolated a genomic DNA fragment for the human alpha 4(IV) chain, which contained two exons encoding from the carboxyl end of the triple-helical domain to the amino end of the NC1 domain. Identification of the clones was based on the amino acid sequence identity between the cDNA-deduced amino acid sequence and the reported amino acid sequence obtained from a fragment of the alpha 4(IV) collagen polypeptide M28+ (Butkowski, R. J., Shen, G.-Q., Wieslander, J., Michael, A. F., and Fish, A. J. (1990) J. Lab. Clin. Med. 115, 365-373). When compared with four other type IV collagen chains, the NC1 domain contained 12 cysteinyl residues in positions identical to those of the residues in those chains. The domain demonstrated 61, 70, 55, and 60% amino acid similarity with human alpha 1, human alpha 2, bovine alpha 3, and human alpha 5 chains, respectively. The human genomic DNA fragment allowed us to map the alpha 4(IV) gene (COL4A4) to the 2q35-2q37.1 region of the human genome.  相似文献   

9.
We have recently purified a Mr 22,000 GTP-binding protein (G protein) to near homogeneity from human platelet membranes and characterized it (Ohmori, T., Kikuchi, A., Yamamoto, K., Kim, S. and Takai, Y. (1989) J. Biol. Chem. in press). This platelet G protein was present most abundantly among several G proteins in platelets and showed a Mr of about 22,000 as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This platelet G protein showed kinetic and physical properties very similar to those of the novel smg-21 gene product, having the same putative effector domain as the ras gene products, which we have recently purified to near homogeneity from bovine brain membranes and characterized (Kawata, M., Matsui, Y., Kondo, J., Hishida, T., Teranishi, Y. and Takai, Y. (1988) J. Biol. Chem. in press). Moreover, the peptide map of the platelet G protein was identical with that of the smg-21 gene product and the partial amino acid sequence of the platelet G protein was identical with that of the smg-21 gene product. These results indicate that this human platelet G protein is the smg-21 gene product.  相似文献   

10.
A cDNA encoding the human fur gene product was isolated from a human hepatoma cell line. The cDNA encodes a protein with significant amino acid sequence identity to the prokaryotic subtilisin family of serine proteases. More extensive sequence identity was found when the protein was compared with eukaryotic proteases such as PRB1 of Saccharomyces cerevisiae, and with PC2 and PC3, the only other known mammalian subtilisin-like proteases. In contrast to these proteins, however, the fur gene product shares a more extensive topographic and functional homology with the KEX2 endoprotease of S. cerevisiae. Each protease contains a signal peptide, a glycosylated extra cytoplasmic domain, a hydrophobic membrane-spanning region, and a short, hydrophilic "tail" sequence. As with KEX2, the expressed human protease was shown to cleave mammalian proproteins at their paired basic amino acid processing sites. We have, therefore, proposed the function-based acronym PACE (paired basic amino acid cleaving enzyme) for this prototypic mammalian proprotein processing enzyme.  相似文献   

11.
12.
我们利用简并引物从江浙蝮蛇腺总RNA经RP-PCR扩增磷脂酶A2(简称PLA2)基因,并以碱性PLA2(B-PLA2)基因为探针,分离出了酸性PLA2(A-PLA2)和两个未见报道的特征结构类同的基因,分别命名为Asn^48-PAL2和BA-PAL2。双向测序测定了这组PLA2同工酶(除信号肽外)基因的全序列,并由此推导编码的氨基酸序列。其中A-PLA2基因编码的氨基酸序列与较早报道的由蛇毒中分离  相似文献   

13.
14.
Occludin has been identified from chick liver as a novel integral membrane protein localizing at tight junctions (Furuse, M., T. Hirase, M. Itoh, A. Nagafuchi, S. Yonemura, Sa. Tsukita, and Sh. Tsukita. 1993. J. Cell Biol. 123:1777-1788). To analyze and modulate the functions of tight junctions, it would be advantageous to know the mammalian homologues of occludin and their genes. Here we describe the nucleotide sequences of full length cDNAs encoding occludin of rat-kangaroo (potoroo), human, mouse, and dog. Rat-kangaroo occludin cDNA was prepared from RNA isolated from PtK2 cell culture, using a mAb against chicken occludin, whereas the others were amplified by polymerase chain reaction based on the sequence found around the human neuronal apoptosis inhibitory protein gene. The amino acid sequences of the three mammalian (human, murine, and canine) occludins were very closely related to each other (approximately 90% identity), whereas they diverged considerably from those of chicken and rat-kangaroo (approximately 50% identity). Implications of these data and novel experimental options in cell biological research are discussed.  相似文献   

15.
16.
In order to better understand the function of acidic phospholipases A2 (PLA2s) from snake venoms, expressed sequence tags (ESTs) that code for acidic PLA2s were isolated from a cDNA library prepared from the poly(A)+ RNA of venomous glands of Bothrops jararacussu. The complete nucleotide sequence (366 bp), named BOJU-III, encodes the BthA-I-PLA2 precursor, which includes a signal peptide and the mature protein with 16 and 122 amino acid residues, respectively. Multiple comparison of both the nucleotide and respective deduced amino acid sequence with EST and protein sequences from databases revealed that the full-length cDNA identified (BOJU III--AY145836) is related to an acidic PLA2 sharing similarity, within the range 55-81%, with acidic phospholipases from snake venoms. Moreover, phylogenetic analysis of amino acid sequences of acidic PLA2s from several pit viper genera showed close evolutionary relationships among acidic PLA2s from Bothrops, Crotalus, and Trimeresurus. The molecular modeling showed structural similarity with other dimeric class II PLA2s from snake venoms. The native protein BthA-I-PLA2, a nontoxic acidic PLA2 directly isolated from Bothrops jararacussu snake venom, was purified and submitted to various bioassays. BthA-I-PLA2 displayed high catalytic activity and induced Ca2+-dependent liposome disruption. Edema induced by this PLA2 was inhibited by indomethacin and dexamethasone, thus suggesting involvement of the cyclo-oxygenase pathway. BthA-I-PLA2 showed anticoagulant activity upon human plasma and inhibited phospholipid-dependent platelet aggregation induced by collagen or ADP. In addition, it displayed bactericidal activity against Escherichia coli and Staphylococcus aureus and antitumoral effect upon breast adrenocarcinoma as well as upon human leukemia T and Erlich ascitic tumor. Following chemical modification with p-bromophenacyl bromide, total loss of the enzymatic and pharmacological activities were observed. This is the first report on the isolation and identification of a cDNA encoding a complete acidic PLA2 from Bothrops venom, exhibiting bactericidal and antitumoral effects.  相似文献   

17.
The phospholipase A2 (PLA2, E.C. 3.1.1.4) superfamily is defined by enzymes that catalyze the hydrolysis of the sn-2 bond of phosphoglycerides. Most PLA2s from the venom of Bothrops species are basic proteins, which have been well characterized both structurally and functionally, however, little is known about acidic PLA2s from this venom. Nevertheless, it has been demonstrated that they are non-toxic, with high catalytic and hypotensive activities and show the ability to inhibit platelet aggregation. To further understand the function of these proteins, we have isolated a cDNA that encodes an acidic PLA2 from a cDNA library prepared from the poly(A)+ RNA of venom gland of Bothrops jararacussu. The full-length nucleotide sequence of 366 base pairs encodes a predicted gene product with 122 amino acid with theoretical isoelectric point and size of 5.28 and 13,685 kDa, respectively. This acidic PLA2 sequence was cloned into expression vector pET11a (+) and expressed as inclusion bodies in Escherichia coli BL21(DE3)pLysS. The N-terminal amino acid sequence of the 14 kDa recombinant protein was determined. The recombinant acidic PLA2 protein was submitted to refolding and to be purified by RP-HPLC chromatography. The structure and function of the recombinant protein was compared to that of the native protein by circular dichroism (CD), enzymatic activity, edema-inducing, and platelet aggregation inhibition activities.  相似文献   

18.
The complete cDNA sequence of a mitochondrial protein from Chinese hamster ovary cells, designated P1, which was originally identified as a microtubule-related protein (Gupta, R.S., Ho, T.K.W., Moffat, M.R.K., and Gupta, R. (1982) J. Biol. Chem. 257, 1071-1078), has been determined. The P1 cDNA encodes a protein of 60,983 Da including a 26-amino acid putative mitochondrial targeting sequence at its N-terminal end. The deduced amino acid sequence of Chinese hamster P1 shows 97% identity to the human P1 protein. Most interestingly, the amino acid sequences of mammalian P1 proteins show extensive sequence homology (42-60% identical residues and an additional 15-25% conservative replacements) to the "chaperonin" family of bacterial, yeast, and plant proteins (viz. groEL protein of Escherichia coli, hsp 60 protein of yeast, and ribulose-1,5-bisphosphate carboxylase subunit binding protein of plant chloroplasts) and to the 60-65-kDa major antigenic protein of mycobacteria and Coxiella burnetii. The homology between mammalian P1 and other proteins begins after the putative mitochondrial presequence and extends up to the C-terminal end. Furthermore, similar to the chaperonin family of proteins, P1 appears to exist in cells as a homooligomeric complex of seven subunits and shows ATPase activity. These observations strongly indicate that P1 protein is a member of the chaperonin family and that it may be involved in a similar function in mammalian cells.  相似文献   

19.
20.
Annexins (ANXs) display regulatory functions in diverse cellular processes, including inflammation, immune suppression, and membrane fusion. However, the exact biological functions of ANXs still remain obscure. Inhibition of phospholipase A(2) (PLA(2)) by ANX-I, a 346-amino acid protein, has been observed in studies with various forms of PLA(2). "Substrate depletion" and "specific interaction" have been proposed for the mechanism of PLA(2) inhibition by ANX-I. Previously, we proposed a specific interaction model for inhibition of a 100-kDa porcine spleen cytosolic form of PLA(2) (cPLA(2)) by ANX-I (Kim, K. M., Kim, D. K., Park, Y. M., and Na, D. S. (1994) FEBS Lett. 343, 251-255). Herein, we present an analysis of the inhibition mechanism of cPLA(2) by ANX-I in detail using ANX-I and its deletion mutants. Deletion mutants were produced in Escherichia coli, and inhibition of cPLA(2) activity was determined. The deletion mutant ANX-I-(1-274), containing the N terminus to amino acid 274, exhibited no cPLA(2) inhibitory activity, whereas the deletion mutant ANX-I-(275-346), containing amino acid 275 to the C terminus, retained full activity. The protein-protein interaction between cPLA(2) and ANX-I was examined using the deletion mutants by immunoprecipitation and mammalian two-hybrid methods. Full-length ANX-I and ANX-I-(275-346) interacted with the calcium-dependent lipid-binding domain of cPLA(2). ANX-I-(1-274) did not interact with cPLA(2). Immunoprecipitation of A549 cell lysate with anti-ANX-I antibody resulted in coprecipitation of cPLA(2). These results are consistent with the specific interaction mechanism rather than the substrate depletion model. ANX-I may function as a negative regulator of cPLA(2) in cellular signal transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号