共查询到20条相似文献,搜索用时 0 毫秒
1.
Animals can produce movements of widely varying speed and strength by changing the recruitment of motoneurons according to the well-known size principle. Much less is known about patterns of recruitment in the spinal interneurons that control motoneurons because of the difficulties of monitoring activity simultaneously in multiple interneurons of an identified class. Here we use electrophysiology in combination with in vivo calcium imaging of groups of identified excitatory spinal interneurons in larval zebrafish to explore how they are recruited during different forms of the escape response that fish use to avoid predators. Our evidence indicates that escape movements are graded largely by differences in the level of activity within an active pool of interneurons rather than by the recruitment of an inactive subset. 相似文献
2.
J. Wulf 《European biophysics journal : EBJ》1982,8(3):173-187
Extracellular recordings from the vacoule of photoreceptor cells of Hirudo medicinalis L. were performed using microelectrodes. The cells were adapted by white light flashes given at constant intervals (20 s). Response height versus relative intensity curves obtained from the same cell in physiological saline (PS) and in bathing solutions of either a) lowered calcium contents (2 ΜM/1 or less) or b) raised calcium contents (15 mM/1) were compared. The cells' adaptation state in PS was operationally defined by the ratio Q=h A /h S where h A is the response height evoked by the adapting flashes, and h S is the corresponding saturation response height. Sensitivity changes were measured by the half saturation intensity shift. Lowering extracellular calcium resulted in:
- The response height increased and the shape of the response became more rounded and prolonged.
- The total resistance between the vacuole and outside decreased from 8.2±1.4 MΩ (n=6) in PS to 4.6±0.4 MΩ (n=5). The resistance was independent of the cells' adaptation state.
- A change of the cells' sensitivity occured either in direction to light adaptation or in direction to dark adaptation. It depended functionally on the ratio Q:
3.
E. A. Tsvetkov I. S. Masalov N. P. Vesselkin 《Journal of Evolutionary Biochemistry and Physiology》2009,45(4):490-500
The work deals with study of role of inhibitory interneurons in the process of regulation of sensory currents converging on
soma of pyramidal cells of the dorsolateral amygdala nucleus as well as of role of these interneurons in mechanism of regulation
of plasticity of amygdala synapses. It has been shown that the part of the spontaneous inhibitory postsynaptic currents recorded
on the dorsolateral amygdala pyramidal cells is relatively high and amounts to about a half of the total amount of the recorded
events. Analysis of the evoked postsynaptic responses has shown the interneurons to regulate activity and duration of these
responses due to the postsynaptic membrane hyperpolarization as a result of activation of GABAA-receptors. Also studied was role of interneurons in providing mechanisms of the long-term potentiation of the synaptic responses
evoked by stimulation of cortical and thalamic inputs. Block of effect of interneurons with help of picrotoxin has been shown
to lead to an increase of evoked potentiation of synaptic responses. 相似文献
4.
S Supattapone A W Simpson C C Ashley 《Biochemical and biophysical research communications》1989,165(3):1115-1122
The peptide endothelin causes a biphasic rise in intracellular free calcium levels in cultured Type-1 astrocytes and C6 glioma cells, suggesting that glial cells may be the physiological target of endothelin in the brain. Endothelin also causes a calcium-dependent increase [3H]thymidine incorporation in primary cultures of rat cerebellum, indicating that, among other possible roles, this peptide may mediate mitogenesis in brain. 相似文献
5.
Using an in vitro traumatic injury model, we examined the effects of mechanical (stretch) injury on intracellular Ca2+ store-mediated signaling in cultured cortical neurons using fura-2. We previously found that elevation of [Ca2+](i) by the endoplasmic reticulum Ca2+-ATPase inhibitor, thapsigargin, was abolished 15 min post-injury. In the current studies, pre-injury inhibition of phospholipase C with neomycin sulfate maintained Ca2+-replete stores 15 min post-injury, suggesting that the initial injury-induced store depletion may be due to increased inositol trisphosphate production. Thapsigargin-stimulated elevation of [Ca2+](i) returned with time after injury and was potentiated at 3 h. Stimulation with thapsigargin in Ca2+-free media revealed that the size of the Ca2+ stores was normal at 3 h post-injury. However, Ca2+ influx triggered by depletion of intracellular Ca2+ stores (capacitative Ca2+ influx) was enhanced 3 h after injury. Enhancement was blocked by inhibitors of cytosolic phospholipase A2 and cytochrome P450 epoxygenase. Since intracellular Ca2+ store-mediated signaling plays an important role in neuronal function, the observed changes may contribute to dysfunction produced by traumatic brain injury. Additionally, our results suggest that capacitative Ca2+ influx may be mediated by both conformational coupling and a diffusible messenger synthesized by the combined action of cytosolic PLA2 and P450. 相似文献
6.
Background
Glucocorticoid-mediated inhibition of angiogenesis is important in physiology, pathophysiology and therapy. However, the mechanisms through which glucocorticoids inhibit growth of new blood vessels have not been established. This study addresses the hypothesis that physiological levels of glucocorticoids inhibit angiogenesis by directly preventing tube formation by endothelial cells.Methodology/Principal Findings
Cultured human umbilical vein (HUVEC) and aortic (HAoEC) endothelial cells were used to determine the influence of glucocorticoids on tube-like structure (TLS) formation, and on cellular proliferation (5-bromo-2′-deoxyuridine (BrdU) incorporation), viability (ATP production) and migration (Boyden chambers). Dexamethasone or cortisol (at physiological concentrations) inhibited both basal and prostaglandin F2α (PGF2α)-induced and vascular endothelial growth factor (VEGF) stimulated TLS formation in endothelial cells (ECs) cultured on Matrigel, effects which were blocked with the glucocorticoid receptor antagonist RU38486. Glucocorticoids had no effect on EC viability, migration or proliferation. Time-lapse imaging showed that cortisol blocked VEGF-stimulated cytoskeletal reorganisation and initialisation of tube formation. Real time PCR suggested that increased expression of thrombospodin-1 contributed to glucocorticoid-mediated inhibition of TLS formation.Conclusions/Significance
We conclude that glucocorticoids interact directly with glucocorticoid receptors on vascular ECs to inhibit TLS formation. This action, which was conserved in ECs from two distinct vascular territories, was due to alterations in cell morphology rather than inhibition of EC viability, migration or proliferation and may be mediated in part by induction of thrombospodin-1. These findings provide important insights into the anti-angiogenic action of endogenous glucocorticoids in health and disease. 相似文献7.
J C Venter C M Fraser J S Schaber C Y Jung G Bolger D J Triggle 《The Journal of biological chemistry》1983,258(15):9344-9348
The slow inward calcium channel, identified by physiologic and pharmacologic responses and [3H]nitrendipine-specific binding, has been characterized by radiation inactivation and covalent affinity labeling. Target size analysis of guinea pig ileum longitudinal smooth muscle membranes indicates a molecular weight of 278,000 for the calcium channel. An affinity label analog of nifedipine and nitrendipine, 2,6-dimethyl-3,5-dicarbomethoxy-4-(2-isothiocyanatophenyl)-1,4-dihydropyridine, was found to inhibit the calcium channel by a covalent interaction with a protein subunit (Mr = 45,000) of the calcium channel. 相似文献
8.
We studied the effect of thapsigargin on intracellular calcium levels ([Ca2+]i) measured by fura-2 fluorimetry in Madin Darby canine kidney (MDCK) cells. Thapsigargin elevated [Ca2+]i dose dependently with an EC50 of approximately 0.15 microM. The Ca2+ signal consisted of a slow rise, a gradual decay and a plateau. Depletion of the endoplasmic reticulum Ca2+ store with thapsigargin for 7 min abolished the [Ca2+]i increases evoked by bradykinin. Removal of extracellular Ca2+ reduced the thapsigargin response by approximately 50%. The Ca2+ signal was initiated by Ca2+ release from the internal store followed by capacitative Ca2+ entry (CCE). The thapsigargin-evoked CCE was abolished by La3 and Gd3+, and was partly inhibited by SKF 96365 and econazole. After depletion of the internal Ca2+ store for 30 min with another inhibitor of the internal Ca2+ pump, cyclopiazonic acid, thapsigargin failed to increase [Ca2+]i, thus suggesting that the thapsigargin-evoked Ca2+ influx was solely due to CCE. We investigated the mechanism of decay of the thapsigargin response. Pretreatment with La3+ (or Gd3+) or alkalization of extracellular medium to pH 8 significantly potentiated the Ca2+ signal; whereas pretreatment with carbonylcyanide m-chlorophynylhydrozone (CCCP) or removal of extracellular Na+ had no effect. Collectively, our results imply that thapsigargin increased [Ca2+]i in MDCK cells by depleting the internal Ca2+ store followed by CCE, with both pathways contributing equally. The decay of the thapsigargin response might be significantly governed by efflux via the plasmalemmal Ca2+ pump. 相似文献
9.
Nicholas Sperelakis Zhiling Xiong G. Haddad Hiroshi Masuda 《Molecular and cellular biochemistry》1994,140(2):103-117
The slow Ca2+ channels (L-type) of the heart are stimulated by cAMP. Elevation of cAMP produces a very rapid increase in number of slow channels available for voltage activation during excitation. The probability of a Ca2+ channel opening and the mean open time of the channel are increased. Therefore, any agent that increases the cAMP level of the myocardial cell will tend to potentiate ICa, Ca2+ influx, and contraction. The action of cAMP is mediated by PK-A and phosphorylation of the slow Ca2+ channel protein or an associated regulatory protein (stimulatory type). The myocardial slow Ca2+ channels are also rogulated by cGMP, in a manner that is opposite orantagonistic to that of cAMP. We have demonstrated this at both the macroscople level (whole-cell voltage clamp) and the single-channel level. The effect of cGMP is mediated by PK-G and phosphorylation of a protein, as for example, a regulatory protein (inhibitory-type) associated with the Ca2+ channel. Introduction of PK-G intracellularly causes a relatively rapid inhibition of ICa(L) in both chick and rat heart cells. Such inhibition occurs for both the basal and stimulated ICa(L). In addition, the cGMP/PK-G system was reported to stimulate a phosphatase that dephosphorylates the Ca2+ channel. In addition to the slower indirect pathway—exerted via cAMP/PK-A—there is a faster more-direct pathway for ICa(L) stimulation by the -adrenergic receptor. This latter pathway involves direct modulation of the channel activity by the alpha subunit (s*) of the Gs-protein. In vascular smooth muscle cells the two pathways (direct and indirect) also appear to be present, although the indirect pathway producesinhibition of ICa(L). PK-C and calmodulin-PK also may play roles in regulation of the myocardial slow Ca2+ channels. Both of these protein kinases stimulate the activity of these channels. Thus, it appears that the slow Ca2+ channel is a complex structure, including perhaps several associated regulatory proteins, which can be regulated by a number of factors intrinsic and extrinsic to the cell, and thereby control can be exercised over the force of contraction of the heart.This review-type article was prepared by modifying an article published in a book by Sperelakiset al., 1994. 相似文献
10.
11.
12.
Inotropic effects and changes in sodium and calcium contents associated with inhibition of monovalent cation active transport by ouabain in cultured myocardial cells 总被引:8,自引:1,他引:8
下载免费PDF全文

Cultured monolayers of spontaneously contracting chick embryo ventricular cells were perfused with culture medium containing ouabain. Contractile state was monitored by an optical-video system recording amplitude and velocity of cell wall motion. Positive inotropic effects of 2.5 x 10(-7) to 10(-6) M ouabain were manifest within 1.5-2 min, and reached a stable plateau within 5-6 min. The inotropic effect was fully reversed within 5 min after washout of ouabain. Inhibition of uptake of 42K+ (or the K+ analog 86Rb+) and efflux of 24Na+ occurred 1.5-2 min after exposure to ouabain. The degree of inhibition of transport was closely related to the magnitude of the positive inotropic effect throughout the ouabain concentration range 10(-7) to 10(-6) M. After washout of ouabain from monolayers, the monovalent cation active transport rate returned to normal within 1 min. Thus, both the onset and offset of inotropic action of ouabain were closely related temporally to inhibition of the sodium pump. Exposure to ouabain caused significant increases in exchangeable Na and Ca contents that appeared to be developed within 5 min. These data support the hypothesis that inhibition of monovalent cation active transport by ouabain is causally related to the development of positive inotropy and are consistent with modulation of Ca content by intracellular Na+ via the Na+-Ca2+ exchange carrier mechanism. 相似文献
13.
本文旨在探讨电刺激右侧尾壳核(caudate putamen nucleus,CPu)对双侧丘脑外侧背核(1aterodorsal thalamic nucleus,LD)单个神经元放电和海马(hippocampus,HPC)电图瞬时时间编码形式的调制性影响。用21只雄性Sprague-Dawley大鼠(150-250g),重复急性强直电刺激(60Hz,2S,0.4-0.6mA)右侧尾壳核(acute tanizafion of the right caudate putamen nucleus,ATRC)诱发大鼠癫痫模型,4通道同步记录双侧LD神经元单位放电和双侧HPC深部电图。结果如下:重复施加ATRC可以诱导大鼠出现(1)双侧LD-HPC癫痫电网络间的功能性环状联系。起始点为对侧LD神经元原发性单位后放电,随后出现同侧LD神经元原发性单位后放电,然后呈现同侧HPC电图原发性后放电,最终引起对侧HPC电图脱同步化效应;(2)双侧LD神经元放电脉冲间隔(interspike intervals,ISIs)散点分布形式与刺激前呈现镜像对称特征。对侧LD神经元原发性后放电的ISI点分布基于底层而且持续时间较长,具有更加明显的突触可塑性特征;(3)随着ATRC串次的增加,对侧LD神经元原发性单位后放电间的爆发式放电时程逐渐延长,可以募集增强海弓电图同步化电活动;显现对侧LD神经元单个放电脉冲与HPC电图γ电振荡(20-25Hz)间的锁相(phase-lock)和锁时(time-lock)关系。结果提示:ATRC可以募集形成具有联系的双侧LD神经元放电和HPC电图特征性的神经信息编码形式,以对侧更加明显。这些跨越大脑半球、涉及多结构的功能性神经信息网络的建立很可能是癫痫发生、发展和扩布的重要信息编码机制。 相似文献
14.
Lee JY Park SJ Park SJ Lee MJ Rhim H Seo SH Kim KS 《Bioorganic & medicinal chemistry letters》2006,16(19):5014-5017
This paper describes the preliminary biological results that novel T-type calcium channel blockers inhibit the growth of human cancer cells by blocking calcium influx into the cell, based on unknown mechanism on the cell cycle responsible for cellular proliferation. Among the selected compounds from compound library, compound 9c (KYS05041) was identified to be nearly equipotent with Cisplatin against some human cancers in the micromolar range. 相似文献
15.
George E. Haddad Nicholas Sperelakis Ghassan Bkaily 《Molecular and cellular biochemistry》1995,148(1):89-94
In order to assess the interaction between the cAMP-dependent and the cGMP-dependent phosphorylation pathways on the slow Ca2+ current (ICa(L)), whole-cell voltage-clamp experiments were conducted on embryonic chick heart cells. Addition of 8Br-cGMP to the bath solution reduced the basal (unstimulated) ICa(L). Intracellular application of the catalytic subunit of PK-A (PK-A(cat); 1.5 M) via the patch pipette rapidly potentiated ICa(L) by 215±16% (n=4); subsequent addition of 1 mM 8Br-cGMP to the bath reduced the amplitude of ICa(L) towards the initial control values (123±29%). Intracellular application of PK-G (25 nM pre-activated by 10–7 M cGMP), rapidly inhibited the basal ICa(L) by 64±6% (n=8). Heat-denatured PK-G was ineffective. Subsequent additions of relatively high concentrations of 8Br-cAMP (1 mM) or isoproterenol (ISO, 1–10 M) did not significantly remove the PK-G blockade of ICa(L). The results of the present study suggest that: (a) 8Br-cGMP can inhibit the basal or stimulated (by PK-A(cat)) ICa(L) in embryonic chick myocardial cells. (b) PK-G applied intracellularly inhibits the basal ICa(L). 相似文献
16.
The shifts of Ca2+, K+ and proton homeostasis of wheat (Triticum aestivum L. M. cv Ljuba) root cells induced by the Ca2+-ionophore A23187 caused different responses, depending on the time of exposure to the ionophore. Oxygen consumption and heat production by roots were increased when the Ca2+-specific effect of A23187 was expressed. Ultrastructural re-organization of cell organelles was found to follow the ion shifts. The endoplasmic reticulum, Golgi apparatus and mitochondria rearranged their membranes following treatment. The increased ion permeability of root cell membranes is proposed to cause an excessive energy expenditure for the restoration of ion homeostasis. 相似文献
17.
Cyanide detoxification in mammals occurs, in part, by sulfur transfer by rhodanese to form the less toxic thiocyanate. Thiosulfate and nitrite are often used in combination for the treatment of cyanide intoxication. This report shows that nitrite can inhibit the rate of sulfur transfer by rhodanese in vitro. Nitrate, chloride, sulfate, and acetate were also examined as inhibitors. Inhibition by nitrite appeared to be more complex than for the other anions tested. Closer examination showed that nitrite can inactivate the sulfur-free rhodanese. Our observation leads to the suggestion that, in vivo, either rhodanese is maintained in its more stable sulfur-substituted form or cellular compartmentalization prevents inactivation by nitrite. 相似文献
18.
Marianne Horoyan Anne-Marie Benoliel Christian Capo Pierre Bongrand 《Cell biochemistry and biophysics》1990,17(3):243-256
We combined fluorescence labeling, digital image processing, and micromanipulation to investigate the intracellular events induced by inflicting a mechanical stress on rat basophilic leukemia cells. Our findings were as follows:
- Most cells displayed a localized calcium rise in response to micropipet aspiration. This represented an average threefold increase as compared to resting level, and it was observed during the first 10 s following aspiration. A slow return to initial level occurred within about 3 min. Further, this calcium rise involved a mobilization of intracellular stores, since it was not prevented by adding a calcium chelator into the extracellular medium.
- All micropipet-aspirated cells displayed a local accumulation of microfilaments, with a preferential localization in the cell protrusions or near the pipet tips.
- No absolute correlation was found between the localization of calcium rise and cytoskeletal accumulation.
- Cell deformability was decreased when intracellular calcium was maintained at a constant (high or low) level with ionomycin and/or EGTA.
19.
Pierre-Michel Bergeron 《生物化学与生物物理学报:生物膜》2006,1758(6):702-712
Cadmium-Ca-Zn interactions for uptake have been studied in human intestinal crypt cells HIEC. Our results failed to demonstrate any significant cross-inhibition between Cd and Ca uptake under single metal exposure conditions. However, they revealed a strong reciprocal inhibition for a Zn-stimulated mechanism of transport. Optimal stimulation was observed under exposure conditions that favor an inward-directed Zn gradient, suggesting activation by extracellular rather than intracellular Zn. The effect of Zn on the uptake of Ca was concentration-dependent, and zinc-induced stimulation of Cd uptake resulted in a 3- and 5.8-fold increase in the Km and Vmax values, respectively. Neither basal nor Zn-stimulated Ca uptakes were sensitive to membrane depolarization. However, the stimulated component of uptake was inhibited by the trivalent cations Gd3+, and La3+ and to a lesser extent by Mg2+ and Ba2+. RT-PCR analysis as well as uptake measurement performed with extracellular ATP and/or suramin do not support the involvement of purinergic P2X receptor channels. Uptake and fluorescence data led to the conclusion that Zn is unlikely to trigger Ca influx in response to Ca release from thapsigargin-sensitive intracellular pools. Our data show that Zn may potentiate Cd accumulation in intestinal crypt cells through mechanism that still needs to be clarified. 相似文献