首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Focal adhesion kinase (FAK) plays a key role in the crosstalk of growth factor- and cell adhesion-mediated signaling pathway. In this study, we found that the quantitative change of phosphorylated FAK was bell-shaped time-dependently by EGF stimulation in immortalized human keratinocyte (HaCaT). EGF enhanced FAK phosphorylation and cell spreading in adhering HaCaT cells with low-phosphorylated FAK. On the other hand, spread HaCaT cells having high-phosphorylated FAK changed to round shapes with FAK dephosphorylation 15 min after EGF stimulation. Pharmacological agents, U0126 and PD98059 (mitogen-activated protein kinases (MAPK) kinases (MEK) inhibitors), and AG1478 (an EGF receptor kinase inhibitor) blocked the cell rounding and FAK dephosphorylation. In addition, the EGFR-MAPK signaling pathway had an influence on cell migration by regulating FAK dephosphorylation of keratinocytes in response of EGF, since the MEK inhibitors and AG1478 suppressed EGF-induced cell migration. However, FAK phosphorylation and HaCaT cell spreading were inhibited only by the antagonist of EGF-EGFR binding but not by the MEK inhibitors and AG1478. Taken together, we suggest that EGF is antagonistically involved in both FAK phosphorylation and dephosphorylation with different mechanisms in a cell.  相似文献   

3.
EGF has been shown to influence meiotic maturation and development competence of oocyte in various mammalian species. We previously reported, in goat, that the EGF receptor (EGF-R) was present both on cumulus cells and oocytes. Here, EGF-induced signaling was investigated during the in vitro maturation process in goat cumulus-oocyte complexes (COCs). Cumulus cells and oocytes were subjected to Western immunoblotting analysis using anti-MAP kinase, anti-phosphotyrosine, anti-phospho MAP kinase, and anti-phospho EGF-R antibodies. We demonstrated that treatment with EGF during the in vitro maturation process induced rapid tyrosine phosphorylation of EGF-R in a time and concentration dependent manner in cumulus cells. A similar pattern of activation by phosphorylation was observed for MAP kinase upon EGF stimulation. AG 1478, an inhibitor of the EGF kinase, suppressed EGF-stimulated phosphorylation of EGF-R and also affected the MAP kinase activation. Treatment with the MEK inhibitor PD 98059 abolished EGF-induced MAP kinase activation. We did not observe oocyte EGF-R phosphorylation in our experiments during the in vitro maturation process. Our data indicate, in goat cumulus cells, that activation of EGF-R by EGF triggers signaling through the MAP kinase pathway during in vitro maturation. This supports the hypothesis that the major site of action for EGF, that regulates oocyte maturation, is the cumulus cell.  相似文献   

4.
Early growth response gene (Egr-1) is a stress response gene activated by various forms of stress and growth factor signaling. We report that supraphysiologic concentrations of O(2) (hyperoxia) induced Egr-1 mRNA and protein expression in cultured alveolar epithelial cells, as well as in mouse lung in vivo. The contribution of the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK), p38 MAPK and PI3-kinase pathways to the activation of Egr-1 in response to hyperoxia was examined. Exposure to hyperoxia resulted in a rapid phosphorylation of ERK 1/2 kinases in mouse alveolar epithelial cells LA4. MEK inhibitor PD98059, but not inhibitors of p38 MAPK or PI3-kinase pathway, prevented Egr-1 induction by hyperoxia. The signaling cascade preceding Egr-1 activation was traced to epidermal growth factor receptor (EGFR) signaling. Hyperoxia is used as supplemental therapy in some diseases and typically results in elevated levels of reactive oxygen intermediates (ROI) in many lung cell types, the organ that receives highest O(2) exposure. Our results support a pathway for the hyperoxia response that involves EGF receptor, MEK/ERK pathway, and other unknown signaling components leading to Egr-1 induction. This forms a foundation for analysis of detailed mechanisms underlying Egr-1 activation during hyperoxia and understanding its consequences for regulating cell response to oxygen toxicity.  相似文献   

5.
Cardiac hypertrophy often leads to heart failure and is associated with abnormal myocardial adrenergic signaling. This enlargement of myocardial mass can involve not only an increase in cardiomyocyte size, but increased proliferation of cardiac fibroblasts. A potential key player in the cardiac hypertrophic response is the ERK family of MAPKs. To gain mechanistic insight into adrenergic regulation of myocardial mitogenic signaling, we examined beta-adrenergic receptor (beta-AR) stimulation of ERK activation and DNA synthesis in cultured adult rat cardiac fibroblasts, including the involvement of tyrosine kinases in this signaling pathway. Addition of the beta-AR agonist isoproterenol (ISO) to serum-starved cells induced DNA synthesis in a dose-dependent manner, and this was inhibited by selective inhibitors of the epidermal growth factor receptor (EGFR). Importantly and in agreement with the involvement of MAPKs and the EGFR in this response in cardiac fibroblasts, the EGFR inhibitor AG1478 attenuated ISO-induced ERK phosphorylation. Moreover, pretreatment with PP2, a selective inhibitor of the Src tyrosine kinase, attenuated both ISO-mediated EGFR phosphorylation and ERK activation. Furthermore, studies in these cardiac fibroblasts showed that phosphatidylinositol 3-kinase contributed to beta-AR-mediated ERK activation, but not to EGFR activation. Finally, studies using selective inhibitors of matrix metalloproteases indicated that they and heparin-bound EGF shedding were involved in beta-AR-induced ERK activation and subsequent DNA synthesis in cardiac fibroblasts. Because these cells primarily express the beta(2)-AR subtype, our findings indicate that beta(2)-AR-mediated EGFR transactivation of intracellular tyrosine kinase signaling pathways is the major signaling pathway responsible for the adrenergic stimulation of mitogenesis of cardiac fibroblasts.  相似文献   

6.
Activation of the epidermal growth factor (EGF) receptor by EGF, its ligand, results in receptor internalization and down-regulation, which requires receptor kinase activity, phosphorylation, and ubiquitination. In contrast, we have found here in human HaCaT keratinocytes that exposure to UVA induces EGF receptor internalization and down-regulation without receptor phosphorylation and ubiquitination. The presence of the receptor kinase activity inhibitor AG1478 increased UVA-induced receptor down-regulation, whereas it inhibited EGF-induced receptor down-regulation. These observations demonstrate that, in contrast to EGF, receptor kinase activity is not required for receptor down-regulation by UVA. Concurrent with receptor down-regulation, caspases were activated by UVA exposure. The presence of caspase inhibitors blocked receptor down-regulation in a pattern similar to poly(ADP)-ribose polymerase cleavage. Much more receptor down-regulation was observed after UVA exposure in apoptotic detached cells in which caspase is activated completely. These results indicate that UVA-induced receptor down-regulation is dependent on caspase activation. Similar to UVA, both UVB and UVC induced receptor down-regulation, in which receptor kinase activity is not required, whereas caspase activation is involved. Inhibition of EGF receptor down-regulation increased receptor activation and activation of its downstream survival signaling ERK and AKT after UVA exposure. Preventing the activation of each of these pathways enhanced apoptosis induced by UVA. These findings suggest that EGF receptor down-regulation by UVA may play an important role in the execution of the cell suicide program by attenuating its anti-apoptotic function and thereby preventing cell transformation and tumorigenesis in vivo.  相似文献   

7.
Stimulation of human colonic epithelial T84 cells with the muscarinic receptor agonist carbachol, a stable analog of acetylcholine, induced Akt, p70S6K1 and ERK activation. Treatment of T84 cells with the selective inhibitor of EGF receptor (EGFR) tyrosine kinase AG1478 abrogated Akt phosphorylation on Ser473 induced by either carbachol or EGF, indicating that carbachol-induced Akt activation is mediated through EGFR transactivation. Surprisingly, AG1478 did not suppress p70S6K1 phosphorylation on Thr389 in response to carbachol, indicating the G protein-coupled receptor (GPCR) stimulation induces p70S6K1 activation, at least in part, via an Akt-independent pathway. In contrast, treatment with the selective MEK inhibitor U0126 (but not with the inactive analog U0124) inhibited carbachol-induced p70S6K1 activation, indicating that the MEK/ERK/RSK pathway plays a critical role in p70S6K1 activation in GPCR-stimulated T84 cells. These findings imply that GPCR activation induces p70S6K1 via ERK rather than through the canonical PI 3-kinase/Akt/TSC/mTORC1 pathway in T84 colon carcinoma cells.  相似文献   

8.
Signal characteristics of G protein-transactivated EGF receptor.   总被引:24,自引:2,他引:22       下载免费PDF全文
The epidermal growth factor receptor (EGFR) tyrosine kinase recently was identified as providing a link to mitogen-activated protein kinase (MAPK) in response to G protein-coupled receptor (GPCR) agonists in Rat-1 fibroblasts. This cross-talk pathway is also established in other cell types such as HaCaT keratinocytes, primary mouse astrocytes and COS-7 cells. Transient expression of either Gq- or Gi-coupled receptors in COS-7 cells allowed GPCR agonist-induced EGFR transactivation, and lysophosphatidic acid (LPA)-generated signals involved the docking protein Gab1. The increase in SHC tyrosine phosphorylation and MAPK stimulation through both Gq- and Gi-coupled receptors was reduced strongly upon selective inhibition of EGFR function. Inhibition of phosphoinositide 3-kinase did not affect GPCR-induced stimulation of EGFR tyrosine phosphorylation, but inhibited MAPK stimulation, upon treatment with both GPCR agonists and low doses of EGF. Furthermore, the Src tyrosine kinase inhibitor PP1 strongly interfered with LPA- and EGF-induced tyrosine phosphorylation and MAPK activation downstream of EGFR. Our results demonstrate an essential role for EGFR function in signaling through both Gq- and Gi-coupled receptors and provide novel insights into signal transmission downstream of EGFR for efficient activation of the Ras/MAPK pathway.  相似文献   

9.
10.
Neurotensin (NT) and epidermal growth factor (EGF) induced rapid extracellular-regulated protein kinase (ERK) activation through different signaling pathways in the K-Ras mutated human pancreatic carcinoma cell lines PANC-1 and MIA PaCa-2. NT stimulated ERK activation via a protein kinase C (PKC)-dependent (but EGF receptor-independent) pathway in PANC-1 and MIA PaCa-2 cells, whereas EGF promoted ERK activation through a PKC-independent pathway in these cells. Concomitant stimulation of these cells with NT and EGF induced a striking increase in the duration of ERK pathway activation as compared with that obtained in cells treated with each agonist alone. Stimulation with NT + EGF promoted synergistic stimulation of DNA synthesis and anchorage-independent growth. Addition of the MEK inhibitor U0126, either prior to stimulation with NT + EGF or 2 h after stimulation with NT + EGF prevented the synergistic increase in DNA synthesis and suppressed the sustained phase of ERK activation. Furthermore, treatment with the selective PKC inhibitor GF-1 converted the sustained ERK activation in response to NT and EGF into a transient signal and also abrogated the synergistic increase in DNA synthesis. Collectively, our results suggest that the sustained phase of ERK signaling mediates the synergistic effects of NT and EGF on DNA synthesis in pancreatic cancer cells.  相似文献   

11.
The hypothalamic decapeptide, gonadotropin-releasing hormone (GnRH), utilizes multiple signaling pathways to activate extracellularly regulated mitogen-activated protein kinases (ERK1/2) in normal and immortalized pituitary gonadotrophs and transfected cells expressing the GnRH receptor. In immortalized hypothalamic GnRH neurons (GT1-7 cells), which also express GnRH receptors, GnRH, epidermal growth factor (EGF), and phorbol 12-myristate 13-acetate (PMA) caused marked phosphorylation of ERK1/2. This action of GnRH and PMA, but not that of EGF, was primarily dependent on activation of protein kinase C (PKC), and the ERK1/2 responses to all three agents were abolished by the selective EGF receptor kinase inhibitor, AG1478. Consistent with this, both GnRH and EGF increased tyrosine phosphorylation of the EGF receptor. GnRH and PMA, but not EGF, caused rapid phosphorylation of the proline-rich tyrosine kinase, Pyk2, at Tyr(402). This was reduced by Ca(2+) chelation and inhibition of PKC, but not by AG1478. GnRH stimulation caused translocation of PKC alpha and -epsilon to the cell membrane and enhanced the association of Src with PKC alpha and PKC epsilon, Pyk2, and the EGF receptor. The Src inhibitor, PP2, the C-terminal Src kinase (Csk), and dominant-negative Pyk2 attenuated ERK1/2 activation by GnRH and PMA but not by EGF. These findings indicate that Src and Pyk2 act upstream of the EGF receptor to mediate its transactivation, which is essential for GnRH-induced ERK1/2 phosphorylation in hypothalamic GnRH neurons.  相似文献   

12.
Matrix metalloproteinases (MMPs) have been implicated in the transactivation of the epidermal growth factor receptor (EGFR) induced by G-protein coupled receptor (GPCR) agonists. Although EGFR phosphorylation and downstream signaling have been shown to be dependent on MMP activity in many systems, a role for MMPs in GPCR-induced DNA synthesis has not been studied in any detail. In this study we utilized the broad-spectrum matrix metalloproteinase inhibitor, galardin (Ilomastat, GM 6001), to study the mechanism of bombesin- or LPA-induced EGFR transactivation and the role of MMPs in early and late response mitogenic signaling in Rat-1 cells stably transfected with the bombesin/GRP receptor (BoR-15 cells). Addition of galardin to cells stimulated with bombesin or LPA specifically inhibited total EGFR phosphorylation, as well as site-specific phosphorylation of tyrosine 845, a putative Src phosphorylation site, and tyrosine 1068, a typical autophosphorylation site. Galardin treatment also inhibited extracellular signal-regulated kinase (ERK) activation induced by bombesin or LPA, but not by EGF. In addition, galardin inhibited bombesin- or LPA-induced DNA synthesis in a dose dependent manner, when stimulated by increasing concentrations of bombesin, and when added after bombesin stimulation. Furthermore, addition of galardin post-bombesin stimulation indicated that by 3 h sufficient accumulation of EGFR ligands had occurred to continue to induce transactivation despite an inhibition of MMP activity. Taken together, our results suggest that MMPs act as early as 5 min, and up to around 3 h, to mediate GPCR-induced EGFR transactivation, ERK activation, and stimulation of DNA synthesis.  相似文献   

13.
Kanda Y  Nishio E  Kuroki Y  Mizuno K  Watanabe Y 《Life sciences》2001,68(17):1989-2000
Thrombin is a potent mitogen for vascular smooth muscle cells. However, the signaling pathways by which thrombin mediates its mitogenic response are not fully understood. The ERK (extracellular signal-regulated protein kinase) and JNK (c-Jun N-terminal kinase) members of the mitogen-activated protein kinase (MAPK) family are reported to be activated by thrombin. We have investigated the response to thrombin of another member of the MAPK family, p38 MAPK, which has been suggested to be activated by both stress and inflammatory stimuli in vascular smooth muscle cells. We found that thrombin induced time- and dose-dependent activation of p38 MAPK. Maximal stimulation of p38 MAPK was observed after a 10-min incubation with 1 unit ml(-1) thrombin. GF109203X, a protein kinase C inhibitor, and prolonged treatment with phorbol 12-myristate 13-acetate partially inhibited p38 MAPK activation. A tyrosine kinase inhibitor, genistein, also inhibited p38 MAPK activation in a dose-dependent manner. p38 MAPK activation was inhibited by overexpression of betaARK1ct (beta-adrenergic receptor kinase I C-terminal peptide). p38 MAPK activation was also inhibited by expression of dominant-negative Ras, not by dominant-negative Rac. We next examined the effect of a p38 MAPK inhibitor, SB203580, on thrombin-induced proliferation. SB203580 inhibited thrombin-induced DNA synthesis in a dose-dependent manner. These results suggest that thrombin activates p38 MAPK in a manner dependent on Gbetagamma, protein kinase C, a tyrosine kinase, and Ras, that p38 MAPK has a role in thrombin-induced mitogenic response in the cells.  相似文献   

14.
The duration as well as the magnitude of mitogen-activated protein kinase activation has been proposed to regulate gene expression and other specific intracellular responses in individual cell types. Activation of ERK1/2 by the hypothalamic neuropeptide gonadotropin-releasing hormone (GnRH) is relatively sustained in alpha T3-1 pituitary gonadotropes and HEK293 cells but is transient in immortalized GT1-7 neurons. Each of these cell types expresses the epidermal growth factor receptor (EGFR) and responds to EGF stimulation with significant but transient ERK1/2 phosphorylation. However, GnRH-induced ERK1/2 phosphorylation caused by EGFR transactivation was confined to GT1-7 cells and was attenuated by EGFR kinase inhibition. Neither EGF nor GnRH receptor activation caused translocation of phospho-ERK1/2 into the nucleus in GT1-7 cells. In contrast, agonist stimulation of GnRH receptors expressed in HEK293 cells caused sustained phosphorylation and nuclear translocation of ERK1/2 by a protein kinase C-dependent but EGFR-independent pathway. GnRH-induced activation of ERK1/2 was attenuated by the selective Src kinase inhibitor PP2 and the negative regulatory C-terminal Src kinase in GT1-7 cells but not in HEK293 cells. In GT1-7 cells, GnRH stimulated phosphorylation and nuclear translocation of the ERK1/2-dependent protein, p90RSK-1 (RSK-1). These results indicate that the duration of ERK1/2 activation depends on the signaling pathways utilized by GnRH in specific target cells. Whereas activation of the Gq/protein kinase C pathway in HEK293 cells causes sustained phosphorylation and translocation of ERK1/2 to the nucleus, transactivation of the EGFR by GnRH in GT1-7 cells elicits transient ERK1/2 signals without nuclear accumulation. These findings suggest that transactivation of the tightly regulated EGFR can account for the transient ERK1/2 responses that are elicited by stimulation of certain G protein-coupled receptors.  相似文献   

15.
The expression of contractile proteins in vascular smooth muscle cells is controlled by still poorly defined mechanisms. A thrombin-inducible expression of smooth muscle-specific alpha-actin and myosin heavy chain requires transactivation of the epidermal growth factor (EGF) receptor and a biphasic activation of ERK1/2. Here we demonstrate that the sustained second phase of ERK1/2 phosphorylation requires de novo RNA and protein synthesis. Depolymerization of the actin cytoskeleton by cytochalasin D or disruption of transit between the endoplasmic reticulum and the Golgi apparatus by brefeldin A prevented the second phase of ERK1/2 phosphorylation. We thus conclude that synthesis and trafficking of a plasma membrane-resident protein may be critical intermediates. Analysis of the expression of protease-activated receptor 1, heparin-binding EGF (HB-EGF), and the EGF receptor revealed that pro-HB-EGF is significantly up-regulated upon thrombin stimulation. The kinetic of HB-EGF expression closely matched that of the second phase of ERK1/2 phosphorylation. Because inhibition of matrix metalloproteases or of the EGF receptor strongly attenuated the late phase of ERK1/2 phosphorylation, the second phase of ERK1/2 activation is primarily relayed by shedding of EGF receptor ligands. The small interfering RNA-mediated knockdown of HB-EGF expression confirmed an important role of HB-EGF expression in triggering the second phase of ERK1/2 activation. Confocal imaging of a yellow fluorescent protein-tagged HB-EGF construct demonstrates the rapid plasma membrane integration of the newly synthesized protein. These data imply that the hormonal control of contractile protein expression relies on an intermediate HB-EGF expression to sustain the signaling strength within the Ras/Raf/MEK/ERK cascade.  相似文献   

16.
17.
The procoagulant thrombin stimulates endothelial cells (EC) to undergo rapid cytoskeleton changes via signaling pathways that induce multiple phenotypic changes, including alterations in permeability, vasomotor tone, adhesion molecule synthesis, and leukocyte trafficking. We studied a novel role of thrombin's action on the endothelium that results in MIF secretion, which is linked to myosin light chain (MLC) and extracellular signal-regulated kinase (ERK(1/2))-dependent nuclear signaling. In bovine pulmonary artery EC (BPAEC), thrombin treatment induced intracellular MLC phosphorylation within 15 min, followed by a significant increase in MIF secretion within 30 min. Thrombin treatment induced biphasic ERK(1/2) phosphorylation with an early phase occurring at 15 min and a later phase at 120 min. To understand the role of MIF secretion in thrombin-induced biphasic activation of ERK(1/2), BPAE cells were treated with (i) recombinant MIF, and (ii) the medium collected from thrombin-treated BPAE cells. These studies demonstrated a sustained monophasic ERK(1/2) phosphorylation. Inhibition of MIF secretion by MIF siRNA or antisense-MIF treatment, along with a neutralizing antibody, attenuated the thrombin-induced second phase ERK phosphorylation, suggesting a direct involvement of MIF in the second phase of ERK(1/2) activation. Pretreatment of BPAE cells with an ERK kinase inhibitor and with antisense-MIF significantly inhibited thrombin-induced nuclear factor kappa (NF-kappaB) activation. These results indicate that MIF secretion and ERK phosphorylation both play a necessary role in thrombin induced NF-kappaB activation.  相似文献   

18.
Ultraviolet (UV) irradiation stimulates stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), which is a member of the mitogen-activated protein kinase (MAPK) superfamily and implicated in stress-induced apoptosis. UV also induces the activation of another MAPK member, extracellular signal-regulated kinase (ERK), which is typically involved in a growth-signaling cascade. However, the UV-induced signaling pathway leading to ERK activation, together with the physiological role, has remained unknown. Here we examined the molecular mechanism and physiological function of UV-induced ERK activation in human epidermoid carcinoma A431 cells that retain a high number of epidermal growth factor (EGF) receptors. UV-induced ERK activation was accompanied with the Tyr phosphorylation of EGF receptors, and both responses were completely abolished in the presence of a selective EGF receptor inhibitor (AG1478) or the Src inhibitor PP2 and by the expression of a kinase-dead Src mutant. On the other hand, SAPK/JNK activation by UV was partially inhibited by these inhibitors. UV stimulated Src activity in a manner similar to the ERK activation, but the Src activation was insensitive to AG1478. UV-induced cell apoptosis measured by DNA fragmentation and caspase 3 activation was enhanced by AG1478 and an ERK kinase inhibitor (U0126) but inhibited by EGF receptor stimulation by the agonist. These results indicate that UV-induced ERK activation, which provides a survival signal against stress-induced apoptosis, is mediated through Src-dependent Tyr phosphorylation of EGF receptors.  相似文献   

19.
The mechanism by which neurotensin (NT) promotes the growth of prostate cancer epithelial cells is not yet defined. Here, androgen-independent PC3 cells, which express high levels of the type 1 NT-receptor (NTR1), are used to examine the involvement of epidermal growth factor receptor (EGFR), mitogen-activated protein kinases (ERK, SAPK/JNK and p38), PI3 kinase and PKC in the mitogenic effect of NT. NT dose dependently (0.1–30 nM) enhanced phosphorylation of EGFR, ERK and Akt, reaching maximal levels within 3 min as measured by Western blotting. These effects were associated with an accumulation of EGF-like substance(s) in the medium (assayed by EGFR binding) and a 2-fold increase in DNA synthesis (assayed by [3H]thymidine incorporation). The DNA synthesis enhancement by NT was non-additive with that of EGF. The NT-induced stimulation of EGFR/ERK/Akt phosphorylation and DNA synthesis was inhibited by EGFR-tyrosine kinase inhibitors (AG1478, PD153035), metallo-endopeptidase inhibitor phosphoramidon and by heparin, but not by neutralizing anti-EGF antibody. Thus, transactivation of EGFR by NT involved heparin-binding EGF (HB-EGF or amphiregulin) rather than EGF. The effects of NT on EGFR/ERK/Akt activation and DNA synthesis were attenuated by PLC-inhibitor (U73122), PKC-inhibitors (bisindolylmaleimide, staurosporine, rottlerin), MEK inhibitor (U0126) and PI3 kinase inhibitors (wortmannin, LY 294002). We conclude that NT stimulated mitogenesis in PC3 cells by a PKC-dependent ligand-mediated transactivation of EGFR, which led to stimulation of the Raf–MEK–ERK pathway in a PI3 kinase-dependent manner.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号