首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of rac-methyl jasmonate, both in solution and as a vapour, on the separation of pulvinar and petiolar tissues in explants containing the distal abscission zone of primary leaves of Phaseolus vulgaris var. Contender was investigated. The effects of rac-methyl jasmonate were compared to those of (±)-abscisic acid, -naphthalene acetic acid, ethylene and 2-chloroethylphosphonic acid. Abscission times were determined in explants prepared from 14-day-old control plants and in explants prepared from plants that had been pretreated for 24h with the ethylene-action inhibitor, silver thiosulphate. While silver-pretreatment, or treatment with -naphthalene acetic acid delayed abscission, treatment with ethylene or 2-chloroethylphosphonic acid accelerated tissue separation. However, (±)-abscisic acid delayed abscission under these conditions. In all instances, treatment with rac-methyl jasmonate had no apparent effect on abscission. The loss of chlorophyll from bean leaf discs incubated in the dark was enhanced by treatment with 2-chloroethylphosphonic acid or (±)-abscisic acid and was retarded in discs incubated in benzyl adenine. While incubation in -naphthalene acetic acid was without effect, incubation in solution of rac-methyl jasmonate also retarded chlorophyll loss when compared to water controls.  相似文献   

2.
Plasma membranes from abscission zones of kidney bean seedlings were isolated on sucrose density gradients using cellulase and KCl-stimulated ATPase as marker enzymes. Following treatment of the seedling explants with 50 microliters per liter ethylene, an increase in the buoyant density of the plasma membrane fraction from 1.165 to 1.175 grams per cubic centimeter was observed. Such a change is consistent with the loss of lipids from the senescent cells of the abscission zone.  相似文献   

3.
Role of polygalacturonase in bean leaf abscission   总被引:2,自引:0,他引:2       下载免费PDF全文
Berger RK  Reid PD 《Plant physiology》1979,63(6):1133-1137
The role of polygalacturonase in leaf abscission was studied in explants of Phaseolus vulgaris L. cv. Red Kidney. Bean polygalacturonase was partially characterized and comparisons were made between the bean enzyme and previously reported higher plant polygalacturonases. Polygalacturonase isolated from bean leaf abscission zones has a pH optimum between 4.5 and 5.0 and hydrolyzed polygalacturonides in an exo-fashion. Activity was found to be higher with a deesterified substrate than with an esterified pectin. No correlation between polygalacturonase activity and abscission was observed. Activity remained virtually constant over the course of abscission in explants aged either in air or in ethylene. The enzyme was primarily localized in the abscission zone, however, indicating a possible involvement in the abscission process. A theoretical model which could explain the relationship between polygalacturonase and bean leaf abscission is discussed.  相似文献   

4.
Citrus ( Citrus sinensis L. Osbeck) leaf explants completely abscise within 48 h when exposed to saturating amounts of ethylene at 25°C. When 2,5-norbornadiene was added, 2000 μl 1−1 reduced abscission of explants also exposed to 2 μl 1−1 of ethylene to the level of the control, and 8000 μl 1−1 reduced abscission in explants exposed to 10 μl 1−1 of ethylene to the level of the control, but abscission was complete when 1 000 μl 1−1 of ethylene was used in the presence of 8 000 μl 1−1 of 2,5-norbornadiene. When explants were exposed to 2 μl 1−1 of ethylene, 2000 μl 1−1 of 2,5-norbornadiene prevented abscission if applied up to 10 h after exposure to ethylene. After 18 h, applied 2,5-norbornadiene had little effect on abscission at 48 h. A Lineweaver-Burk plot gave a 1/2 maximum value of 0.12 μl 1−1 for ethylene on abscission, 2,5-Norbornadiene gave competitive kinetics with respect to ethylene with a K1 value of approximately 120 μl 1−1 of 2,5-norbornadiene. The presence of 2,5norbornadiene stimulated ethylene production, which progressively increased as the 2,5-norbornadiene concentration was increased from 250 to 8 000 μl 1−1 2,5-Norbornadiene also suppressed the induction of cellulase and polygalacturonase by ethylene. Together, 2,5-norbornadiene and 2,4-dichlorophenoxyacetic acid were more effective than either alone in reducing abscission. 2,5-Norbornadiene also was effective in preventing the reduction of indole-3-acetic acid transport induced by ethylene.  相似文献   

5.
Young R 《Plant physiology》1971,48(6):724-727
Citrus leaves exposed to subfreezing temperatures evolved ethylene at rates between 0.1 and 38.3 microliters per kilogram fresh weight per hour whereas untreated leaves evolved between 0.01 and 0.50 microliter per kilogram fresh weight per hour. Leaves not injured by freezing temperatures did not abscise, and ethylene evolution was near normal after 2 days. Freeze-injured leaves continued evolving high ethylene levels 4 or 5 days subsequent to freeze injury, and many of the freeze-killed leaves abscised. Supportive evidence suggested freeze-induced ethylene was involved in freeze-induced leaf abscission; whereas freeze-inhibited abscission was not due to a lack of ethylene but injury to other metabolic systems necessary for abscission.  相似文献   

6.
Summary The sink strength of one of a pair of competing peach fruits was increased when the fruit was treated with (2-chloroethyl)phosphonic acid (Ethephon) and gibberellic acid. Ethephon increased the capacity of the treated fruit to attract 14C-labelled assimilates at most stages of fruit development and was most effective when the level of endogenous ethylene produced by the fruit was lowest. The results are discussed in relation to the hypothesis that ethylene participates in the control of sink strength of the fruit and of other competing organs of the tree.  相似文献   

7.
Single aqueous sprays of 2(chloroethyl)phosphonic acid (CEPA) 250, 500 and 1000 mg/1; 2,3,5-triiodobenzoic acid (TIBA) 25, 50 and 100 mg/1; and (2-chloroethyl) trimethyl-ammonium chloride (CCC) 250, 500 and 1000 mg/1 were applied to squash melon (Citrullus vulgaris Schrad. var. fistu-losus Stocks.) at the 2–3 leaf stage. Though the final length of the main axis and number of lateral branches were not affected by any treatment, CEPA retarded growth of young plants by reducing the internodal length. It did not change the flowering pattern but delayed flowering and reduced the production of both pistillate and staminate flowers. However, it increased the per cent femaleness as a result of comparatively more suppression of staminate flowers. The TIBA 25 and 50 mg/1 and CCC 500 mg/1 did not affect the staminate flower production but increased the pistillate flowers, which increased the per cent femaleness. The CEPA decreased while both TIBA 25 and 50 mg/1, and CCC 500 mg/1 increased the number of fruits per plant and the yield. The mode of action of the chemicals has been discussed.  相似文献   

8.
9.
The effect of ethylene on flower abscission was investigated in monocotyledons and eudicotyledons, in about 300 species from 50 families. In all species studied except Cymbidium, flower abscission was highly sensitive to ethylene. Flower fall was not consistent among the species in any family studied. It also showed no relationship with petal senescence or abscission, nor with petal colour changes or flower closure. Results suggest that flower abscission is generally mediated by endogenous ethylene, but that some exceptional ethylene-insensitive abscission occurs in the Orchidaceae.  相似文献   

10.
Page W. Morgan 《Planta》1976,129(3):275-276
Summary Gibberellic acid inhibition of betacyanin biosynthesis has been studied in Amaranthus caudatus L. using the pigment precursors L-tyrosine and L-dihydroxyphenylalanine. Precursors fed to gibberellic acid (GA) treated seedlings completely recovered betacyanin synthesis while the GA induced growth enhancement remained unaltered. Inhibition of betacyanin biosynthesis by GA is related to depletion of metabolites/amino acids and their diversion to support changed pattern of metabolism leading to growth.Abbreviations GA gibberellic acid - L-DOPA L-dihydroxyphenylalanine - Pr phytochrome red absorbing form - Pfr phytochrome, far-red absorbing form  相似文献   

11.
A two-dimensional gel electrophoresis system that combines a cationic polyacrylamide gel electrophoresis at pH near neutrality with sodium dodecyl sulfate-polyacrylamide gel electrophoresis was used to analyze the spectrum of basic polypeptides that accumulate in bean (Phaseolus vulgaris) abscission zones after treatment with ethylene. Results showed that, as abscission progressed, at least seven basic proteins accumulated in the abscission zone prior to the accumulation of 9.5 cellulase. Six of the seven proteins correspond to pathogenesis-related (PR) proteins. Among them, two isoforms of β-1,3-glucanase and multiple isoforms of chitinase were identified. A 22 kilodalton polypeptide that accumulated to high levels was identified as a thaumatin-like protein by analysis of its N-terminal sequence (up to 20 amino acids) and its serological relationship with heterologous thaumatin antibodies. A 15 kilodalton polypeptide serologically related to PR P1 (p14) from tomato was identified as bean PR P1 (p14)-like protein. The kinetics of accumulation of glucanases, chitinases, thaumatin-like and PR P1 (p14)-like proteins during ethylene treatment were similar and they showed that PR proteins accumulated in abscission zones prior to the increase in 9.5 cellulase. Addition of indoleacetic acid, a potent inhibitor of abscission, reduced the accumulation of these proteins to a similar extent (60%). The synchronized accumulation of this set of PR proteins, early in the abscission process, may play a role in induced resistance to possible fungal attack after a plant part is shed. The seventh protein does not correspond to any previously characterized PR protein. This new 45 kilodalton polypeptide accumulated in abscission zones on exposure to ethylene concomitantly with the increase in 9.5 cellulase. Its N-terminal sequence (up to 15 amino acids) showed some homology with the amino terminal sequence of chitinase. Polyclonal antibodies against chitinase recognized the 45 kilodalton polypeptide, but polyclonal antibodies against the 45 kilodalton protein recognized chitinase weakly. When abscission was inhibited by addition of indoleacetic acid, the accumulation of the 45 kilodalton protein was strongly inhibited (80%). This result suggests that the 45 kilodalton polypeptide may play a more direct role in abscission.  相似文献   

12.
Abstract The relationship between ethylene-induced leaf abscission and ethylene-induced inhibition of auxin transport in midrib sections of the leaf blade of Citrus sinensis L. Osbeck, Populus deltoides Bart, and Eucalyptus camaldulensis Dehn. was studied. These species differed greatly in their abscission response to ethylene. The kinetic trend of abscission resembled that of the inhibition of auxin transport in all three species. It is suggested that one of the main actions of ethylene in the leaf blade is to inhibit auxin transport in the veinal tissues, thus reducing the amount of auxin transported from the leaf blade to the abscission zone. Ethylene inhibited transport of both IAA (indole-3-acetic acid) and NAA (α-naphthaleneacetic acid) in the midrib sections. However, while ethylene enhanced the conjugation of IAA with aspartic acid and glucose in the apical (absorbing) segment of the midrib sections, it had little effect on the conjugation of NAA. The data indicate that auxin destruction through conjugation does not play a major role in the inhibition of auxin transport by ethylene.  相似文献   

13.
14.
Abstract. Total RNA was extracted from bean leaf abscission zones at different times after the induction of abscission by ethylene. The RNA was translated in the wheat germ system and the products analysed by SDS-PAGE. Products of molecular weight (raw) 42, 32 and 17 kD were seen to accumulate substantially during the induction. An attempt was made to establish that the mRNA species which produced the 32 kD product, which was coded for the ethylene-regulated enzyme chitinase. Mature chitinase (30 kD) was purifed from ethylene-treated abscission zones and used to raise monospecific antibodies in rabbits. These antibodies recognized the 32 kD product and mature chitinase. The 2 kD difference in molecular weight was due to the presence of the signal sequence which could be removed by microsomal membranes. Chitinase was also detected by enzymatic assay and immunoblotting of crude homogenates from ethylene-treated abscission zones. Chitinase appears to be ubiquitous in bean plants and probably does not have a direct role in abscission.  相似文献   

15.
Three compounds known to inhibit ethylene synthesis and/or action were compared for their ability to delay senescence and abscission of bean explants (Phaseolus vulgaris L. cv Contender). Aminoethoxyvinyl-glycine (AVG), AgNO3, and sodium benzoate were infiltrated into the petiole explants. Their effect on abscission was monitored by measuring the force required to break the abscission zone, and their effect on senescence was followed by measuring chlorophyll and soluble protein in the distal (pulvinus) sections. AVG at concentrations between 1 and 100 micromolar inhibited ethylene synthesis by about 80 to 90% compared to the control during sampling periods of 24 and 48 hours after treatment. This compound also delayed the development of abscission and senescence. Treatment with AgNO3 at concentrations between 1 and 100 micromolar progressively reduced ethylene production, but to a lesser extent than AVG. The effects of AgNO3 on senescence and abscission were quite similar to those of AVG. Sodium benzoate at 50 micromolar to 5 millimolar did not inhibit ethylene synthesis during the first 24 hours, but appreciably inhibited ethylene synthesis 48 hours after treatment. It also delayed the development of abscission and senescence. The effects of AVG, Ag+, and sodium benzoate suggest that ethylene could play a major role in both the senescence induction phase and the separation phase in bean explants.  相似文献   

16.
U rostliny krátkého dne Chenopodium rubrum L. se dá kvetení indukovat íty?mi 16hodinovými cykly tmy ji? 5 dní po vyklí?ení. Aplikace CCC v koncentraci 2.10-3mvpr?běhu indukce kvetení zadr?uje a toté? piatí pro GA3 i tehdy, je-li podáván ve velmi nízkých koncentracích (0,1 a? 0,01 mg/l). Av?ak sou?asná aplikace obou těchto látek v uvedených koncentracích vede k úplné reversi inhibice. Po p?enesení rostlin z média, obsahujícího CCC, na ?istý ?ivný roztok, inhibi?ní ú?inek CCC rychle zmizí a p?echází v slabou stimulaci. Na?e výsledky ukazují, ?e giberelin se zú?astňuje proces? kvetení i u rostliny krátkého dne.  相似文献   

17.
Abstract The abscission of citrus leaf explants demonstrates the well-known enhancing effect of ethylene and the delaying one of auxin when treatment is started at excision time. Total peroxidase activity increases differently in tissues of the blade, abscission zone, and petiole. The highest activity at zero time is recovered in abscission zone in which also the response to the abscission regulators is the most visible. Isoperoxidase profiles are modified in opposite directions by ethylene and auxin respectively. Both regulators affect the activity of the same cathodic and anodic isoperoxidases without any qualitative changes. By the same time, auxin-like compounds increase in isolated abscission zones at 24 h from excision and decrease at 48 h. The level of one inhibitor complex undergoes an inverse variation. It is suggested that the increase in auxin during the first stage of abscission is necessary for influencing the growth of cells which is required to cause abscission.  相似文献   

18.
(2-Chloroethyl)phosphonic acid (CEPA) which is known to releaseethylene in plant tissue, and (2-chloroethyl)trimethylammoniumchloride (CCC) were applied to ripening tomato and red pepperfruits. CEPA enhanced and CCC inhibited chlorophyll degradationand carotenoid formation. The inhibitory effects of CCC on fruitripening were counteracted by CEPA treatment. These resultsand those of other authors on gibberellin action in fruit ripeningsuggested that both CCC and gibberellin may interfere with theaction of ethylene in ripening fruit.  相似文献   

19.
20.
The effect of two auxin antagonists, 2,3,5-triiodobenzoic acid (TIBA) and 2-( p -chlorophenoxy)-2-methyl propionic acid (CMPA) on IAA-induced ethylene production in etiolated mung bean hypocotyl ( Vigna radiata L. Rwilcz cv. Berken) segments was studied. Both TIBA and CMPA inhibited IAA-induced ethylene production and CO2 production at concentrations from 0.001 m M to 0.1 m M and 0.01 m M to 1.0 m M , respectively. The optimum concentration for inhibition of ethylene production by TIBA was 0.05 m M and CMPA was 0.5 m M . At the optimum concentration of TIBA and CMPA, there was a significant decrease in IAA-induced ethylene production without a decrease in respiration rates below control levels. After 18 h, mung bean hypocotyl segments treated with 0.05 m M TIBA for 6 h or 0.5 m M CMPA for 8 h showed a maximum inhibition of IAA-induced ethylene production. Treatments longer than 8 h caused no further inhibition. The uptake of [14C]-naphthaleneacetic acid by mung bean segments was greatly reduced by the addition of either TIBA (0.05m M ) or CMPA (0.5 m M ) to the incubation media. The results of treatment sequences showed that TIBA needed to be applied prior to IAA in order to inhibit IAA-induced ethylene production, but CMPA caused the same inhibitory effect whether applied before or after IAA treatment. These findings provide evidence that TIBA inhibits auxin-induced ethylene production in etiolated mung bean hypocotyl segments by blocking auxin movement into the tissue whereas CMPA may work on both auxin transport and action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号