首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Glyoxalase II (S-(2-hydroxyacyl)glutathione hydrolase, EC 3.1.2.6), which has been regarded as a cytosolic enzyme, was also found in rat liver mitochondria. The mitochondrial fraction contained about 10-15% of the total glyoxalase II activity in liver. The actual existence of the specific mitochondrial glyoxalase II was verified by showing that all of the activity of the crude mitochondrial pellet was still present in purified mitochondria prepared in a Ficoll gradient. Subfractionation of the mitochondria by digitonin treatment showed that 56% of the activity resided in the mitochondrial matrix and 19% in the intermembrane space. Partial purification of the enzyme (420-fold) was also achieved. Statistically significant differences were found in the substrate specificities of the mitochondrial and the cytosolic glyoxalase II. Electrophoresis and isoelectric focusing of either the crude mitochondrial extract or of the purified mitochondrial glyoxalase II resolved the enzyme activity into five forms with the respective pI values of 8.1, 7.5, 7.0, 6.85 and 6.6. Three of these forms (pI values 7.0-6.6) were exclusively mitochondrial, with no counterpart in the cytosol. The relative molecular mass of the partially purified enzyme, as estimated by Superose 12 gel chromatography, was 21,000. These results give evidence for the presence of mitochondrial glyoxalase II which is different from the cytosolic enzymes in several characteristics.  相似文献   

2.
Glyoxalase II has been purified from cytosol and mitochondria of spinach leaves. Electrophoresis and isoelectric focussing have resolved cytosolic and mitochondrial glyoxalase II in multiple forms: pl 5.3, 5.8 and 6.2 (cytosol) and pl 4.8 (mitochondria). The enzyme of both localizations is a monomer showing a relative molecular mass of about 26 kDa. The values of kinetic constants using several glutathione thiolesters as substrates, are similar for the enzymes from cytosol and mitochondria. These results extend also to plant the presence in mitochondria of peculiar forms of glyoxalase II, likewise recently demonstrated in mammalians.  相似文献   

3.
A specific histidine decarboxylase from rat gastric mucosa has been obtained at high purity and good yield (purification about 600-fold). The purification procedure included double (NH4)2SO4 fractionation, ion-exchange chromatography, preparative isoelectric focusing in a granulated gel and gel filtration. Only the specific histidine enzyme was obtained by that procedure; DOPA decarboxylase, a non-specific enzyme, was absent in our final preparation. Each step of the purification was visualized by polyacrylamide gel electrophoresis and analytical isoelectric focusing. The purified enzyme was apparently homogenous by criteria of electrophoresis and gel filtration and has a molecular weight of 94 000. Several protein bands appeared after isoelectric focusing and the enzyme activity was localized in 3 distinct peaks. The gastric enzyme consists of 3 active forms which could be distinguished by their isoelectric points: 5.4, 5.75 and 6. Moleculare weights estimated by SDS polyacrylamide gel electrophoresis were 97 000, 93 000 and 90 000, and no subunits were observed. Pyridoxal phosphate was required as a coenzyme and resolution of the holoenzyme agreed with a portion of the coenzyme tightly bound to the apoenzyme. The purified enzyme was stable at low ionic strength, near neutral pH; concentrated reducing agents inhibit the enzyme.  相似文献   

4.
The purification of Glyoxalase I from rabbit liver using Blue Dextran-Sepharose-4B and S-hexyl Glutathione Sepharose-6B is described. Elution of Glyoxalase I from both the columns was accomplished with S-hexyl glutathione, a competitive inhibitor of the enzyme. The purified enzyme gave two bands on disc electrophoresis. After treatment with glutathione, only one band was found. Except for these interconvertible forms, the purified enzyme was homogeneous as shown by disc electrophoresis and sodium dodecyl sulfate polyacrylamide gel electrophoresis.  相似文献   

5.
Glyoxalase I and glyoxalase II (EC. 4.4.1.5 and EC 3.1.2.6) were separated by gel filtration on Sephadex G-75 and G-100. This simple procedure permitted also the partial purification of glyoxalase II. The purification coefficient in a single run from supernatant from beef liver was about 1 : 30 compared with 1 : 15 after the fifth step of purification with classical methods.  相似文献   

6.
A new procedure for the purification of rat brain adenylate cyclase (ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1) is presented. The enzyme solubilized in Lubrol PX was purified either by molecular sieving or by hydrophobic chromatography, followed by a preparative isoelectric focusing step. For this purpose, a new isoelectric focusing technique was developed which allows a good resolution of adenylate cyclase in a short period of time. When resolved by this procedure, the enzyme migrated as a single molecular species with a pI of 6.3. When isoelectric focusing was performed in the presence of EGTA, two distinct peaks of activity could be detected at pI 6.1 and 7.3. This suggests that adenylate cyclase consists of two subunits held together by divalent ions. It is shown that the purified adenylate cyclase has a smaller sedimentation coefficient and is less hydrophobic than the native one. We conclude that the adenylate cyclase containing complex was at least partially disaggregated by this procedure.  相似文献   

7.
Phosphatidylinositol 4-phosphate (PtdIns4P) kinase was purified from cytosolic and particulate material of rat brain. The purification procedure of the enzyme from cytosol consisted of (NH4)2SO4 precipitation. DEAE-cellulose column chromatography and preparative isoelectric focusing. Other methods after DEAE-cellulose column chromatography failed to achieve further purification of the PtdIns4P kinase, probably caused by the tendency of the enzyme to aggregate with contaminating proteins. The final purification was 67-fold, and the recovery was 0.6%. After isoelectric focusing the fraction containing the highest PtdIns4P kinase activity showed only one protein as visualized by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and silver staining. The apparent Mr of this protein was 45 kDa and the isoelectric point about 5.8. The activity of PtdIns4P kinase was dependent on the concentration of divalent cations in the incubation medium. PtdIns4P kinase activity was found to be optimal at 10-30 mM-Mg2+. In an attempt to compare the cytosolic with the membrane-derived kinase activity, a Triton/KCl extract from synaptic membranes was subjected to the same purification procedure as the cytosolic enzyme. A difference in isoelectric focusing was observed, possibly due to a higher tendency to form aggregates. However, we tend to conclude that also in the membranes the PtdIns4P kinase activity is present as a 45 kDa protein, identical with that found in the cytosol.  相似文献   

8.
Glyoxalase I has been purified to homogeneity from human erythrocytes. An essential part in the purification procedure involved affinity chromatography on S-hexylglutathione bound to epoxy-activated Sepharose 6B. Three isoenzymes were found, which could be separated by ion-exchange chromatography. Some of the properties of the enzyme are reported.  相似文献   

9.
Glyoxalase II, a specific glutathione thiolesterase, has been purified 9100-fold from rat erythrocytes using a purification scheme which employs Affi-Gel blue as a hydrophobic affinity column and also employs a glutathione-affinity column prepared by coupling S-(p-chlorophenacyl)glutathione to Affi-Gel 202. This procedure offers a convenient method for the preparation of highly purified glyoxalase II. Also described is a convenient method for the preparation of S-lactoyl-glutathione, a substrate for glyoxalase II.  相似文献   

10.
 本文介绍了从人脑中分离纯化髓鞘碱性蛋白的方法,人脑组织匀浆经甲醇—氯仿脱脂、酸提取、硫酸铵沉淀和羧甲基纤维素柱层析,得到了纯化的髓鞘碱性蛋白。该蛋白在SDS聚丙烯酰胺凝胶电泳中为单一带,分子量为21kD。在聚焦电泳中测得其等电点在pH10以上,氨基酸组成分析结果也与文献值接近。这为进一步研究人脑髓鞘碱性蛋白的抗原性创造了条件。  相似文献   

11.
Two glycosulfatases [EC 3.1.6.3], I and II, were purified 31.3- and 33.9-fold respectively, from a crude extract of the liver of Charonia lampas. The purification was carried out by the following chromatographic procedures; phosphocellulose, Sephadex G-150, Concanavalin A-Sepharose and isoelectric focussing. The enzyme preparations obtained were practically free from arylsulfatase [EC 3.1.6.1] contamination. Both glycosulfatases are probably glycoproteins differing in their carbohydrate moieties. The molecular weights of glycosulfatase I and II were estimated to be about 112,000 and 79,000 respectively. They had the same optimum pH of 5.5, and the same Km value of 25.0 mM for glucose 6-sulfate.  相似文献   

12.
An exo-1,4-beta-glucanase from culture solution of the rot fungus Sporotrichum pulverulentum (formerly called Chrysosporium lignorum) grown on powder cellulose as the sole carbon source has been extensively purified and characterized with respect to some physico-chemical properties. The purification has been carried out in a five-step procedure comprising chromatography on DEAE-Sephadex, gel filtration on polyacrylamide P-150, activation on a Dowex 2-X8 anion exchanger, chromatography on Concanavalin A-Sepharose and chromatography on SP-Sephadex. The purified enzyme was found to be pure and homogeneous by analytical polyacrylamide electrophoresis, by electrophoresis on dodecylsulphate gels and by analytical polyacrylamide electrophoresis, by electrophoresis on dodecylsulphate gels and by analytical isoelectric focusing. A single symmetrical peak was obtained with the free zone electrophoresis method. The purification factor is about 15 and the yield of exo-1,4-beta-glucanase activity 7%. After purification, the enzyme showed no viscosity-decreasing activity towards carboxymethyl-cellulose solutions. The exo-1,4-beta-glucanase was isoelectric at pH 4.3 (4 degrees C). A molecular weight of 48600 was calculated on the basis of a knowledge of the partial specific volume, ultracentrifugation data and the amino acid composition. The enzyme contained no carbohydrate.  相似文献   

13.
Mitochondrial NADH dehydrogenase (NADH:(acceptor) oxidoreductase, EC .6.99.3) from either Drosophila hydei larvae or embryos has been purified 150- and 120-fold, respectively. The purified enzyme appeared homogeneous and showed a molecular weight of 57 000. The molecular weight of the nondenatured enzyme was 79 000. On isoelectro-focussing of the preparation, two fractions were observed, a major one with an isoelectric point of 6.2 and a minor fraction with an isoelectric point of 4.9. Straight-line kinetics in Lineweaver-Burk plots were observed for the purified enzyme with a Km of 0.040 mM. The Km was not changed during the purification procedure, suggesting that the enzyme was not denatured or inactivated. The pH optimum of the purified enzyme was 5.6. The molecular weight of the purified mitochondrial NADH dehydrogenase does not correspond to that of one of the 'heat-shock' polypeptides.  相似文献   

14.
A highly purified preparation of NADH dehydrogenase was isolated from bacteria M. lysodeikticus membranes. The purification procedure involved extraction of the enzyme complex from isolated membranes by EDTA, solubilization of the complex by non-ionogenic detergent (1% Triton X-100), chromatography on DEAE-cellulose and electrofocussing in the pH gradient 4-6. The isoelectric point of the preparation is at 4.5; its main component is a protein with m.w. of about 76.000.  相似文献   

15.
Pantothenase (EC 3.5.1.22) from Pseudomonas fluorescens UK-1 was purified to homogeneity as judged by disc-gel electrophoresis and isoelectric focusing. The purification procedure consisted of four steps: DEAE-Sephadex chromatography, (NH4)2SO4 precipitation, hydroxyapatite chromatography and preparative polyacrylamide-gel electrophoresis. Gel filtration on Ultrogel AcA 34 was used to determine the molecular weight, and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis to study the subunit molecular weight. The enzyme appeared to be composed of two subunits with mol.wts. of approx. 50000 each. The total mol.wt. of the enzyme was thus about 100000. The isoelectric point was 4.7 at 10 degrees C.  相似文献   

16.
A d-aminoacylase from Alcaligenes faecalis DA1 has been purified to homogeneity by a simple purification procedure with two columns, Fractogel DEAE-650 and HW-50. The specific activity of the purified enzyme was found to be 580 U/mg of protein with N-acetyl-dl-methionine as the reaction substrate. The apparent molecular weight and isoelectric point of this enzyme were determined to be 55,000 and 5.4, respectively.  相似文献   

17.
The heterogeneity of histidine decarboxylase from rat gastric mucosa was studied. The partially purified enzyme was fractionated by preparative isoelectric focusing on a flat-gel bed by using narrow pH-range carrier ampholytes and a short focusing time. The activity was resolved, with about 95% recovery, into three forms, designated I, II and III, with pI values of 5.90, 5.60 and 5.35 respectively. These three forms exhibited similar molecular weights, indicating that the forms were not the result of different degrees of polymerization. By preparative refocusing each form refocused as a single peak of enzyme activity with reproducible pI, but a high loss of activity occurred with repeated focusing. Forms I, II and III were purified by the combined use of preparative isoelectric focusing and gel chromatography and other fractionation methods. The active forms could be distinguished by electrophoresis and isoelectric focusing on polyacrylamide gels and displayed protein heterogeneity. These forms were found in the crude extract and in the partially purified preparations in the presence or absence of proteinase inhibitors. Form II had the highest specific activity, but all three forms had the same optimum pH and Km value for histidine.  相似文献   

18.
—Approximately 70 per cent of the total AChE of bovine brain tissue was solubilized by repeated homogenization and centrifugation in 0.32 m sucrose containing EDTA. After ammonium sulphate fractionation, application of the enzyme preparation to an agarose affinity gel column effected a 700-fold purification. Subsequent molecular filtration separated three active forms of AChE with molecular weights of 130,000, 270,000 and 390,000 with an average specific activity of 575 mmol of acetylthiocholine hydrolysed/mg of protein/h. The complete procedure represented an approximate 23,000-fold purification of the enzyme from that in the original tissue homogenate. The three forms of AChE exhibited certain differences in properties, including apparent Km values, pH optima and sensitivity to inhibitory agents. Ancillary studies on less purified enzyme preparations by use of polyacrylamide gel electrophoresis and isoelectric focusing techniques also suggested that brain AChE exists in multiple forms.  相似文献   

19.
Lipase, an enzyme that hydrolyzes triacylglycerol, has been purified and characterized. The purification procedure includes ethanol precipitation and chromatographies on Sephacryl-200 HR, high resolution anion-exchange (mono Q) and Polybuffer exchanger 94. With this procedure, two forms of lipases from Geotrichum candidum were obtained. Lipase I (main enzyme) and lipase II (minor enzyme) were purified 35-fold with a 62% recovery in activity and 94-fold with a 18% recovery in activity, respectively. Their molecular weights have been estimated by polyacrylamide gel electrophoresis under denaturing conditions and by molecular sieving under native conditions at 56,000. Lipase I and II had optimum pH values of 6.0 and 6.8 and isoelectric points of 4.56 and 4.46, respectively. The enzymes are stable at a pH range of 6.0 to 8.0. Monovalent ions had little effect on both enzyme activities, while divalent ions at concentrations above 50 mM inhibited the lipase activities in a concentration-dependent manner. Sodium dodecyl sulfate at a concentration lower than 10 mM completely inhibited the lipase activity.  相似文献   

20.
Two chromatographic processes for purification of cyclodextringlucanotransferase (CGTase) from Bacillus sp. 1070 was carried out. The enzyme has been purified into 9.5 times on Butyl-Toyopearl and followed immobilized metal ion chromatography on Cu(II)-Iminodiacetic (IDA)-agarose. By the application of second purification scheme (chromatography on Butyl-Toyopearl and DEAE-Sephacel) the specific activity of CGTase has folded into 13.5 times. The purity of enzyme was shown to be approximately 90% by SDS-electrophoreses data. It was shown that isolated enzyme has two isoelectric points estimated as 5.1 and 5.3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号