首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By transposon Tn917 mutagenesis, 16 mutants of Staphylococcus xylosus were isolated that showed higher levels of beta-galactosidase activity in the presence of glucose than the wild-type strain. The transposons were found to reside in three adjacent locations in the genome of S. xylosus. The nucleotide sequence of the chromosomal fragment affected by the Tn917 insertions yielded an open reading frame encoding a protein with a size of 328 amino acids with a high level of similarity to glucose kinase from Streptomyces coelicolor. Weaker similarity was also found to bacterial fructokinases and xylose repressors of gram-positive bacteria. The gene was designated glkA. Immediately downstream of glkA, two open reading frames were present whose deduced gene products showed no obvious similarity to known proteins. Measurements of catabolic enzyme activities in the mutant strains grown in the presence or absence of sugars established the pleiotropic nature of the mutations. Besides beta-galactosidase activity, which had been used to detect the mutants, six other tested enzymes were partially relieved from repression by glucose. Reduction of fructose-mediated catabolite repression was observed for some of the enzyme activities. Glucose transport and ATP-dependent phosphorylation of HPr, the phosphocarrier of the phosphoenolpyruvate:carbohydrate phosphotransferase system involved in catabolite repression in gram-positive bacteria, were not affected. The cloned glkA gene fully restored catabolite repression in the mutant strains in trans. Loss of GlkA function is thus responsible for the partial relief from catabolite repression. Glucose kinase activity in the mutants reached about 75% of the wild-type level, indicating the presence of another enzyme in S. xylosus. However, the cloned gene complemented an Escherichia coli strain in glucose kinase. Therefore, the glkA gene encodes a glucose kinase that participates in catabolite repression in S. xylosus.  相似文献   

2.
Carbon catabolic repression (CR) by the catabolite control protein CcpA has been analyzed in Staphylococcus xylosus. Genes encoding components needed to utilize lactose, sucrose, and maltose were found to be repressed by CcpA. In addition, the ccpA gene is under negative autogenous control. Among several tested sugars, glucose caused strongest CcpA-dependent repression. Glucose can enter S. xylosus in nonphosphorylated form via the glucose uptake protein GlcU. Internal glucose is then phosphorylated by the glucose kinase GlkA. Alternatively, glucose can be transported and concomitantly phosphorylated by glucose-specific permease(s) of the phosphotransferase system (PTS). S. xylosus mutant strains deficient in GlcU or GlkA showed partial relief of glucose-specific, CcpA-dependent repression. Likewise, blocking PTS activity completely by inactivation of the gene encoding the general PTS protein enzyme I resulted in diminished glucose-mediated repression. Thus, both glucose entry routes contribute to glucose-specific CR in S. xylosus. The sugar transport activity of the PTS is not required to trigger glucose-specific repression. The phosphocarrier protein HPr however, is absolutely essential for CcpA activity. Inactivation of the HPr gene led to a complete loss of CR. Repression is also abolished upon inactivation of the HPr kinase gene or by replacing serine at position 46 of HPr by alanine. These results clearly show that HPr kinase provides the signal, seryl-phosphorylated HPr, to activate CcpA in S. xylosus.  相似文献   

3.
Acetohydroxy acid synthetase, which is sensitive to catabolite repression in wild-type Escherichia coli B, was relatively resistant to this control in a streptomycin-dependent mutant. The streptomycin-dependent mutant was found to be inducible for beta-galactosidase in the presence of glucose, although repression of beta-galactosidase by glucose occurred under experimental conditions where growth of the streptomycin-dependent mutant was limited. Additional glucose-sensitive enzymes of wild-type E. coli B (citrate synthase, fumarase, aconitase and isocitrate dehydrogenase) were found to be insensitive to the carbon source in streptomycin-dependent mutants: these enzymes were formed by streptomycin-dependent E. coli B in equivalent quantities when either glucose or glycerol was the carbon source. Two enzymes, glucokinase and glucose 6-phosphate dehydrogenase, that are glucose-insensitive in wild-type E. coli B were formed in equivalent quantity on glucose or glycerol in both streptomycin-sensitive and streptomycin-dependent E. coli B. The results indicate a general decrease or relaxation of catabolite repression in the streptomycin-dependent mutant. The yield of streptomycin-dependent cells from glucose was one-third less than that of the streptomycin-sensitive strain. We conclude that the decreased efficiency of glucose utilization in streptomycin-dependent E. coli B is responsible for the relaxation of catabolite repression in this mutant.  相似文献   

4.
1. Acute transient catabolite repression of beta-galactosidase synthesis, observed when glucose is added to glycerol-grown cells of Escherichia coli (Moses & Prevost, 1966), requires the presence of a functional operator gene (o) in the lactose operon. Total deletion of the operator gene abolished acute transient repression, even in the presence of a functional regulator gene (i). 2. Regulator constitutives (i(-)) also show transient repression provided that the operator gene is functional. Regulator deletion mutants (i(del)), with which to test specifically the role of the i gene, have not so far been available. 3. The above mutants, showing various changes in the lactose operon, show no alteration in the effect of glucose on induced tryptophanase synthesis. Glucose metabolism, as measured in terms of the release of (14)CO(2) from [1-(14)C]glucose and [6-(14)C]glucose, also showed no differences between strains exhibiting or not exhibiting transient repression. This suggests no change in the operation of the pentose phosphate cycle, a metabolic activity known to be of paramount importance for glucose repression of beta-galactosidase synthesis (Prevost & Moses, 1967). 4. Chronic permanent repression by glucose of beta-galactosidase synthesis (less severe in degree than acute transient repression) persists in strains in which transient repression has been genetically abolished. Constitutive alkaline-phosphatase synthesis, which shows no transient repression, also demonstrates chronic permanent repression by glucose. 5. Chloramphenicol repression also persists in mutants with no transient repression, and also affects alkaline phosphatase. It is suggested that chronic permanent repression and chloramphenicol repression are non-specific, and that they do not influence beta-galactosidase synthesis via the regulatory system of the lactose operon.  相似文献   

5.
Lactose metabolism in Erwinia chrysanthemi.   总被引:18,自引:11,他引:7       下载免费PDF全文
Wild-type strains of the phytopathogenic enterobacterium Erwinia chrysanthemi are unable to use lactose as a carbon source for growth although they possess a beta-galactosidase activity. Lactose-fermenting derivatives from some wild types, however, can be obtained spontaneously at a frequency of about 5 X 10(-7). All Lac+ derivatives isolated had acquired a constitutive lactose transport system and most contained an inducible beta-galactosidase. The transport system, product of the lmrT gene, mediates uptake of lactose in the Lac+ derivatives and also appears to be able to mediate uptake of melibiose, raffinose, and galactose. Two genes encoding beta-galactosidase enzymes were detected in E. chrysanthemi strains. That mainly expressed in the wild-type strains was the lacZ product. The other, the lacB product, is very weakly expressed in these strains. These enzymes showed different affinities for the substrates o-nitrophenyl-beta-D-galactopyranoside and lactose and for the inhibitors isopropyl-beta-D-thiogalactopyranoside and galactose. The lmrT and lacZ genes of E. chrysanthemi, together with the lacI gene coding for the regulatory protein controlling lacZ expression, were cloned by using an RP4::miniMu vector. When these plasmids were transferred into Lac- Escherichia coli strains, their expression was similar to that in E. chrysanthemi. The cloning of the lmrT gene alone suggested that the lacZ or lacB gene is not linked to the lmrT gene on the E. chrysanthemi chromosome. One Lac+ E. chrysanthemi derivative showed a constitutive synthesis of the beta-galactosidase encoded by the lacB gene. This mutation was dominant toward the lacI lacZ cloned genes. Besides these mutations affecting the regulation of the lmrT or lacB gene, the isolation of structural mutants unable to grow on lactose was achieved by mutagenic treatment. These mutants showed no expression of the lactose transport system, the lmrT mutants, or the mainly expressed beta-galactosidase, lacZ mutants. The lacZ mutants retained a very low beta-galactosidase level, due to the lacB product, but this level was low enough to permit use of the lacZ mutants for the construction of gene fusions with the Escherichia coli lac genes.  相似文献   

6.
7.
The objective of this work was to relate macroscopically measurable on-line fermentation parameters such as dissolved oxygen, off-gas oxygen and carbon dioxide, and cell mass, to the controlled production of key intracellular enzymes under carbon limited conditions. Both batch and perturbed batch aerobic fermentations were performed using two different strains of Escherichia coli, with glucose and lactose as the sole carbon sources. The two strains differed from each other only in the lac operon region of their genome. The parent strain, E. coli 3000, was inducible for the enzyme beta-galactosidase. The other strain, E. coli 3300, was a constitutive mutant in the production of beta-galactosidase. In all experiments, off-line assays of sugars and beta-galactosidase activity were performed. It was observed that there is a clear relationship between the macroscopic on-line measurements, dissolved oxygen tension, carbon dioxide evolution rate and oxygen uptake rate, and the microscopic control phenomena of catabolite repression, catabolite inhibition, and inducer repression.  相似文献   

8.
Summary The non-metabolizable and toxic glucose analogue 2-deoxy-d-glucose (2-DOG) has been widely employed to screen for regulatory mutants which lack catabolite repression. A number of yeast mutants resistant to 2-DOG have recently been isolated in this laboratory. One such mutant, derived from aSaccharomyces cerevisiae haploid strain, was demonstrated to be derepressed for maltose, galactose and sucrose uptake. Furthermore, kinetic analysis of glucose transport suggested that the high affinity glucose transport system was also derepressed in the mutant strain. In addition, the mutant had an increased intracellular concentration of trehalose relative to the parental strain. These results indicate that the 2-DOG resistant mutant is defective in general glucose repression.  相似文献   

9.
Loomis, William F., Jr. (Massachusetts Institute of Technology, Cambridge, Mass.), and Boris Magasanik. Nature of the effector of catabolite repression of beta-galactosidase in Escherichia coli. J. Bacteriol. 92:170-177. 1966.-Many carbon sources were found to give rise to catabolite repression of beta-galactosidase in a mutant strain of Escherichia coli lacking hexose phosphate isomerase activity. Compounds containing glucose or galactose cannot be formed from several of these carbon sources in this mutant strain, and, therefore, appear not to be required for catabolite repression of beta-galactosidase. Glucose was observed to elicit catabolite repression of beta-galactosidase in another mutant strain under conditions in which the formation of compounds of the citric acid cycle is inhibited. If catabolite repression of the lac operon is mediated by a single compound, it appears that the compound is related to the pentoses and trioses of intermediary metabolism. The repression of beta-galactosidase by galactose in galactokinase negative strains was shown to be independent of the gene, CR, which determines catabolite sensitivity of the lac operon, and to be dependent on a functional i gene.  相似文献   

10.
Several carbohydrate permease systems in Salmonella typhimurium and Escherichia coli are sensitive to regulation by the phosphoenolpyruvate:sugar phosphotransferase system. Mutant Salmonella strains were isolated in which individual transport systems had been rendered insensitive to regulation by sugar substrates of the phosphotransferase system. In one such strain, glycerol uptake was insensitive to regulation; in another, the maltose transport system was resistant to inhibition; and in a third, the regulatory mutation specifically rendered the melibiose permease insensitive to regulation. An analogous mutation in E. coli abolished inhibition of the transport of beta-galactosides via the lactose permease system. The mutations were mapped near the genes which code for the affected transport proteins. The regulatory mutations rendered utilization of the particular carbohydrates resistant to inhibition and synthesis of the corresponding catabolic enzymes partially insensitive to repressive control by sugar substrates of the phosphotransferase system. Studies of repression of beta-galactosidase synthesis in E. coli were conducted with both lactose and isopropyl beta-thiogalactoside as exogenous sources of inducer. Employing high concentrations of isopropyl beta-thiogalactoside, repression of beta-galactosidase synthesis was not altered by the lactose-specific transport regulation-resistant mutation. By contrast, the more severe repression observed with lactose as the exogenous source of inducer was partially abolished by this regulatory mutation. The results support the conclusions that several transport systems, including the lactose permease system, are subject to allosteric regulation and that inhibition of inducer uptake is a primary cause of the repression of catabolic enzyme synthesis.  相似文献   

11.
The chemostat culture technique was used to study the control mechanisms which operate during utilization of mixtures of glucose and lactose and glucose and l-aspartic acid by populations of Escherichia coli B6. Constitutive mutants were rapidly selected during continuous culture on a mixture of glucose and lactose, and the beta-galactosidase level of the culture increased greatly. After mutant selection, the specific beta-galactosidase level of the culture was a decreasing function of growth rate. In cultures of both the inducible wild type and the constitutive mutant, glucose and lactose were simultaneously utilized at moderate growth rates, whereas only glucose was used in the inducible cultures at high growth rates. Catabolite repression was shown to be the primary mechanism of control of beta-galactosidase level and lactose utilization in continuous culture on mixed substrates. In batch culture, as in the chemostat, catabolite repression acting by itself on the lac enzymes was insufficient to prevent lactose utilization or cause diauxie. Interference with induction of the lac operon, as well as catabolite repression, was necessary to produce diauxic growth. Continuous cultures fed mixtures of glucose and l-aspartic acid utilized both substrates at moderate growth rates, even though the catabolic enzyme aspartase was linearly repressed with increasing growth rate. Although the repression of aspartase paralleled the catabolite repression of beta-galactosidase, l-aspartic acid could be utilized even at very low levels of the catabolic enzyme because of direct anabolic incorporation into protein.  相似文献   

12.
Summary A number of 2-deoxy-d-glucose (2-DOG) resistant mutants exhibiting resistance to glucose repression were isolated from variousSaccharomyces yeast strains. Most of the mutants isolated were observed to have improved maltose uptake ability in the presence of glucose. Fermentation studies indicated that maltose was taken up at a faster rate and glucose taken up at a slower rate in the mutant strains compared to the parental strains, when these sugars were fermented together. When these sugars were fermented separately, only the 2-DOG resistant mutant obtained fromSaccharomyces cerevisiae strain 1190 exhibited alterations in glucose and maltose uptake compared to the parental strain. Kinetic analysis of sugar transport employing radiolabelled glucose and maltose indicated that both glucose and maltose were transported with higher rates in the mutant strain. These results suggested that the high affinity glucose transport system was regulated by glucose repression in the parental strain but was derepressed in the mutant.  相似文献   

13.
14.
15.
Glucose is metabolized in Escherichia coli chiefly via the phosphoglucose isomerase reaction; mutants lacking that enzyme grow slowly on glucose by using the hexose monophosphate shunt. When such a strain is further mutated so as to yield strains unable to grow at all on glucose or on glucose-6-phosphate, the secondary strains are found to lack also activity of glucose-6-phosphate dehydrogenase. The double mutants can be transduced back to glucose positivity; one class of transductants has normal phosphoglucose isomerase activity but no glucose-6-phosphate dehydrogenase. An analogous scheme has been used to select mutants lacking gluconate-6-phosphate dehydrogenase. Here the primary mutant lacks gluconate-6-phosphate dehydrase (an enzyme of the Enter-Doudoroff pathway) and grows slowly on gluconate; gluconate-negative mutants are selected from it. These mutants, lacking the nicotinamide dinucleotide phosphate-linked glucose-6-phosphate dehydrogenase or gluconate-6-phosphate dehydrogenase, grow on glucose at rates similar to the wild type. Thus, these enzymes are not essential for glucose metabolism in E. coli.  相似文献   

16.
1. The effect of carbon source variation in bacterial growth media on their growth rate, inducible enzyme and cyclic AMP synthesis was examined: an inverse relationship between the culture's growth rate and its differential rate of inducible enzyme (tryptophanase and beta-galactosidase), and cyclic AMP synthesis was found. 2. The effect of the culture's growth phase on its sensitivity or resistance to glucose catabolite repression was determined in the wild type and a catabolite insensitive mutant (ABDROI): the wild type's sensitivity to glucose repression was not affected, whereas the insensitivity of the mutant was found to be limited to its early logarithmic phase of growth. At late log, or stationary phase, the mutant was found to be sensitive to glucose repression. 3. Examination of the kinetics of glucose uptake by the mutant, using alpha-[1 4-C] methyl-glucoside showed evidence for two transport systems each with a different affinity to glucose. A low affinity transport system (apparent Km of 3.4-10-minus 5 M) which appears mostly at the early logarithmic phase of growth. A high affinity transport system (apparent Km of 1.2-10-minus 5 M) which appears mostly at the late log and stationary phases of growth. 4. The effect of the culture density variation on its sensitivity to glucose repression showed that sensitivity to glucose catabolic repression is primarily a reflection of the formation of an allosteric effector molecule between glucose and its specific transport molecule which in turn regulates the activity of the adenylate cyclase.  相似文献   

17.
Glutamate transport in wild-type and mutant strains of Escherichia coli   总被引:20,自引:17,他引:3  
Halpern, Yeheskel S. (Hebrew University-Hadassah Medical School, Jerusalem, Israel), and Meir Lupo. Glutamate transport in wild-type and mutant strains of Escherichia coli. J. Bacteriol. 90:1288-1295. 1965.-Mutants of Escherichia coli able to grow on glutamate as their source of carbon showed glutamate dehydrogenase and glutamate-oxaloacetate transaminase activities similar to those possessed by the parent strain. The mutants took up glutamate at a much faster rate and showed a several-fold greater capacity for concentrating the amino acid than did the corresponding parent strains. Curvilinear double reciprocal plots of velocity of uptake versus glutamate concentration were obtained with the E. coli H strains. A break in the curve of glutamate uptake was observed with the E. coli K-12 strains when incubated in a glucose medium. It is suggested that these findings may be due to allosteric activation of glutamate permease by its substrate.  相似文献   

18.
19.
Fatty acid degradation in Caulobacter crescentus.   总被引:3,自引:1,他引:2       下载免费PDF全文
Fatty acid degradation was investigated in Caulobacter crescentus, a bacterium that exhibits membrane-mediated differentiation events. Two strains of C. crescentus were shown to utilize oleic acid as sole carbon source. Five enzymes of the fatty acid beta-oxidation pathway, acyl-coenzyme A (CoA) synthase, crotonase, thiolase, beta-hydroxyacyl-CoA dehydrogenase, and acyl-CoA dehydrogenase, were identified. The activities of these enzymes were significantly higher in C. crescentus than the fully induced levels observed in Escherichia coli. Growth in glucose or glucose plus oleic acid decreased fatty acid uptake and lowered the specific activity of the enzymes involved in beta-oxidation by 2- to 3-fold, in contrast to the 50-fold glucose repression found in E. coli. The mild glucose repression of the acyl-CoA synthase was reversed by exogenous dibutyryl cyclic AMP. Acyl-CoA synthase activity was shown to be the same in oleic acid-grown cells and in cells grown in the presence of succinate, a carbon source not affected by catabolite repression. Thus, fatty acid degradation by the beta-oxidation pathway is constitutive in C. crescentus and is only mildly affected by growth in the presence of glucose. Tn5 insertion mutants unable to form colonies when oleic acid was the sole carbon source were isolated. However, these mutants efficiently transported fatty acids and had beta-oxidation enzyme levels comparable with that of the wild type. Our inability to obtain fatty acid degradation mutants after a wide search, coupled with the high constitutive levels of the beta-oxidation enzymes, suggest that fatty acid turnover, as has proven to be the case fatty acid biosynthesis, might play an essential role in membrane biogenesis and cell cycle events in C. crescentus.  相似文献   

20.
Spontaneous mutants resistant to vanadate, arsenate or thiophosphate were isolated from a haploid strain of Saccharomyces cerevisiae. These three anions have an inhibitory effect on some mitochondrial functions and at the level of glyceraldehyde 3-phosphate dehydrogenase, a glycolysis enzyme. All the selected mutants had the same phenotype: they were deficient in alcohol dehydrogenase I, the terminal enzyme of the glycolysis, and possessed a high content of cytochrome c oxidase, the terminal enzyme of the respiratory chain. Moreover, cytochrome c oxidase biosynthesis had become insensitive to the catabolite repression, while the biosynthesis of the other enzymes sensitive to this phenomenon were always inhibited by glucose. Metabolic effects of this pleiotropic mutation manifested themselves in the following ways. 1. Growth rate and final cell mass were enhanced, compared to the wild type, when cells were grown on glucose or on glycerol, but not on lactate or ethanol. 2. Growth under anaerobiosis was nil and mutants did not ferment. 3. Mitochondrial respiration of the mutant strains was identical to the wild type with succinate or 2-oxo-glutarate as substrate, and weak with ethanol. But with added NADH, respiration rate of the mutants was higher than that of the wild type and partially insensitive to antimycin, even when cells were grown in repression conditions. It is postulated that in mutants strains, NADH produced at the level of glyceraldehyde 3-phosphate dehydrogenase, failing to be reoxidized via alcohol dehydrogenase, could be reoxidized with a high turnover owing to the enhancement of the amount of cytochrome c oxidase. Since NADH reoxidation is partially insensitive to antimycin, a secondary pathway going from external NADH dehydrogenase to cytochrome c oxidase is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号