首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D-Lactate dehydrogenase from the extreme halophilic archaebacterium Halobacterium marismortui has been partially purified by ammonium-sulfate fractionation, hydrophobic and ion exchange chromatography. Catalytic activity of the enzyme requires salt concentrations beyond 1M NaCl: optimum conditions are 4M NaCl or KCl, pH 6-8, 50 degrees C. Michaelis constants for NADH and pyruvate under optimum conditions of enzymatic activity are 0.070 and 4.5mM, respectively. As for other bacterial D-specific lactate dehydrogenases, fructose 1,6-bisphosphate and divalent cations (Mg2+, Mn2+) do not affect the catalytic activity of the enzyme. As shown by gel-filtration and ultracentrifugal analysis, the enzyme under the conditions of the enzyme assay is a dimer with a subunit molecular mass close to 36 kDa. At low salt concentrations (less than 1M), as well as high concentrations of chaotropic solvent components and low pH, the enzyme undergoes reversible deactivation, dissociation and denaturation. The temperature dependence of the enzymatic activity shows non-linear Arrhenius behavior with activation energies of the order of 90 and 25 kJ/mol at temperatures below and beyond ca. 30 degrees C. In the presence of high salt, the enzyme exhibits exceptional thermal stability; denaturation only occurs at temperatures beyond 55 degrees C. The half-time of deactivation at 70 and 75 degrees C is 300 and 15 min, respectively. Maximum stability is observed at pH 7.5-9.0.  相似文献   

2.
The effect of temperature on the rate constants of hydrolysis of various substrates by penicillopepsin is dependent on the length of the substrate. For the series Ac-(Ala)m-Lys-Nph-(Ala)n-amide (where Ac- is acetyl- and Nph- is p-nitrophenylalanyl-), where m and n = 0-2, substrates lacking both P'2 and P3 residues give linear Arrhenius plots with an energy of activation of about 55 kJ.mol-1. The Arrhenius plots of substrates in which an alanine residue occupies P'2 show a sharp break at an average transition temperature of 10.5 degrees C. The activation energies are approximately 90 kJ.mol-1 below and approximately 54 kJ.mol-1 above the transition temperature, respectively. For substrates in which P3 is occupied, the average transition temperature is 14.2 degrees C. In this case, the activation energies are 66 kJ.mol-1 below and from 26 to 39 kJ.mol-1 above the transition point. The most probable explanation of these phenomena is that substrate interaction at subsites S3 and/or S'2 of the enzyme induces a temperature-dependent conformational change. Physical evidence for this comes from the observation that the temperature dependence of a CD absorption band at 242 nm of a penicillopepsin-pepstatin complex shows a sharp break that corresponds to those observed in the Arrhenius plots of substrates with alanine at P'2 and P3, whereas the same CD band in the free enzyme is linearly dependent on temperature.  相似文献   

3.
An an initial stage in the study of proteins from thermophilic algae, the enzyme ribulose 1,5-bisphosphate carboxylase 2-phospho-D-glycerate carboxylyase (dimerizing, EC 4.1.1.39) was purified 11-fold from the thermophilic alga Cyandium caldarium, with a 24% recovery. This purified enzyme appeared homogeneous on polyacrylamide gels and could be dissociated into two subunit types of molecular weights 55,000 and 14,900. The optimal assay temperature was 42.5 degrees C, whilst enzyme purified from Chlorella spp. showed maximum activity at 35 degrees C. The thermostability of Cyanidium ribulose 1,5-bisphosphate carboxylase was considerably greater than that of the Chlorella enzyme, and the presence of Mg2+ and HCO-3 further enhanced this heat stability. A break in the Arrhenius plot occured at 20 degrees C for Chlorella ribulose 1,5-bisphosphate carboxylase and 36 degrees C for the enzyme from Cyanidium. It is suggested that the thermostability of Cyanidium ribulose 1,5-bisphosphate carboxylase is a result of an inherent stability of the enzyme molecule which permits efficient CO2 fixation at high temperatures but results in low activity in the mesophilic temperature range.  相似文献   

4.
The binding of Streptomyces subtilisin inhibitor (SSI) to alpha-chymotrypsin (CT) (EC 3.4.21.1) was studied by isothermal and differential scanning calorimetry at pH 7.0. Thermodynamic quantities for the binding of SSI to the enzyme were derived as functions of temperature from binding constants (S. Matsumori, B. Tonomura, and K. Hiromi, private communication) and isothermal calorimetric experiments at 5-30 degrees C. At 25 degrees C, the values are delta G degrees b = -29.9 kJ mol-1, delta Hb = +18.7 (+/- 1.3) kJ mol-1, delta S degrees b = +0.16 kJ K-1 mol-1, and delta C p,b = -1.08 (+/- 0.11) kJ mol-1. The binding of SSI to CT is weak compared with its binding to subtilisin [Uehara, Y., Tonomura, B., & Hiromi, K. (1978) J. Biochem. (Tokyo) 84, 1195-1202; Takahashi, K., & Fukada, H. (1985) Biochemistry 24, 297-300]. This difference is due primarily to a less favorable enthalpy change in the formation of the complex with CT. The hydrophobic effect is presumably the major source of the entropy and heat capacity changes which accompany the binding process. The unfolding temperature of the complex is about 7 degrees C higher than that of the free enzyme. The enthalpy and the heat capacity changes for the unfolding of CT were found to be 814 kJ mol-1 and 17.3 kJ K-1 mol-1 at 49 degrees C. The same quantities for the unfolding of the SSI-CT complex are 1183 kJ mol-1 and 39.2 kJ K-1 mol-1 at 57 degrees C.  相似文献   

5.
A new restriction endonuclease SuaI was isolated from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. The enzyme is an isoschizomer of BspR1; it recognizes tetranucleotide GGCC and cleaves DNA in the center of this sequence. SuaI requires Mg2+, the optimal concentration being 6 mM. KCl at concentrations above 25 mM significantly inhibits the enzyme activity. The pH optimum lies within the range of 6--7 at 70 degrees C, the temperature optimum is at 70--75 degrees C. The enzyme is highly stable at temperatures up to 80 degrees C. DNA of S. acidocaldarius is not cleaved by the enzyme.  相似文献   

6.
The effect of temperature on the activity and structural stability of an acid phosphatase (EC 3.1.3.2.) purified from castor bean (Ricinus communis L.) seeds have been examined. The enzyme showed high activity at 45 degrees C using p-nitrophenylphosphate (p-NPP) as substrate. The activation energy for the catalyzed reaction was 55.2 kJ mol(-1) and the enzyme maintained 50% of its activity even after 30 min at 55 degrees C. Thermal inactivation studies showed an influence of pH in the loss of enzymatic activity at 60 degrees C. A noticeable protective effect from thermal inactivation was observed when the enzyme was preincubated, at 60 degrees C, with the reaction products inorganic phosphate-P (10 mM) and p-nitrophenol-p-NP(10 mM). Denaturation studies showed a relatively high transition temperature (Tm) value of 75 degrees C and an influence of the combination of Pi (10 mM) and p-NP (10 mM) was observed on the conformational behaviour of the macromolecule.  相似文献   

7.
Carbamate kinase has been prepared from Lactobacillus buchneri NCDO110. An approximately 91-fold increase in the specific activity of the enzyme was achieved. The purified extract exhibited a single band following polyacrylamide gel electrophoresis. The apparent molecular weight as determined by gel electrophoresis was about 97,000. The enzyme is stable for 2 weeks at -20 degrees C. Maximum enzymatic activity was observed at 30 degrees C and pH 5.4 in 0.1 M acetate buffer. L. buchneri carbamate kinase requires Mg2+ or Mn2+; its activity is higher with Mn2+. The activation energy of the reaction was 4078 cal mol-1 for the reaction with Mn2+ and 3059 cal mol-1 for the reaction with Mg2+. From a Dixon plot a pK value of 4.8 was calculated. The apparent Km values for ADP with Mg2+ or Mn2+ were 0.71 X 10(-3) and 1.17 X 10(-3) M, respectively, and the apparent Km values for carbamyl phosphate with Mg2+ or Mn2+ were 1.63 X 10(-3) and 1.53 X 10(-3) M, respectively. ATP and CTP acted as inhibitors of this reaction and the following values were obtained: Ki (ATP)Mg2+ = 9.4 mM, Ki (ATP)Mn2+ = 6.2 mM, and Ki (CTP)Mg2+ = 4.4 mM.  相似文献   

8.
The enthalpy change for the hydrolysis of phosphorylcreatine (PCr) by hydrochloric acid or by alkaline phosphatase was observed at 0, 25, and 37 degrees C. The value for delta H is -44 kJ mol-1 under alkaline, Mg2+-free conditions and is almost independent of temperature, ionic strength, and concentration of reactants. In muscle the reaction is accompanied by a transfer of protons from the buffers (largely histidine) to orthophosphate, release of Mg2+ from PCr, and binding of Mg2+ to orthophosphate. Measurements are reported of the heats of these processes. The calculated value of the overall heat of hydrolysis of PCr (including these processes) at pH 7, pMg 3 is -35 kJ mol-1.  相似文献   

9.
Phosphate acetyltransferase (PTA) and acetate kinase (AK) of the hyperthermophilic eubacterium Thermotoga maritima have been purified 1,500- and 250-fold, respectively, to apparent homogeneity. PTA had an apparent molecular mass of 170 kDa and was composed of one subunit with a molecular mass of 34 kDa, suggesting a homotetramer (alpha4) structure. The N-terminal amino acid sequence showed significant identity to that of phosphate butyryltransferases from Clostridium acetobutylicum rather than to those of known phosphate acetyltransferases. The kinetic constants of the reversible enzyme reaction (acetyl-CoA + Pi -->/<-- acetyl phosphate + CoA) were determined at the pH optimum of pH 6.5. The apparent Km values for acetyl-CoA, Pi, acetyl phosphate, and coenzyme A (CoA) were 23, 110, 24, and 30 microM, respectively; the apparent Vmax values (at 55 degrees C) were 260 U/mg (acetyl phosphate formation) and 570 U/mg (acetyl-CoA formation). In addition to acetyl-CoA (100%), the enzyme accepted propionyl-CoA (60%) and butyryl-CoA (30%). The enzyme had a temperature optimum at 90 degrees C and was not inactivated by heat upon incubation at 80 degrees C for more than 2 h. AK had an apparent molecular mass of 90 kDa and consisted of one 44-kDa subunit, indicating a homodimer (alpha2) structure. The N-terminal amino acid sequence showed significant similarity to those of all known acetate kinases from eubacteria as well that of the archaeon Methanosarcina thermophila. The kinetic constants of the reversible enzyme reaction (acetyl phosphate + ADP -->/<-- acetate + ATP) were determined at the pH optimum of pH 7.0. The apparent Km values for acetyl phosphate, ADP, acetate, and ATP were 0.44, 3, 40, and 0.7 mM, respectively; the apparent Vmax values (at 50 degrees C) were 2,600 U/mg (acetate formation) and 1,800 U/mg (acetyl phosphate formation). AK phosphorylated propionate (54%) in addition to acetate (100%) and used GTP (100%), ITP (163%), UTP (56%), and CTP (21%) as phosphoryl donors in addition to ATP (100%). Divalent cations were required for activity, with Mn2+ and Mg2+ being most effective. The enzyme had a temperature optimum at 90 degrees C and was stabilized against heat inactivation by salts. In the presence of (NH4)2SO4 (1 M), which was most effective, the enzyme did not lose activity upon incubation at 100 degrees C for 3 h. The temperature optimum at 90 degrees C and the high thermostability of both PTA and AK are in accordance with their physiological function under hyperthermophilic conditions.  相似文献   

10.
The effect of temperature on the apparent equilibrium constant of creatine kinase (ATP:creatine N-phosphotransferase (EC 2.7.3.2)) was determined. At equilibrium the apparent K' for the biochemical reaction was defined as [formula: see text] The symbol sigma denotes the sum of all the ionic and metal complex species of the reactant components in M. The K' at pH 7.0, 1.0 mM free Mg2+, and ionic strength of 0.25 M at experimental conditions was 177 +/- 7.0, 217 +/- 11, 255 +/- 10, and 307 +/- 13 (n = 8) at 38, 25, 15, and 5 degrees C, respectively. The standard apparent enthalpy or heat of the reaction at the specified conditions (delta H' degree) was calculated from a van't Hoff plot of log10K' versus 1/T, and found to be -11.93 kJ mol-1 (-2852 cal mol-1) in the direction of ATP formation. The corresponding standard apparent entropy of the reaction (delta S' degree) was +4.70 J K-1 mol-1. The linear function (r2 = 0.99) between log10 K' and 1/K demonstrates that both delta H' degree and delta S' degree are independent of temperature for the creatine kinase reaction, and that delta Cp' degree, the standard apparent heat capacity of products minus reactants in their standard states, is negligible between 5 and 38 degrees C. We further show from our data that the sign and magnitude of the standard apparent Gibbs energy (delta G' degree) of the creatine kinase reaction was comprised mostly of the enthalpy of the reaction, with 11% coming from the entropy T delta S' degree term. The thermodynamic quantities for the following two reference reactions of creatine kinase were also determined. [formula: see text] The delta H degree for Reaction 2 was -16.73 kJ mol-1 (-3998 cal mol-1) and for Reaction 3 was -23.23 kJ mol-1 (-5552 cal mol-1) over the temperature range 5-38 degrees C. The corresponding delta S degree values for the reactions were +110.43 and +83.49 J K-1 mol-1, respectively. Using the delta H' degree of -11.93 kJ mol-1, and one K' value at one temperature, a second K' at a second temperature can be calculated, thus permitting bioenergetic investigations of organs and tissues using the creatine kinase equilibria over the entire physiological temperature range.  相似文献   

11.
Thermoanaerobacter ethanolicus 39E secondary-alcohol dehydrogenase (2 degrees ADH) was optimally active near 90 degrees C displaying thermostability half-lives of 1.2 days, 1.7 h, 19 min, 9.0 min, and 1.3 min at 80 degrees C, 90 degrees C, 92 degrees C, 95 degrees C, and 99 degrees C, respectively. Enzyme activity loss upon heating (90-100 degrees C) was accompanied by precipitation, but the soluble enzyme remaining after partial inactivation retained complete activity. Enzyme thermoinactivation was modeled by a pseudo-first order rate equation suggesting that the rate determining step was unimolecular with respect to protein and thermoinactivation preceded aggregation. The apparent 2 degrees ADH melting temperature (T(m)) occurred at approximately 115 degrees C, 20 degrees C higher than the temperature for maximal activity, suggesting that it is completely folded in its active temperature range. Thermodynamic calculations indicated that the active folded structure of the 2 degrees ADH is stabilized by a relatively small Gibbs energy (triangle upG(stab.)(double dagger) = 110 kJ mol(-1)). 2 degrees ADH catalytic activities at 37 degrees C to 75 degrees C, were 2-fold enhanced by guanidine hydrochloride (GuHCl) concentrations between 120 mM and 190 mM. These results demonstrate the extreme resistance of this thermophilic 2 degrees ADH to thermal or chemical denaturation; and suggest increased temperature or GuHCl levels seem to enhance protein fixability and activity.  相似文献   

12.
The thermodynamics of the equilibria between aqueous ribose, ribulose, and arabinose were investigated using high-pressure liquid chromatography and microcalorimetry. The reactions were carried out in aqueous phosphate buffer over the pH range 6.8-7.4 and over the temperature range 313.15-343.75 K using solubilized glucose isomerase with either Mg(NO3)2 or MgSO4 as cofactors. The equilibrium constants (K) and the standard state Gibbs energy (delta G degrees) and enthalpy (delta H degrees) changes at 298.15 K for the three equilibria investigated were found to be: ribose(aq) = ribulose(aq) K = 0.317, delta G degrees = 2.85 +/- 0.14 kJ mol-1, delta H degrees = 11.0 +/- 1.5 kJ mol-1; ribose(aq) = arabinose(aq) K = 4.00, delta G degrees = -3.44 +/- 0.30 kJ mol-1, delta H degrees = -9.8 +/- 3.0 kJ mol-1; ribulose(aq) = arabinose(aq) K = 12.6, delta G degrees = -6.29 +/- 0.34 kJ mol-1, delta H degrees = -20.75 +/- 3.4 kJ mol-1. Information on rates of the above reactions was also obtained. The temperature dependencies of the equilibrium constants are conveniently expressed as R in K = -delta G degrees 298.15/298.15 + delta H degrees 298.15[(1/298.15)-(1/T)] where R is the gas constant (8.31441 J mol-1 K-1) and T the thermodynamic temperature.  相似文献   

13.
The kinetic and thermodynamic properties of ascorbate oxidase (AO) activity and stability of a Cucurbita maxima extract were investigated. Activity tests performed at 25 degrees C using initial ascorbic acid concentration in the range 50-750 M allowed estimating the Michaelis constant for this substrate (Km = 126 microM) and the maximum initial rate of ascorbic acid oxidation (A0,max = 1.57 mM min-1). The main thermodynamic parameters of the enzyme reaction (DeltaH* = 10.3 kJ mol-1; DeltaG* = 87.2 kJ mol-1; DeltaS* = -258 J mol-1 K-1) were estimated through activity tests performed at 25-48 C. Within such a temperature range, no decrease in the initial reaction rate was detected. The long-term thermostability of the raw extract was then investigated by means of residual activity tests carried out at 10-70 degrees C, which allowed estimating the thermodynamic parameters of the irreversible enzyme inactivation as well (DeltaH*D = 51.7 kJ mol-1; DeltaG*D = 103 kJ mol-1; S*D = -160 J mol-1 K-1). Taking into account the specific rate of AO inactivation determined at different temperatures, we also estimated the enzyme half-life (1047 min at 10 degrees C and 21.2 min at 70 degrees C) and predicted the integral activity of a continuous system using this enzyme preparation. This work should be considered as a preliminary attempt to characterize the AO activity of a C. maxima extract before its concentration by liquid-liquid extraction techniques.  相似文献   

14.
Nitrogen starvation enhances up to 8-fold the cellular level of the NADP+-dependent isocitrate dehydrogenase activity (isocitrate:NADP+ oxidoreductase (decarboxylating), IDH, EC 1.1.1.42) in the thermophilic filamentous non-N2-fixing cyanobacterium Phormidium laminosum. The enzyme was purified 650-fold to electrophoretic homogeneity from nitrogen-starved cells with an activity yield of 25% and a specific activity of 500 U (mg protein)-1. The native enzyme showed a pI of 5.9 and it was a dimer of 107 kDa consisting of two identical subunits of 53 kDa. The activity required the presence of a divalent metal cation as an essential activator, Mn2+ or Mg2+ being the most effective. The optimum temperature for activity was 55 degrees C and the Ea for catalysis was 39.7 kJ mol-1. An optimum pH for activity of 8.5 was found and the calculated pKE1, pKE2 and pKES1 of enzyme ionisation groups were 6.0, 8.9 and 6.3, respectively. Km values of 22, 50 and 24 microM were calculated for d,l-isocitrate, NADP and Mn2+, respectively, in the Mn2+-dependent reaction and 70, 32 and 159 microM for d,l-isocitrate, NADP and Mg2+, respectively, in the Mg2+-dependent reaction. The decarboxylating activity was inhibited by ATP, ADP and by its reaction products 2-oxoglutarate and NADPH2. Polyclonal antibodies raised against the pure IDH were used to assess the presence of the enzyme in cells subjected to nitrogen starvation.  相似文献   

15.
By incubating native (N) transglutaminase from guinea-pig liver at various temperatures and assaying it at 25 degrees C, two steps in the irreversible deactivation process to the denatured form (D) have been found. The fitting of the data to the equations of two possible models (the two-steps model and the two-isoenzymes model) is only compatible with the first one (N----X----D). It is shown that the structure of the active intermediate, X, depends on the deactivation temperature and on the thermal history of the enzyme. This may mean that transglutaminase exists in a large number of microstates. Surprisingly, the activation energy of deactivation is lower than that of activity (36.6 +/- 3.4 against 47.2 +/- 2.2 kJ.mol-1). By deactivating transglutaminase at a constant temperature (55 degrees C) and assaying it at variable temperatures, the activation energy of the intermediate, (X55), has been determined to be 40.2 +/- 5 kJ.mol-1, of the same order of magnitude as the native form. Among several agents assayed, only Ca2+ had a positive effect on the thermal stability of this enzyme. At 40 degrees C, transglutaminase was quite stable in the presence of Ca2+ (in its absence, the half-life was 65 min) and at 45 degrees C, its thermostability had been considerably increased, the half-life being raised from 47 min to 275 min.  相似文献   

16.
A crude preparation of PEP carboxylase (EC 4.1.1.31) from the yellow lupin roots exhibits the pH optimum of activity within the range of 7.4-8.6 and the temperature optimum at 32 - 40 degrees C. Its Km for PEP is 0.1 mM, and Km for HCO3- is 0.7 mM. The affinity of the enzyme towards Mg2+ diminishes with the metal ion concentration. At the concentration of Mg2+ below 0.5 mM Km for Mg2+ is 0.07 mM and at the Mg2+ concentration over 1.5 mM it rises to 0.47 mM. The Hill coefficients are 0.37 and 0.88, respectively. Among several compounds affecting the PEP carboxylase activity, such as organic acids, amino acids, and sugar phosphates, at physiological pH (7.0 and 7.8), malate shows the strongest inhibition of a competitive character, its Ki being 2 mM. Also acidic amino acids strongly inhibit the enzyme activity, aspartate being more effective than glutamate. Glucose 6-phosphate and fructose 1,6-diphosphate markedly activate the enzyme. Both the inhibition by malate, aspartate and glutamate, and the activation by sugar phosphates rises considerably when pH is decreased from 7.8 to 7.0. Malonate scarcely affects the enzyme.  相似文献   

17.
A DNA-dependent RNA polymerase has been isolated from Caldariella acidophila, a thermophilic bacterium living in acidic hot springs at temperatures ranging from 63 to 89 degrees C. The enzyme was purified 180-fold and is composed of five different subunits having the following molecular weights: a = 127000, b = 120000, c = 72000, d = 65000, and e = 38000. The enzyme is activated by Mn2+ and Mg2+ and exhibits optimal activity in the presence of 0.5 mM Mn2+. The activity depends on ionic strength, with a maximum at 0.25 M KCl, and exhibits a pH optimum at 7.8 in the presence of Tris-HCl buffer. The enzyme shows a high degree of thermophilicity, its temperature optimum being 80 degrees C in the in vitro assay. The thermophilicity of C. acidophila RNA polymerase allows studies on enzyme-template interactions to be performed in a temperature range where many templates are close to their Tm.  相似文献   

18.
Beta-N-acetyl-D-glucosaminidase was purified from viscera of green crab (Scylla serrata) by extraction with 0.01 M Tris-HCl buffer (pH 7.5) containing 0.2 M NaCl, ammonium sulfate fractionation, and then chromatography on Sephadex G-100 and DEAE-cellulose (DE-32). The purified enzyme showed a single band on polyacrylamide gel electrophoresis, and the specific activity was determined to be 7990 U/mg. The molecular weight of the whole enzyme was determined to be 132.0 kD, and the enzyme is composed of two identical subunits with molecular mass of 65.8 kD. The optimum pH and optimum temperature of the enzyme for the hydrolysis of p-nitrophenyl-N-acetyl-beta-D-glucosaminide (pNP-NAG) were found to be at pH 5.6 and at 50 degrees C, respectively. The study of its stability showed that the enzyme is stable in the pH range from 4.6 to 8.6 and at temperatures below 45 degrees C. The kinetic behavior of the enzyme in the hydrolysis of pNP-NAG followed Michaelis-Menten kinetics with Km of 0.424 +/- 0.012 mM and Vmax of 17.65 +/- 0.32 micromol/min at pH 5.8 and 37 degrees C, and the activation energy was determined to be 61.32 kJ/mol. The effects of some metal ions on the enzyme were surveyed, and the results show that Na+ and K+ have no effects on the enzyme activity; Mg2+ and Ca2+ slightly activate the enzyme, while Ba2+, Zn2+, Mn2+, Hg2+, Pb2+, Cu2+, and Al3+ inhibit the enzyme to different extents.  相似文献   

19.
High-level production of recombinant glucose isomerase (rGI) is desirable for lactulose synthesis. In this study, the xylA gene encoding glucose isomerase from Actinoplanes missouriensis CICIM B0118(A) was cloned and expressed in E. coli BL21(DE3), and high-level production was performed by optimization of the medium composition. rGI was purified from a recombinant E. coli BL21(DE3) and characterized. The optimum pH value of the purified enzyme was 8.0 and it was relatively stable within the pH range of 7.0-9.0. Its optimum temperature was around 85 degrees C, and it exhibited good thermostability when the temperature was lower than 90 degrees C. The maximum enzyme activity required the presence of both Co2+ and Mg2+, at the concentrations of 200 microM and 8 mM, respectively. With high-level expression and the simple one-step chromatographic purification of the His-tagged recombinant enzyme, this GI could be used in industrial production of lactulose as a potential economic tool.  相似文献   

20.
The effect of Mg2+ on the thermal inactivation and unfolding of rabbit muscle creatine kinase has been studied for various temperatures and Mg2+ concentrations. Increasing the Mg2+ concentration in the denatured system significantly enhanced the inactivation and unfolding of creatine kinase during thermal denaturation. The analysis of the kinetic course of substrate reaction during thermal inactivation showed that at 47 degrees C the increased free Mg2+ concentration caused the creatine kinase inactivation rate to increase. Increasing the temperature strengthened the effect of Mg2+ on the thermal inactivation. Control experiments showed that treating native creatine kinase with different concentrations of Mg2+ did not change the enzymatic activity. The fluorescence emission spectra showed that the emission maximum for creatine kinase red-shifted from 335 to 337 nm during thermal denaturation at 47 degrees C for 10 min, while the presence of 3 mM Mg2+ caused the enzyme emission maximum to red-shift from 335 to 342.5 nm for the same thermal denaturation conditions. In addition, Mg2+ also enhanced the unfolding of the equilibrium state and decreased the time required to reach the equilibrium state of creatine kinase at 47 degrees C. The potential biological significance of these results are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号