首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MOTIVATION: Identification of novel G protein-coupled receptors and other multi-transmembrane proteins from genomic databases using structural features. RESULTS: Here we describe a new algorithm for identifying multi-transmembrane proteins from genomic databases with a specific application to identifying G protein-coupled receptors (GPCRs) that we call quasi-periodic feature classifier (QFC). The QFC algorithm uses concise statistical variables as the 'feature space' to characterize the quasi-periodic physico-chemical properties of multi-transmembrane proteins. For the case of identifying GPCRs, the variables are then used in a non-parametric linear discriminant function to separate GPCRs from non-GPCRs. The algorithm runs in time linearly proportional to the number of sequences, and performance on a test dataset shows 96% positive identification of known GPCRs. The QFC algorithm also works well with short random segments of proteins and it positively identified GPCRs at a level greater than 90% even with segments as short as 100 amino acids. The primary advantage of the algorithm is that it does not directly use primary sequence patterns which may be subject to sampling bias. The utility of the new algorithm has been demonstrated by the isolation from the Drosophila genome project database of a novel class of seven-transmembrane proteins which were shown to be the elusive olfactory receptor genes of Drosophila.  相似文献   

2.
Classically, G protein-coupled receptors (GPCRs) relay signals by directly activating heterotrimeric guanine nucleotide-binding proteins (G proteins). Increasing evidence indicates that GPCRs may also signal through G protein-independent pathways. JAK/STATs, Src-family tyrosine kinases, GRKs/beta-arrestins, and PDZ domain-containing proteins have been suggested to directly relay signals from GPCRs independent of G proteins. In addition, our laboratory recently reported that the beta(2) adrenergic receptor (beta(2)AR) could switch from G protein-coupled to G protein-independent ERK (extracellular signal-regulated kinase) activation in an agonist dosage-dependent manner. This finding provides a novel mechanism for G protein-independent GPCR signaling. This review focuses on recent progress in understanding the mechanisms by which G protein-independent GPCR signaling occurs.  相似文献   

3.
Olfaction in Drosophila is mediated by a large family of membrane-bound odorant receptor proteins (Ors). In heterologous cells, we investigated whether the structural features and signalling mechanisms of ligand-binding Drosophila Ors are consistent with them being G protein-coupled receptors (GPCRs). The detailed membrane topology of Or22a was determined by inserting epitope tags into the termini and predicted loop regions. Immunocytochemistry experiments in Drosophila S2 cells imply that Or22a has seven transmembrane domains but that its membrane topology is opposite to that of GPCRs, with a cytoplasmic N-terminus and extracellular C-terminus. To investigate Or signalling mechanisms, we expressed Or43b in Sf9 and HEK293 cells, and show that inhibitors of heterotrimeric G proteins (GDP-beta-S), adenylate cyclase (SQ22536), guanylyl cyclase (ODQ), cyclic nucleotide phosphodiesterases (IBMX) and phospholipase C (U73122) have negligible impact on Or43b responses. Whole cell patching of Or43b/Or83b-transfected HEK293 cells revealed the opening of plasma membrane cation channels on addition of ligand. The response was blocked by lanthanum and by 2-APB, but not by Ruthenium red or SKF96365. Based on these data, we conclude that Drosophila Ors comprise a novel family of seven transmembrane receptors that in HEK293 cells signal by opening cation channels, through a mechanism that is largely independent of G proteins.  相似文献   

4.
G protein-coupled glutamate receptors (mGluR) have recently been characterized. These receptors have seven putative transmembrane domains, but display no sequence homology with the large family of G protein-coupled receptors. They constitute therefore a new family of receptors. Whereas mGluR1 and mGluR5 activate phospholipase C (PLC), mGluR2, mGluR3, mGluR4 and mGluR6 inhibit adenylyl cyclase (AC) activity. The third putative intracellular loop, which determines the G protein specificity in many G protein-coupled receptors, is highly conserved among mGluRs, and may therefore not be involved in the specific recognition of G proteins in this receptor family. By constructing chimeric receptors between the AC-coupled mGluR3 and the PLC-coupled mGluR1c, we report here that both the C-terminal end of the second intracellular loop and the segment located downstream of the seventh transmembrane domain are necessary for the specific activation of PLC by mGluR1c. These two segments are rich in basic residues and are likely to be amphipathic alpha-helices, two characteristics of the G protein interacting domains of all G protein-coupled receptors. This indicates that whereas no amino acid sequence homology between mGluRs and the other G protein-coupled receptors can be found, their G protein interacting domains have similar structural features.  相似文献   

5.
Recent years have seen long-awaited progress in understanding of the molecular mechanisms of taste perception in insects. The breakthrough came in the early 2000 with the identification of a novel family of candidate gustatory receptor (Gr) genes in the first release of the Drosophila melanogaster genome sequence. The 60 Gr genes are expressed in the subsets of gustatory neurons in the fly's taste organs and, without exception, encode heptahelical G protein-coupled receptors (GPCRs). Here I review our current knowledge about Gr genes and their products focusing on the newly emerging information regarding the function of the Gr-encoded proteins.  相似文献   

6.
By using degenerate oligonucleotide primers deduced from the conserved regions of the mammalian somatostatin receptors, a novel G-protein-coupled receptor from Drosophila melanogaster has been isolated exhibiting structural similarities to mammalian somatostatin/galanin/opioid receptors. To identify the bioactive ligand, a 'reverse physiology' strategy was used whereby orphan Drosophila receptor-expressing frog oocytes were screened against potential ligands. Agonistic activity was electrophysiologically recorded as inward potassium currents mediated through co-expressed G-protein-gated inwardly rectifying potassium channels (GIRK). Using this approach a novel peptide was purified from Drosophila head extracts. Mass spectrometry revealed an octapeptide of 925 Da with a sequence Ser-Arg-Pro-Tyr-Ser-Phe-Gly-Leu-NH(2) reminiscent of insect allatostatin peptides known to control diverse functions such as juvenile hormone synthesis during metamorphosis or visceral muscle contractions. Picomolar concentrations of the synthesized octapeptide activated the cognate receptor response mediated through GIRK1, indicating that we have isolated the 394-amino-acid Drosophila allatostatin receptor which is coupled to the Gi/Go class of G proteins.  相似文献   

7.
Cloning and characterization of a Drosophila tyramine receptor.   总被引:7,自引:3,他引:4       下载免费PDF全文
Receptors for biogenic amines such as dopamine, serotonin and epinephrine belong to the family of receptors that interact with G proteins and share a putative seven transmembrane domain structure. Using a strategy based on nucleotide sequence homology between the corresponding genes, we have isolated Drosophila cDNA clones encoding a new member of the G protein-coupled receptor family. This protein exhibits highest homology to the human alpha 2 adrenergic receptors, the human 5HT1A receptor and a recently cloned Drosophila serotonin receptor. The corresponding mRNA is found predominantly in adult Drosophila heads. Membranes from mammalian cells expressing this receptor displayed high affinity binding sites for [3H]yohimbine, an alpha 2 adrenergic receptor antagonist (Kd = 4.45 x 10(-9) M). Tyramine was the most efficient of the putative Drosophila neurotransmitters at displacing [3H]yohimbine binding (EC50 = 1.25 x 10(-6) M). Furthermore tyramine induced an inhibition of adenylate cyclase activity in NIH 3T3 cells expressing this receptor. The Drosophila tyramine receptor that we have isolated might therefore be an invertebrate equivalent of the mammalian alpha 2 adrenergic receptors.  相似文献   

8.
The Drosophila Genome Project database contains a gene, CG7431, annotated to be an "unclassifiable biogenic amine receptor." We have cloned this gene and expressed it in Chinese hamster ovary cells. After testing various ligands for G protein-coupled receptors, we found that the receptor was specifically activated by tyramine (EC(50), 5x10(-7)M) and that it showed no cross-reactivity with beta-phenylethylamine, octopamine, dopa, dopamine, adrenaline, noradrenaline, tryptamine, serotonin, histamine, and a library of 20 Drosophila neuropeptides (all tested in concentrations up to 10(-5) or 10(-4)M). The receptor was also expressed in Xenopus oocytes, where it was, again, specifically activated by tyramine with an EC(50) of 3x10(-7)M. Northern blots showed that the receptor is already expressed in 8-hour-old embryos and that it continues to be expressed in all subsequent developmental stages. Adult flies express the receptor both in the head and body (thorax/abdomen) parts. In addition to the Drosophila tyramine receptor gene, CG7431, we found another closely related Drosophila gene, CG16766, that probably also codes for a tyramine receptor. Furthermore, we annotated similar tyramine-like receptor genes in the genomic databases from the malaria mosquito Anopheles gambiae and the honeybee Apis mellifera. These four tyramine or tyramine-like receptors constitute a new receptor family that is phylogenetically distinct from the previously identified insect octopamine/tyramine receptors. The Drosophila tyramine receptor is, to our knowledge, the first cloned insect G protein-coupled receptor that appears to be fully specific for tyramine.  相似文献   

9.
Heterotrimeric G proteins are peripheral membrane proteins that propagate signals from membrane receptors to regulatory proteins localized in distinct cellular compartments. To facilitate signal amplification, G proteins are in molar excess with respect to G protein-coupled receptors. Because G proteins are capable of translocating from membrane to cytosol, protein-lipid interactions play a crucial role in signal transduction. Here, we studied the binding of heterotrimeric G proteins (Galphabetagamma) to model membranes (liposomes) and that of the entities formed upon receptor-mediated activation (Galpha and Gbetagamma). The model membranes used were composed of defined membrane lipids capable of organizing into either lamellar or nonlamellar (hexagonal H(II)) membrane structures. We demonstrated that although heterotrimeric G(i) proteins and Gbetagamma dimers can bind to lipid bilayers of phosphatidylcholine, their binding to membranes was markedly and significantly enhanced by the presence of nonlamellar phases of phosphatidylethanolamine. Conversely, activated G protein alpha subunits showed an opposite membrane binding behavior with a marked preference for lamellar membranes. These results have important consequences in cell signaling. First, the binding characteristics of the Gbetagamma dimer account for the lipid binding behavior and the cellular localization of heterotrimeric G proteins. Second, the distinct protein-lipid interactions of heterotrimeric G proteins, Gbetagamma dimers, and Galpha subunits with membrane lipids explain, in part, their different cellular mobilizations during signaling upon receptor activation. Finally, their differential interactions with lipids suggest an active role of the membrane lipid secondary structure in the propagation of signals through G protein-coupled receptors.  相似文献   

10.
Assembly and trafficking of heterotrimeric G proteins   总被引:5,自引:0,他引:5  
To be activated by cell surface G protein-coupled receptors, heterotrimeric G proteins must localize at the cytoplasmic surface of plasma membranes. Moreover, some G protein subunits are able to traffic reversibly from the plasma membrane to intracellular locations upon activation. This current topic will highlight new insights into how nascent G protein subunits are assembled and how they arrive at plasma membranes. In addition, recent reports have increased our knowledge of activation-induced trafficking of G proteins. Understanding G protein assembly and trafficking will lead to a greater understanding of novel ways that cells regulate G protein signaling.  相似文献   

11.
G protein-coupled receptors (GPCRs) are involved in most physiological processes, many of them being engaged in fully differentiated cells. These receptors couple to transducers of their own, primarily G proteins and β-arrestins, which launch intracellular signalling cascades. Some of these signalling events regulate the translational machinery to fine-tune general cell metabolism or to alter protein expression pattern. Though extensively documented for tyrosine kinase receptors, translational regulation by GPCRs is still poorly appreciated. The objective of this review paper is to address the following questions: i) is there a “GPCR signature” impacting on the translational machinery, and ultimately on the type of mRNA translated? ii) are the regulatory networks involved similar as those utilized by tyrosine kinase receptors? In particular, we will discuss the specific features of translational control mediated by GPCRs and highlight the intrinsic properties of GPCRs these mechanisms could rely on.  相似文献   

12.
In the central nervous system (CNS) of both vertebrates and invertebrates, biogenic amines are important neuroactive molecules. Physiologically, they can act as neurotransmitters, neuromodulators, or neurohormones. Biogenic amines control and regulate various vital functions including circadian rhythms, endocrine secretion, cardiovascular control, emotions, as well as learning and memory. In insects, amines like dopamine, tyramine, octopamine, serotonin, and histamine exert their effects by binding to specific membrane proteins that primarily belong to the superfamily of G protein-coupled receptors. Especially in Drosophila melanogaster and Apis mellifera considerable progress has been achieved during the last few years towards the understanding of the functional role of these receptors and their intracellular signaling systems. In this review, the present knowledge on the biochemical, molecular, and pharmacological properties of biogenic amine receptors from Drosophila and Apis will be summarized. Arch.  相似文献   

13.
Topological and functional characterization of an insect gustatory receptor   总被引:1,自引:0,他引:1  
Insect gustatory receptors are predicted to have a seven-transmembrane structure and are distantly related to insect olfactory receptors, which have an inverted topology compared with G-protein coupled receptors, including mammalian olfactory receptors. In contrast, the topology of insect gustatory receptors remains unknown. Except for a few examples from Drosophila, the specificity of individual insect gustatory receptors is also unknown. In this study, the total number of identified gustatory receptors in Bombyx mori was expanded from 65 to 69. BmGr8, a silkmoth gustatory receptor from the sugar receptor subfamily, was expressed in insect cells. Membrane topology studies on BmGr8 indicate that, like insect olfactory receptors, it has an inverted topology relative to G protein-coupled receptors. An orphan GR from the bitter receptor family, BmGr53, yielded similar results. We infer, from the finding that two distantly related BmGrs have an intracellular N-terminus and an odd number of transmembrane spans, that this is likely to be a general topology for all insect gustatory receptors. We also show that BmGr8 functions independently in Sf9 cells and responds in a concentration-dependent manner to the polyalcohols myo-inositol and epi-inositol but not to a range of mono- and di-saccharides. BmGr8 is the first chemoreceptor shown to respond specifically to inositol, an important or essential nutrient for some Lepidoptera. The selectivity of BmGr8 responses is consistent with the known responses of one of the gustatory receptor neurons in the lateral styloconic sensilla of B. mori, which responds to myo-inositol and epi-inositol but not to allo-inositol.  相似文献   

14.
G protein-coupled receptors (GPCRs) transmit signals by forming active-state complexes with heterotrimeric G proteins. It has been suggested that some GPCRs also assemble with G proteins before ligand-induced activation and that inactive-state preassembly facilitates rapid and specific G protein activation. However, no mechanism of preassembly has been described, and no functional consequences of preassembly have been demonstrated. Here we show that M(3) muscarinic acetylcholine receptors (M3R) form inactive-state complexes with G(q) heterotrimers in intact cells. The M3R C terminus is sufficient, and a six-amino-acid polybasic sequence distal to helix 8 ((565)KKKRRK(570)) is necessary for preassembly with G(q). Replacing this sequence with six alanine residues prevents preassembly, slows the rate of G(q) activation and decreases steady-state agonist sensitivity. That other G(q)-coupled receptors possess similar polybasic regions and also preassemble with G(q) suggests that these GPCRs may use a common preassembly mechanism to facilitate activation of G(q) heterotrimers.  相似文献   

15.
Olfactory receptors (Ors) convert chemical signals--the binding of odors and pheromones--to electrical signals through the depolarization of olfactory sensory neurons. Vertebrates Ors are G-protein-coupled receptors, stimulated by odors to produce intracellular second messengers that gate ion channels. Insect Ors are a heteromultimeric complex of unknown stoichiometry of two seven transmembrane domain proteins with no sequence similarity to and the opposite membrane topology of G-protein-coupled receptors. The functional insect Or comprises an odor- or pheromone-specific Or subunit and the Orco co-receptor, which is highly conserved in all insect species. The insect Or-Orco complex has been proposed to function as a novel type of ligand-gated nonselective cation channel possibly modulated by G-proteins. However, the Or-Orco proteins lack homology to any known family of ion channel and lack known functional domains. Therefore, the mechanisms by which odors activate the Or-Orco complex and how ions permeate this complex remain unknown. To begin to address the relationship between Or-Orco structure and function, we performed site-directed mutagenesis of all 83 conserved Glu, Asp, or Tyr residues in the silkmoth BmOr-1-Orco pheromone receptor complex and measured functional properties of mutant channels expressed in Xenopus oocytes. 13 of 83 mutations in BmOr-1 and BmOrco altered the reversal potential and rectification index of the BmOr-1-Orco complex. Three of the 13 amino acids (D299 and E356 in BmOr-1 and Y464 in BmOrco) altered both current-voltage relationships and K(+) selectivity. We introduced the homologous Orco Y464 residue into Drosophila Orco in vivo, and observed variable effects on spontaneous and evoked action potentials in olfactory neurons that depended on the particular Or-Orco complex examined. Our results provide evidence that a subset of conserved Glu, Asp and Tyr residues in both subunits are essential for channel activity of the heteromeric insect Or-Orco complex.  相似文献   

16.
Heterotrimeric G proteins typically transduce signals from G protein-coupled receptors (GPCRs) to effector proteins. In the conventional G protein signaling paradigm, the G protein is located at the cytoplasmic surface of the plasma membrane, where, after activation by an agonist-bound GPCR, the GTP-bound Gα and free Gβγ bind to and regulate a number of well-studied effectors, including adenylyl cyclase, phospholipase Cβ, RhoGEFs and ion channels. However, research over the past decade or more has established that G proteins serve non-canonical roles in the cell, whereby they regulate novel effectors, undergo activation independently of a GPCR, and/or function at subcellular locations other than the plasma membrane. This review will highlight some of these non-canonical aspects of G protein signaling, focusing on direct interactions of G protein subunits with cytoskeletal and cell adhesion proteins, the role of G proteins in cell division, and G protein signaling at diverse organelles.  相似文献   

17.
The activation of protein kinases is one of the primary mechanisms whereby T cell receptors (TCR) propagate intracellular signals. To date, the majority of kinases known to be involved in the early stages of TCR signaling are protein-tyrosine kinases such as Lck, Fyn, and ZAP-70. Here we report a constitutive association between the TCR and a serine/threonine kinase, which was mediated through the membrane-proximal portion of CD3 epsilon. Mass spectrometry analysis of CD3 epsilon-associated proteins identified G protein-coupled receptor kinase 2 (GRK2) as a candidate Ser/Thr kinase. Transient transfection assays and Western blot analysis verified the ability of GRK2 to interact with the cytoplasmic domain of CD3 epsilon within a cell. These findings are consistent with recent reports demonstrating the ability of certain G protein-coupled receptors (GPCR) and G proteins to physically associate with the alpha/beta TCR. Because GRK2 is primarily involved in arresting GPCR signals, its interaction with CD3 epsilon may provide a novel means whereby the TCR can negatively regulate signals generated through GPCRs.  相似文献   

18.
STKR is a G protein-coupled receptor that was cloned from the stable fly, Stomoxys calcitrans. Multiple sequence comparisons show that the amino acid sequence of this insect receptor displays several features that are typical for tachykinin (or neurokinin, NK) receptors. Insect tachykinin-related peptides, also referred to as "insectatachykinins," produce dose-dependent calcium responses in Drosophila melanogaster Schneider 2 cells, which are stably transfected with this receptor (S2-STKR). These responses do not depend on the presence of extracellular Ca(2+)-ions. A rapid agonist-induced increase of inositol 1,4,5-trisphosphate (IP(3)) is observed. This indicates that the agonist-induced cytosolic Ca(2+)-rise is caused by a release of Ca(2+) ions from intracellular calcium stores. The pharmacology of STKR is analyzed by studying the effects of the most important antagonists for mammalian NK-receptors on STKR-expressing insect cells. The results show that spantide II, a potent substance P antagonist, is a real antagonist of insectatachykinins on STKR. We have also tested the activity of a variety of natural insectatachykinin analogs by microscopic image analysis of calcium responses in S2-STKR cells. At a concentration of 1 microM, almost all natural analogs produce a significant calcium rise in stable S2-STKR cells. Interestingly, Stc-TK, an insectatachykinin that was recently discovered in the stable fly (S. calcitrans), also proved to be an STKR-agonist. Stc-TK, a potential physiological ligand for STKR, contains an Ala-residue (or A) instead of a highly conserved Gly-residue (or G). Arch.  相似文献   

19.
In recent years, certain lysophospholipids (lyso-PLs) have been recognized as important cell signaling molecules. Among them, two phosphorylcholine-containing lyso-PLs, sphingosylphosphorylcholine (SPC) and lysophosphatidylcholine (LPC), have been shown to be involved in many cellular processes and are produced under physiological and pathological conditions. Although signaling properties of SPC and LPC have been studied in a variety of cellular systems, specific cell membrane receptors for SPC and LPC have not been identified previously. Recently, ovarian cancer G protein-coupled receptor 1 (OGR1, also known as GPR68), G protein-coupled receptor 4 (GPR4), and G2A have been identified as receptors for SPC and LPC. The signaling and ligand-binding properties of these receptors are reviewed here. These discoveries provide an intriguing opportunity and a novel approach in studying the pathophysiological roles of SPC and LPC and their receptors.  相似文献   

20.
Activation of G protein-coupled receptors (GPCR) leads to the recruitment of beta-arrestins. By tagging the beta-arrestin molecule with a green fluorescent protein, we can visualize the activation of GPCRs in living cells. We have used this approach to de-orphan and study 11 GPCRs for neuropeptide receptors in Drosophila melanogaster. Here we verify the identities of ligands for several recently de-orphaned receptors, including the receptors for the Drosophila neuropeptides proctolin (CG6986), neuropeptide F (CG1147), corazonin (CG10698), dFMRF-amide (CG2114), and allatostatin C (CG7285 and CG13702). We also de-orphan CG6515 and CG7887 by showing these two suspected tachykinin receptor family members respond specifically to a Drosophila tachykinin neuropeptide. Additionally, the translocation assay was used to de-orphan three Drosophila receptors. We show that CG14484, encoding a receptor related to vertebrate bombesin receptors, responds specifically to allatostatin B. Furthermore, the pair of paralogous receptors CG8985 and CG13803 responds specifically to the FMRF-amide-related peptide dromyosuppressin. To corroborate the findings on orphan receptors obtained by the translocation assay, we show that dromyosuppressin also stimulated GTPgammaS binding and inhibited cAMP by CG8985 and CG13803. Together these observations demonstrate the beta-arrestin-green fluorescent protein translocation assay is an important tool in the repertoire of strategies for ligand identification of novel G protein-coupled receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号