首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Refolding of reduced and denatured protein in vitro has been an important issue for both basic research and applied biotechnology. Refolding at low protein concentration requires large volumes of refolding buffer. Among various refolding methods, diafiltration is very useful to control the denaturant and red/ox reagents in a refolding solution. We constructed a refolding procedure of high lysozyme concentration (0.5-10 mg/ml) based on the linear reduction of the urea concentration during diafiltration under oxygen pressure. When the urea concentration in the refolding vessel was decreased from 4 M with a rate of 0.167 M/h, the refolding yields were 85% and 63% at protein concentrations, 5 mg/ml and 10 mg/ml, respectively, after 11 h. This method gave a high productivity of 40.1,microM/h of the refolding lysozyme. The change in refolding yields during the diafiltration could be simulated using the model of Hevehan and Clark.  相似文献   

2.
The protein refolding of inclusion bodies was investigated using reversed micelles formed by aerosol OT (AOT). Ribonuclease A (RNase A) was overexpressed in Escherichia coli and used as native inclusion bodies. The enzymatic activity of RNase A was completely regained from the inclusion bodies within 14 h by solubilization in reversed micelles. To further enhance the refolding rate, a molecular chaperone, GroEL, was incorporated into the refolding system. The resultant refolding system including GroEL showed better performance under optimized conditions for the refolding of RNase A inclusion bodies. The refolding rate was considerably improved by the addition of the molecular chaperone, and the refolding step was completed in 1 h. The protein refolding in the GroEL-containing refolding system was strongly dependent on the coexistence of ATP and Mg2+, suggesting that the GroEL hosted in the reversed micelles was biologically active and assisted in the renaturation of the inclusion bodies. The addition of cold acetone to the reversed micellar solution allowed over 90% recovery of the renatured RNase A.  相似文献   

3.
Since in vitro refolding of pepsin has long been attempted without success, it has been suspected that pepsin has no intrinsic refolding ability. In the present study, in order to eliminate unfavorable intermolecular interactions bringing about aggregation and autoproteolysis, we immobilized pepsin onto agarose beads. This technique enabled us to search extensively for appropriate refolding conditions without limitation of the refolding period. Renaturation of immobilized pepsin was observed exclusively at pH 3-5. This process was extremely slow and reached equilibrium after 300 h. Sixty percent of the proteolytic activity was recovered at pH 5. Addition of salts raised the recovery to 80% but had no significant effect on the refolding rate, suggesting that the salts mainly stabilize the native state of pepsin. This is the first report on the successful in vitro refolding of pepsin.  相似文献   

4.

Background  

Expression systems based on self-cleavable intein domains allow the generation of recombinant proteins with a C-terminal thioester. This uniquely reactive C-terminus can be used in native chemical ligation reactions to introduce synthetic groups or to immobilize proteins on surfaces and nanoparticles. Unfortunately, common refolding procedures for recombinant proteins that contain disulfide bonds do not preserve the thioester functionality and therefore novel refolding procedures need to be developed.  相似文献   

5.

Background:

Recombinant proteins overexpressed in E. coli are usually deposited in inclusion bodies. Cysteines in the protein contribute to this process. Inter- and intra- molecular disulfide bonds in chitinase, a cysteine-rich protein, cause aggregation when the recombinant protein is overexpressed in E. coli. Hence, aggregated proteins should be solubilized and allowed to refold to obtain native- or correctly- folded recombinant proteins.

Methods:

Dilution method that allows refolding of recombinant proteins, especially at high protein concentrations, is to slowly add the soluble protein to refolding buffer. For this purpose: first, the inclusion bodies containing insoluble proteins were purified; second, the aggregated proteins were solubilized; finally, the soluble proteins were refolded using glutathione redox system, guanidinium chloride, dithiothreitol, sucrose, and glycerol, simultaneously.

Results:

After protein solubilization and refolding, SDS-PAGE showed a 32 kDa band that was recognized by an anti-chitin antibody on western blots.

Conclusions:

By this method, cysteine-rich proteins from E. coli inclusion bodies can be solubilized and correctly folded into active proteins.Key Words: Chitinase, Cysteine-rich proteins, Protein refolding, Protein solubilization  相似文献   

6.
Lipase from Geobacillus thermocatenulatus (BTL2) was immobilized in two different matrixes. In one derivative, the enzyme was immobilized on agarose activated with cyanogen bromide (CNBr-BTL2) via its most reactive superficial amino group, whereas the other derivative was covalently immobilized on glyoxyl agarose supports (Gx-BTL2). The latter immobilization protocol leads to intense multipoint covalent attachment between the lysine richest region of enzyme and the glyoxyl groups on the support surface. The resulted solid derivatives were unfolded by incubation under high concentrations of guanidine and then resuspended in aqueous media under different experimental conditions. In both CNBr-BTL2 and Gx-BTL2 derivatives, the oxidation of Cys residues during the unfolding/refolding processes led to inefficient folding for the enzyme because only 25-30% of its initial activity was recovered after 3 h in refolding conditions. Dithiothreitol (DTT), a very mild reducing agent, prevented Cys oxidation during the unfolding/refolding process, greatly improving activity recovery in the refolded forms. In parallel, other variables such as pH, buffer composition and the presence of polymers and other additives, had different effects on refolding efficiencies and refolding rates for both derivatives. In the case of solid derivatives of BTL2 immobilized on CNBr-agarose, the surface's chemistry was crucial to guarantee an optimal protein refolding. In this way, uncharged protein vicinities resulted in better refolding efficiencies than those charged ones.  相似文献   

7.
Two different approaches of matrix assisted refolding have been evaluated and compared to conventional refolding by dilution. Bovine alpha-lactalbumin was used for the studies as model protein. It was adsorbed under denaturing conditions on an ion exchange matrix and refolding was completed on the column prior to elution or, depending on the buffer system, in the eluate. Agarose based chromatography matrices showed high capacities for the denatured alpha-lactalbumin. A positive effect on the yield of refolded protein by the matrix could be observed for Fractogel EMD DEAE and a negative for Toyopearl DEAE 650M, DEAE Sepharose FF and Q Sepharose FF. In the case of Fractogel EMD DEAE the ion exchange surface might act as a folding helper. This property may be caused by the grafted polymers. For Source 30Q only a marginal negative influence on the refolding kinetics was observed, thus the ion exchanger is only a mean for removal of chaotropic agents. Refolding on the column is characterized by a low yield but high productivity due to significant reduction of refolding time.  相似文献   

8.
Based on the structural characteristic of Protein disulfide isomerases and DsbA that have hydrophobic regions around the active sites, hydrophobic alkyl tails are linked to cystamine to create new small molecular foldase mimics, acyl cystamine. Both the oxidizing power and oxidation specificity of cystamine are enhanced by n-octanoyl or n-hexanoyl tail. N-octanoyl and n-hexanoyl cystamine are very effective to facilitate oxidative protein refolding at strong reducing environments. In the presence of 0.42 mM DTT, the activity recovery of lysozyme is over 90% by 90-min refolding with 0.1 mM n-octanoyl cystamine and 0.1 mM cystamine as oxidant, while almost no activity is recovered with 0.2 mM GSSG by 160-min refolding. For the refolding of 0.2 mg/mL lysozyme, with 0.6 mM n-hexanoyl cystamine and 1.12 mM residual DTT as redox agents, the activity recovery reaches as high as 93% after refolding for only 20 min. For ribonuclease A (RNase A) refolding, with 0.4 mM n-hexanoyl cystamine and 1.30 mM DTT, the recovery of activity reaches as high as 90% within 3 h. Thus, with n-octanoyl or n-hexanoyl cystamine as the oxidants, the necessity to remove excess DTT in the reduced and denatured protein solutions can be greatly alleviated. With a moderate hydrophobicity, n-hexanoyl cystamine is promising for application in oxidative protein refolding at an extensive concentration range. It is observed that in the oxidative refolding of 0.2 mg/mL lysozyme and RNase A, only about half of n-hexanoyl cystamine is needed when compared to cystamine to achieve the same kinetic effect.  相似文献   

9.

Background

More than 7000 papers related to “protein refolding” have been published to date, with approximately 300 reports each year during the last decade. Whilst some of these papers provide experimental protocols for protein refolding, a survey in the structural life science communities showed a necessity for a comprehensive database for refolding techniques. We therefore have developed a new resource – “REFOLDdb” that collects refolding techniques into a single, searchable repository to help researchers develop refolding protocols for proteins of interest.

Results

We based our resource on the existing REFOLD database, which has not been updated since 2009. We redesigned the data format to be more concise, allowing consistent representations among data entries compared with the original REFOLD database. The remodeled data architecture enhances the search efficiency and improves the sustainability of the database. After an exhaustive literature search we added experimental refolding protocols from reports published 2009 to early 2017. In addition to this new data, we fully converted and integrated existing REFOLD data into our new resource. REFOLDdb contains 1877 entries as of March 17th, 2017, and is freely available at http://p4d-info.nig.ac.jp/refolddb/.

Conclusion

REFOLDdb is a unique database for the life sciences research community, providing annotated information for designing new refolding protocols and customizing existing methodologies. We envisage that this resource will find wide utility across broad disciplines that rely on the production of pure, active, recombinant proteins. Furthermore, the database also provides a useful overview of the recent trends and statistics in refolding technology development.
  相似文献   

10.
It is well known that Mg(2+) is an essential component in many biological processes. This research investigated the courses of both the reactivation and the refolding in the absence and presence of Mg(2+) ions. Calf intestinal alkaline phosphatase (CIP) was extensively denatured in 3 M guanidine hydrochloride (GdnHCl) solution for 2 h. Under suitable renaturation conditions, about 60-70% of the activity was recovered in the absence and presence of different magnesium ion concentrations. The refolding processes followed two-phase courses, whereas the reactivation processes were monophasic after dilution in proper solutions with or without Mg(2+). The magnesium ions affected both the reactivation and the refolding courses of unfolded CIP. A comparison of rate constants for the refolding of unfolded CIP with those for recovery of enzyme activity at different Mg(2+) concentrations showed that they were not synchronized. The activity recovery was speeded up due to the presence of Mg(2+) ions; while the refolding course of unfolded CIP was somewhat inhibited by the excess Mg(2+).  相似文献   

11.
Previous exploratory work revealed that high pressure (200 MPa), in combination with oxido-shuffling agents such as glutathione, effectively refolds covalently cross-linked aggregates of lysozyme into catalytically active native molecules, at concentrations up to 2 mg/mL (1). To understand further and optimize this process, in the current study we varied the redox conditions and levels of guanidine hydrochloride (GdnHCl) in the refolding buffer. Maximum refolding yields of 80% were seen at 1 M GdnHCl; higher concentrations did not increase refolding yields further. A maximum in refolding yield was observed at redox conditions with a 1:1 ratio of oxidized to reduced glutathione (GSSG:GSH). Yields decreased dramatically at more oxidizing conditions ([GSSG] > [GSH]). Kinetics of dissolution and refolding of covalently cross-linked aggregates of lysozyme depended strongly on redox conditions. At GSSG:GSH ratios of 4:1, 1:1, and 1:16, lysozyme dissolved and refolded with time constants of 62, 20, and 8 h, respectively. Estimates of the free energy of unfolding of lysozyme in GdnHCl solutions at 200 MPa suggested that the native state of lysozyme is strongly favored (ca.18.6 kJ/mol) under the conditions used for dissolution and refolding.  相似文献   

12.
The oxidative refolding of reduced, denatured hen egg white lysozyme in the presence of a mixed macromolecular crowding agent containing both bovine serum albumin (BSA) and polysaccharide has been studied from a physiological point of view. When the total concentration of the mixed crowding agent is 100 g/liter, in which the weight ratio of BSA to dextran 70 is 1:9, the refolding yield of lysozyme after refolding for 4 h under this condition increases 24% compared with that in the presence of BSA and 16% compared with dextran 70. A remarkable increase in the refolding yield of lysozyme by a mixed crowding agent containing BSA and Ficoll 70 is also observed. Further folding kinetics analyses show that these two mixed crowding agents accelerate the oxidative refolding of lysozyme remarkably, compared with single crowding agents. These results suggest that the stabilization effects of mixed macromolecular crowding agents are stronger than those of single polysaccharide crowding agents such as dextran 70 and Ficoll 70, whereas the excluded volume effects of mixed macromolecular crowding agents are weaker than those of single protein crowding agents such as BSA. Both the refolding yield and the rate of the oxidative refolding of lysozyme in these two mixed crowded solutions with suitable weight ratios are higher than those in single crowded solutions, indicating that mixed macromolecular crowding agents are more favorable to lysozyme folding and can be used to simulate the intracellular environments more accurately than single crowding agents do.  相似文献   

13.
The effects of four single macromolecular crowding agents, Ficoll 70, dextran 70, polyethylene glycol (PEG) 2000, and calf thymus DNA (CT DNA), and three mixed crowding agents containing both CT DNA and polysaccharide (or PEG 2000) on the refolding of guanidine hydrochloride-denatured rabbit muscle creatine kinase (MM-CK) have been examined by activity assay. When the total concentration of the mixed crowding agent is 100 g/l, in which the weight ratio of CT DNA to Ficoll 70 is 1:9, the refolding yield of MM-CK after refolding for 3 h under these conditions increases 23% compared with that in the presence of 10 g/l CT DNA, 18% compared with 100 g/l Ficoll 70, and 19% compared with that in the absence of crowding agents. A remarkable increase in the refolding yield of MM-CK by a mixed crowding agent containing CT DNA and dextran 70 (or PEG 2000) is also observed. Further folding kinetics analyses show that these three mixed crowding agents remarkably accelerate the refolding of MM-CK, compared with single crowding agents. Aggregation of MM-CK in the presence of any of the three mixed crowding agents is less serious than that in the presence of a single crowding agent at the same concentration but more serious than that in the absence of crowding agents. Both the refolding yield and the refolding rate of MM-CK in mixtures of these agents are increased relative to the individual agents by themselves, indicating that mixed macromolecular crowding agents are more favorable to MM-CK folding and can be used to reflect the physiological environment more accurately than single crowding agents.  相似文献   

14.
High hydrostatic pressures have been used to dissociate non-native protein aggregates and foster refolding to the native conformation. In this study, partial specific volume and adiabatic compressibility measurements were used to examine the volumetric contributions to pressure-modulated refolding. The thermodynamics of pressure-modulated refolding from non-native aggregates of recombinant human interleukin-1 receptor antagonist (IL-1ra) were determined by partial specific volume and adiabatic compressibility measurements. Aggregates of IL-1ra formed at elevated temperatures (55 degrees C) were found to be less dense than native IL-1ra and refolded at 31 degrees C under 1,500 bar pressure with a yield of 57%. Partial specific adiabatic compressibility measurements suggest that the formation of solvent-free cavities within the interior of IL-1ra aggregates cause the apparent increase in specific volume. Dense, pressure-stable aggregates could be formed at 2,000 bar which could not be refolded with additional high pressure treatment, demonstrating that aggregate formation conditions and structure dictate pressure-modulated refolding yields.  相似文献   

15.
The recombinant prepro-form of human matrix metalloproteinase 7 (matrilysin or MMP-7) was overexpressed in Escherichia coli as insoluble inclusion bodies. The recombinant protein was refolded by 100-fold dilution after solubilization with 6 M guanidine HCl. The refolding was monitored by the recovery of matrilysin activity. The addition of either 1.0 M arginine or 0.1% Brij-35 promoted remarkably the refolding. The refolding was dependent on pH and temperature, with lower temperature (<10 degrees C) and pH 6-8 preferable. Glutathione had no effect on refolding, and it was excluded from the refolding conditions. Starting with inclusion bodies (2.0 g, wet) containing 360 mg protein, 29.5 mg of pro-matrilysin (30 kDa) was obtained after refolding with 1.0% Brij-35 at pH 7.5 and 4 degrees C for 12 h. Pro-matrilysin (24.0 mg) was purified to homogeneity by cation-exchange HPLC with a 15-fold increase in purity and an activity yield of 81.3%. Pro-matrilysin was converted entirely to matrilysin (19.0 kDa; 15.2 mg) by activation with a mercuric reagent. The activity (k(cat)/K(m)) of matrilysin was 1.7 x 10(5) M(-1) x s(-1).  相似文献   

16.
Lysozyme refolding with high yields sometimes results from incomplete denaturation. Dithiothreitol (DTT) is a reductant commonly used to reduce and unfold disulfide-stabilized lysozymes. Through the use of fluorescence spectroscopy to access the extent of denaturation, we found that the rate and extent of denaturation highly depended on the concentration of DTT. Further, the denaturation exhibited a two-phase transition at a high DTT concentration with DTT at >100 mM and long denaturation time (>24 h) being needed for complete denaturation. A low DTT concentration and a short denaturation time resulted in fast refolding with high activity recovery, while a high DTT concentration and a long denaturation time resulted in slow refolding with low activity recovery. Hence, the renaturation of disulfide-containing lysozyme was highly affected by the extent of denaturation.  相似文献   

17.

Background  

Human glucose 6-phosphate dehydrogenase (G6PD), active in both dimer and tetramer forms, is the key entry enzyme in the pentose phosphate pathway (PPP), providing NADPH for biosynthesis and various other purposes, including protection against oxidative stress in erythrocytes. Accordingly haemolytic disease is a major consequence of G6PD deficiency mutations in man, and many severe disease phenotypes are attributed to G6PD folding problems. Therefore, a robust refolding method with high recovery yield and reproducibility is of particular importance to study those clinical mutant enzymes as well as to shed light generally on the refolding process of large multi-domain proteins.  相似文献   

18.
The course of refolding and reactivation of urea-denatured creatine kinase (ATP; creatine N-phosphotransferase, EC 2.7.3.2) has been studied in the absence and presence of molecular chaperonin GroEL. The enzyme was denatured in Tris--HCl buffer containing 6 M urea for 1 h. In the refolding studies, the denatured enzyme was diluted 60-fold into the same buffer containing GroEL or not for activity, turbidity, fluorescence measurements and polyacrylamide gel electrophoresis. The results show that the reactivation process is dependent of creatine kinase concentration in the concentration range 2.5--4 microM. The levels of activity recovery decrease with increasing enzyme concentration because of the formation of wrong aggregates. The molecular chaperonin GroEL can bind the refolding intermediate of creatine kinase and thus prevent the formation of wrong aggregates. This intermediate is an inactive dimeric form that is in a conformation resembling the 'molten globule' state.  相似文献   

19.
A hydrophilic ultrafiltration membrane, regenerated cellulose, facilitates the size-selectable permeability of hydrophilic solutes in reverse micellar solution. By using an ultrafiltration membrane with a molecular weight cutoff of 3,500, we demonstrate a nonaggregating protein refolding technique based on the dialysis of reverse micellar solution. This realizes concurrent removal of denaturants, urea and 2-mercaptoethanol, and the supply of redox reagents, reduced and oxidized glutathione (GSH, GSSG), to promote renaturation of proteins. Two mg/ml ribonuclease A (RNase A) was refolded completely without any dilution and aggregation for 60 h. The refolding behavior of RNase A is strongly influenced by the ratio of GSH and GSSG. Moreover, we recovered 90% of the refolded RNase A from AOT reverse micellar solution with acetone precipitation and beta-cyclodextrin washing. These findings should facilitate the production of a continuous protein refolding membrane reactor.  相似文献   

20.
Intact, monomeric type IV procollagen was isolated from the medium of PF-HR9 cells. Its stability was measured by optical rotatory dispersion, differential scanning calorimetry, and trypsin susceptibility of the partially unfolded molecules. At neutral pH, a complex transition between 35 and 42 degrees C and a smaller transition at 48 degrees C are observed by optical rotatory dispersion, using a heating rate of 10 degrees C/h. Reduction of the heating rate to 1.6 degrees C/h resulted in a 1 degree C lowering of the apparent melting temperatures. A similar curve is observed in 10 mM acetic acid, with transitions about 2 degrees C lower. Differential scanning calorimetry revealed transitions at 36.0, 42.1, and 48.0 degrees C at neutral pH, with a total transition enthalpy of 17.1 kJ/mol tripeptide units. In 10 mM acetic acid, transitions at 35.6, 38.9, 41.7, and 50.0 degrees C are observed. The transition enthalpy is 16.4 kJ/mol tripeptide units. The transition enthalpy is similar to values found for interstitial collagens. Results from trypsin digestion experiments are consistent with the stability found by optical methods and calorimetry. The rate and completeness of refolding after melting were measured. In neutral buffer, the initial rate was found to be 0.041 min-1, faster than the refolding rates observed with types pN III and III collagen. Peptidyl prolyl cis-trans-isomerase increased the refolding rate to 0.083 min-1, indicating that cis-trans-isomerization is the rate-limiting step, despite the interruptions in the triple helix. Trypsin digestion experiments indicated that the refolding mechanism is similar in the presence and absence of the enzyme. Refolding was nearly complete in neutral buffer. In 10 mM acetic acid, folding was considerably slower and went to about 74% completion. In both solvents, the refolded material was only slightly less stable than the native material. Electron microscopy of partially refolded samples showed that most refolding started at the COOH terminus, but some was initiated at other sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号