首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
To understand the mechanisms by which thrombin induces vascular smooth muscle cell (VSMC) DNA synthesis and motility, we have studied the role of phosphatidylinositol 3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR)-S6K1 signaling. Thrombin stimulated the phosphorylation of Akt and S6K1 in VSMC in a sustained manner. Blockade of PI3K-Akt-mTOR-S6K1 signaling by LY-294002, and rapamycin suppressed both thrombin-induced VSMC DNA synthesis and migration. Adenovirus-mediated expression of dominant-negative Akt also inhibited thrombin-induced VSMC DNA synthesis and migration. Furthermore, thrombin induced the expression of Fra-1 in a sustained PI3K-Akt-dependent and mTOR-independent manner in VSMC. Suppression of Fra-1 by its small interfering RNA attenuated both thrombin-induced VSMC DNA synthesis and migration. Thrombin also induced the expression of FGF-2 in a PI3K-Akt-Fra-1-dependent and mTOR-independent manner, and neutralizing anti-FGF-2 antibodies inhibited thrombin-stimulated VSMC DNA synthesis and motility. In addition, thrombin stimulated the tyrosine phosphorylation of EGF receptor (EGFR), and inhibition of its kinase activity significantly blocked Akt and S6K1 phosphorylation, Fra-1 and FGF-2 expression, DNA synthesis, and motility induced by thrombin in VSMC. Together these observations suggest that thrombin induces both VSMC DNA synthesis and motility via EGFR-dependent stimulation of PI3K/Akt signaling targeting in parallel the Fra-1-mediated FGF-2 expression and mTOR-S6K1 activation.  相似文献   

3.
Platelet-derived growth factor-BB (PDGF-BB) is a potent mitogen and chemoattractant for vascular smooth muscle cells (VSMC). To understand its mitogenic and chemotactic signaling events, we studied the role of cytosolic phospholipase A(2) (cPLA(2)) and the Jak/STAT pathway. PDGF-BB induced the expression and activity of cPLA(2) in a time-dependent manner in VSMC. Arachidonyl trifluoromethyl ketone, a potent and specific inhibitor of cPLA(2), significantly reduced PDGF-BB-induced arachidonic acid release and DNA synthesis. PDGF-BB stimulated tyrosine phosphorylation of Jak-2 in a time-dependent manner. In addition, PDGF-BB activated STAT-3 as determined by its tyrosine phosphorylation, DNA-binding activity, and reporter gene expression, and these responses were suppressed by AG490, a selective inhibitor of Jak-2. AG490 and a dominant-negative mutant of STAT-3 also attenuated PDGF-BB-induced expression of cPLA(2,) arachidonic acid release, and DNA synthesis in VSMC. Together, these results suggest that induction of expression of cPLA(2) and arachidonic acid release are involved in VSMC growth in response to PDGF-BB and that these events are mediated by Jak-2-dependent STAT-3 activation.  相似文献   

4.
5.
Thrombin is a potent mitogen for vascular smooth muscle cells (VSMC). To understand its mitogenic signaling events, we have studied the role of calcium-independent phospholipase A2 (iPLA2). Without affecting its levels, thrombin increased iPLA2 activity in a time-dependent manner in VSMC. Thrombin also induced arachidonic acid release and DNA synthesis by about 2-fold as compared with control. Down-regulation of iPLA2 activity by its specific inhibitor, bromoenol lactone, or its expression by antisense oligonucleotides, significantly reduced thrombin-induced arachidonic acid release and DNA synthesis in VSMC. To learn the mechanism of thrombin-stimulated iPLA2 activity, we next tested the role of p38 MAPK. Thrombin stimulated p38 MAPK phosphorylation and activity in a time-dependent manner in VSMC. Inhibition of p38 MAPK activity by SB203580 and SB202190 resulted in decreased iPLA2 activity, arachidonic acid release, and DNA synthesis induced by thrombin in VSMC. Together, these results for the first time demonstrate that iPLA2 plays a role in thrombin-induced arachidonic acid release and growth in VSMC and that these responses are mediated by p38 MAPK.  相似文献   

6.
Thrombin is a potent stimulant of smooth muscle cell (SMC) proliferation in inflammatory conditions, leading to pathological thickening of vascular walls in atherosclerosis and airway remodeling in asthma. Cell proliferation requires the formation and remodeling of cell membrane phospholipids (PLs), involving the activation of PL-metabolizing enzymes. Yet, the role of specific PL-metabolizing enzymes in SMC proliferation has hardly been studied. To bridge this gap, in the present study, we investigated the role of key enzymes involved in PL metabolism, the PL-hydrolyzing enzyme phospholipase A2 (PLA2) and the PL-synthesizing enzyme lysophosphatidic acid-fatty acid transacylase (LPAAT), in thrombin-induced proliferation of bovine aortic SMCs (BASMCs). Concomitantly with the induction of BASMC proliferation, thrombin activated cytosolic PLA2 (cPLA2-alpha), expressed by selective release of arachidonic acid and mRNA expression, as well as LPAAT, expressed by nonselective incorporation of fatty acid and mRNA expression. Specific inhibitors of these enzymes, arachidonyl-trifluoromethyl-ketone for cPLA2 and thimerosal for LPAAT, suppressed their activities, concomitantly with suppression of BASMC proliferation, suggesting a mandatory requirement for cPLA2 and LPAAT activation in thrombin-induced SMC proliferation. Thrombin acts through the protease-activated receptor (PAR-1), and, accordingly, we found that thrombin-induced BASMC proliferation was suppressed by the PAR-1 inhibitor SCH-79797. However, the PAR-1 inhibitor did not prevent thrombin-induced mRNA expression of cPLA2 and LPAAT, implying that the activation of cPLA2 and LPAAT is essential but not sufficient for thrombin-induced proliferation of BASMCs.  相似文献   

7.
8.
Norepinephrine (NE) stimulates phospholipase D (PLD) through a Ras/MAPK pathway in rabbit vascular smooth muscle cells (VSMC). NE also activates calcium influx and calmodulin (CaM)-dependent protein kinase II-dependent cytosolic phospholipase A(2) (cPLA(2)). Arachidonic acid (AA) released by cPLA(2)-catalyzed phospholipid hydrolysis is then metabolized into hydroxyeicosatetraenoic acids (HETEs) through lipoxygenase and cytochrome P450 4A (CYP4A) pathways. HETEs, in turn, have been shown to stimulate Ras translocation and to increase MAPK activity in VSMC. This study was conducted to determine the contribution of cPLA(2)-derived AA and its metabolites (HETEs) to the activation of PLD. NE-induced PLD activation was reduced by two structurally distinct CaM antagonists, W-7 and calmidazolium, and by CaM-dependent protein kinase II inhibition. Blockade of cPLA(2) activity or protein depletion with selective cPLA(2) antisense oligonucleotides abolished NE-induced PLD activation. The increase in PLD activity elicited by NE was also blocked by inhibitors of lipoxygenases (baicalein) and CYP4A (17-octadecynoic acid), but not of cyclooxygenase (indomethacin). AA and its metabolites (12(S)-, 15(S)-, and 20-HETEs) increased PLD activity. PLD activation by AA and HETEs was reduced by inhibitors of Ras farnesyltransferase (farnesyl protein transferase III and BMS-191563) and MEK (U0126 and PD98059). These data suggest that HETEs are the mediators of cPLA(2)-dependent PLD activation by NE in VSMC. In addition to cPLA(2), PLD was also found to contribute to AA release for prostacyclin production via the phosphatidate phosphohydrolase/diacylglycerol lipase pathway. Finally, a catalytically inactive PLD(2) (but not PLD(1)) mutant inhibited NE-induced PLD activity, and PLD(2) was tyrosine-phosphorylated in response to NE by a MAPK-dependent pathway. We conclude that NE stimulates cPLA(2)-dependent PLD(2) through lipoxygenase- and CYP4A-derived HETEs via the Ras/ERK pathway by a mechanism involving tyrosine phosphorylation of PLD(2) in rabbit VSMC.  相似文献   

9.
Angiotensin (Ang) II via the AT(1) receptor acts as a mitogen in vascular smooth muscle cells (VSMC) through stimulation of multiple signaling mechanisms, including tyrosine kinases and mitogen-activated protein kinase (MAPK). In addition, cytosolic phospholipase A(2)(cPLA(2))-dependent release of arachidonic acid (AA) is linked to VSMC growth and we have reported that Ang II stimulates cPLA(2) activity via the AT(1) receptor. The coupling of Ang II to the activation of cPLA(2) appears to involve mechanisms both upstream and downstream of MAPK such that AA stimulates MAPK activity which phosphorylates cPLA(2) to further enhance AA release. However, the upstream mechanisms responsible for activation of cPLA(2) are not well-defined. One possibility includes phosphatidylinositide 3-kinase (PI3K), since PI3K has been reported to participate in the upstream signaling events linked to activation of MAPK. However, it is not known whether PI3K is involved in the Ang II-induced activation of cPLA(2) or if this mechanism is associated with the Ang II-mediated growth of VSMC. Therefore, we used cultured rat VSMC to examine the role of PI3K in the Ang II-dependent phosphorylation of cPLA(2), release of AA, and growth induced by Ang II. Exposure of VSMC to Ang II (100 nM) increased [(3)H]thymidine incorporation, cell number, and the release of [(3)H]AA. Also, using Western analysis, Ang II increased the phosphorylation of MAPK and cPLA(2) which were blocked by the MAPK kinase inhibitor PD98059 (10 microM/L). Similarly, the PI3K inhibitor LY294002 (10 microM/L) abolished the Ang II-mediated increase in MAPK phosphorylation, as well as phosphoserine-PLA(2). Further, inhibition of PI3K blocked the Ang II-induced release of AA and VSMC mitogenesis. However, exogenous AA was able to restore VSMC growth in the presence of LY294002, as well as reverse the inhibition of MAPK and cPLA(2) phosphorylation by LY294002. Thus, it appears from these data that Ang II stimulates the PI3K-sensitive release of AA which stimulates MAPK to phosphorylate cPLA(2) and enhance AA release. This mechanism may play an important role in the Ang II-induced growth of VSMC.  相似文献   

10.
Airway remodeling is one of the major hallmarks of asthma. The present study examined the effects of tyrosine kinase inhibitors on thrombin-induced guinea pig ASM cell proliferation, in comparison with inhibitors of mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K). The ASM cells expressed smooth muscle alpha-actin and myosin, and responded to thrombin by increasing cytosolic Ca(+2). Thrombin (1-10 U/ml) induced [(3)H]thymidine incorporation into ASM cells. Tyrphostin 47, a broad-spectrum tyrosine kinase inhibitor, PP2, a Src-specific inhibitor, and piceatannol, a Syk-selective inhibitor, significantly attenuated thrombin-induced [(3)H]thymidine incorporation. In addition, the tyrosine kinase inhibitors significantly reduced thrombin-induced cyclin D(1) expression in ASM cells. PD098059 and U0126, two MAPK kinase inhibitors, and LY294002, a PI3K inhibitor, significantly blocked thrombin-induced [(3)H]thymidine incorporation and cyclin D(1) expression in ASM cells. Our data show that inhibitors of Src and, probably Syk, can modulate thrombin-induced ASM cell proliferation, which may have therapeutic potential for asthma.  相似文献   

11.
Syk, a 72-kDa tyrosine kinase, is involved in development, differentiation, and signal transduction of hematopoietic and some non-hematopoietic cells. This study determined if Syk is expressed in vascular smooth muscle cells (VSMC) and contributes to angiotensin II (Ang II) signaling and protein synthesis. Syk was found in VSMC and was phosphorylated by Ang II through AT1 receptor. Ang II-induced Syk phosphorylation was inhibited by piceatannol and dominant negative but not wild type Syk mutant. Syk phosphorylation by Ang II was attenuated by cytosolic phospholipase A(2) (cPLA(2)) inhibitor pyrrolidine-1 and retrovirus carrying small interfering RNAs (shRNAs) of this enzyme. Arachidonic acid (AA) increased Syk phosphorylation, and AA- and Ang II-induced phosphorylation was diminished by inhibitors of AA metabolism (5,8,11,14-eicosatetraynoic acid) and lipoxygenase (LO; baicalein) but not cyclooxygenase (indomethacin). AA metabolites formed via LO, 5(S)-, 12(S)-, and 15(S)-hydroxyeicosatetraenoic acids, which activate p38 MAPK, increased Syk phosphorylation. p38 MAPK inhibitor SB202190, and dominant negative p38 MAPK mutant attenuated Ang II- and AA-induced Syk phosphorylation. Adenovirus dominant negative c-Src mutant abolished Ang II - and AA-induced Syk phosphorylation and SB202190, and dominant negative p38 MAPK mutant inhibited Ang II-induced c-Src phosphorylation. Syk dominant negative mutant but not epidermal growth factor receptor blocker AG1478 also inhibited Ang II-induced VSMC protein synthesis. These data suggest that Syk expressed in VSMC is activated by Ang II through p38 MAPK-activated c-Src subsequent to cytosolic phospholipase A(2) and generation of AA metabolites via LO, and it mediates Ang II-induced protein synthesis independent of epidermal growth factor receptor transactivation (Ang II --> cPLA(2) --> AA metabolites of LO --> p38 MAPK --> c-Src --> Syk --> protein synthesis).  相似文献   

12.
Cytosolic phospholipase A2 (cPLA2) plays a pivotal role in mediating agonist-induced arachidonic acid (AA) release for prostaglandins (PG) synthesis induced by bacterial lipopolysaccharide (LPS) and cytokines. However, the intracellular signaling pathways mediating LPS-induced cPLA2 expression and PGE2 synthesis in canine tracheal smooth muscle cells (TSMCs) remains unknown. LPS-induced expression of cPLA2 and release of PGE2 was attenuated by inhibitors of tyrosine kinase (genistein), phosphatidylcholine-phospholipase C (D609), phosphatidylinositol-phospholipase C (U73122), PKC (GF109203X and staurosporine), removal of Ca2+ by BAPTA/AM plus EDTA, MEK1/2 (PD98059), p38 (SB202190), JNK (SP600125), and phosphatidylinositol 3-kinase (PI3-K; LY294002 and wortmannin). The involvement of MPAKs in LPS-induced responses was further confirmed by transfection of TSMCs with dominant negative mutants of ERK2 and p38. LPS-induced cPLA2 expression and PGE2 synthesis was inhibited by a selective NF-kappaB inhibitor (helenalin) and transfection with dominant negative mutants of NF-kappaB inducing kinase (NIK), IkappaB kinase (IKK)-alpha, and IKK-beta, consistent with that LPS-stimulated both IkappaB-alpha degradation and NF-kappaB translocation into nucleus in these cells. LPS-stimulated cPLA2 phosphorylation was inhibited by PD98059, GF109203X, and staurosporine, indicating the regulation by p42/p44 MAPK and PKC. Moreover, LPS-induced up-regulation of cPLA2 and COX-2 linked to PGE2 synthesis was inhibited by AACOCF3 (a selective cPLA2 inhibitor), implying the involvement of cPLA2 in these responses. These findings suggest that phosphorylation and expression of cPLA2 correlates with the release of PGE2 from LPS-challenged TSMCs, at least in part, mediated through MAPKs and NF-kappaB signaling pathways. LPS-mediated responses were modulated by PLC, Ca2+, PKC, tyrosine kinase, and PI3-K in TSMCs.  相似文献   

13.
Thrombin is a potent vascular smooth muscle cell (VSMC) mitogen. Because recent evidence implicates reactive oxygen intermediates (ROI) in VSMC proliferation in general and atherogenesis in particular, we investigated whether ROI generation is necessary for thrombin-induced mitogenesis. Treatment of human aortic smooth muscle cells with thrombin increased DNA synthesis, an effect that was antagonized by diphenyleneiodonium but not by other inhibitors of cellular oxidase systems. This effect of thrombin was accompanied by increased O-2 and H2O2 generation and NADH/NADPH consumption. ROI generation in response to thrombin pretreatment could also be blocked by diphenyleneiodonium, suggesting that the NAD(P)H oxidase was necessary for ROI generation and thrombin-induced mitogenesis. Because of observed differences between the VSMC and neutrophil oxidase, we examined whether the cytosolic components of the phagocytic NAD(P)H oxidase were present in VSMC. p47(phox) and Rac2 were present in VSMC. Furthermore, thrombin increased expression of p47(phox) and Rac2 and stimulated their translocation to the cell membrane. We examined whether p47(phox) might be similarly regulated in vivo in a rat aorta balloon injury model and found that p47(phox) protein was increased after injury. Immunocytochemistry localized expression of p47(phox) to the neointima and media of injured arteries. Our data demonstrate that generation of O-2 and H2O2 is required for thrombin-mediated mitogenesis in VSMC and that p47(phox) is regulated by thrombin in vitro and is associated with vascular lesion formation in vivo.  相似文献   

14.
Thrombin, a G protein-coupled receptor agonist, induced a biphasic expression of cyclin D1 in primary vascular smooth muscle cells. Although both phases of cyclin D1 expression require binding of the newly identified cooperative complex, NFATc1·STAT-3, to its promoter, the second phase, which is more robust, depends on NFATc1-mediated recruitment of p300 onto the complex and the subsequent acetylation of STAT-3. In addition, STAT-3 is tyrosine-phosphorylated in a biphasic manner, and the late phase requires NFATc1-mediated p300-dependent acetylation. Furthermore, interference with acetylation of STAT-3 by overexpression of acetylation null STAT-3 mutant led to the loss of the late phase of cyclin D1 expression. EMSA analysis and reporter gene assays revealed that NFATc1·STAT-3 complex binding to the cyclin D1 promoter led to an enhanceosome formation and facilitated cyclin D1 expression. In the early phase of its expression, cyclin D1 is localized mostly in the cytoplasm and influenced cell migration. However, during the late and robust phase of its expression, cyclin D1 is translocated to the nucleus and directed cell proliferation. Together, these results demonstrate for the first time that the dual function of cyclin D1 in cell migration and proliferation is temperospatially separated by its biphasic expression, which is mediated by cooperative interactions between NFATc1 and STAT-3.  相似文献   

15.
Thrombin is a potent mitogen for vascular smooth muscle cells (VSMCs). CBP has been regarded as a potential therapeutic target on the basis of its ability to affect cell growth. Therefore we hypothesized that CBP mediates thrombin-induced proliferation of VSMCs. We constructed recombinant adenoviral vector that expresses four short hairpin RNA (shRNA) targeting rat CBP mRNA (CBP-shRNA/Ad). VSMCs were infected with CBP-shRNA/Ad and treated with thrombin. CBP level were analyzed by quantitative real-time PCR and Western blot. To evaluate VSMC proliferation, the cell cycle and DNA synthesis were analyzed by flow cytometry and (3)H-thymidine incorporation, respectively. CBP-shRNA/Ad infection inhibited thrombin-induced CBP expression in a dose-dependent manner concomitant with a decrease in the percentage of cells in the S phase and in DNA synthesis. These findings suggest that CBP plays a pivotal role in the S phase progression of VSMCs.  相似文献   

16.
17.
The SOCS box of SOCS-1 accelerates ubiquitin-dependent proteolysis of TEL-JAK2   总被引:16,自引:0,他引:16  
Fusion of the TEL gene on 12p13 to the JAK2 tyrosine kinase gene on 9p24 has been found in human leukemia. TEL-mediated oligomerization of JAK2 results in constitutive activation of the tyrosine kinase (JH1) domain and confers cytokine-independent proliferation on interleukin-3-dependent Ba/F3 cells. Forced expression of the JAK inhibitor gene SOCS1/JAB/SSI-1 induced apoptosis of TEL-JAK2-transformed Ba/F3 cells. This suppression of TEL-JAK2 activity was dependent on SOCS box-mediated proteasomal degradation of TEL-JAK2 rather than on kinase inhibition. Degradation of JAK2 depended on its phosphorylation and its high affinity binding with SOCS1 through the kinase inhibitory region and the SH2 domain. It has been demonstrated that von Hippel-Lindau disease (VHL) tumor-suppressor gene product possesses the SOCS box that forms a complex with Elongin B and C and Cullin-2, and it functions as a ubiquitin ligase. The SOCS box of SOCS1/JAB has also been shown to interact with Elongins; however, ubiquitin ligase activity has not been demonstrated. We found that the SOCS box interacted with Cullin-2 and promoted ubiquitination of TEL-JAK2. Furthermore, overexpression of dominant negative Cullin-2 suppressed SOCS1-dependent TEL-JAK2 degradation. Our study demonstrates the substrate-specific E3 ubiquitin-ligase-like activity of SOCS1 for activated JAK2 and may provide a novel strategy for the suppression of oncogenic tyrosine kinases.  相似文献   

18.
Angiotensin (Ang) II stimulates cytosolic phospholipase A2(cPLA(2))-dependent release of arachidonic acid (ArAc) in vascular smooth muscle cells (VSMC). ArAc release and production of reactive oxygen species (ROS) lead to the activation of downstream kinases resulting in VSMC growth. To determine the role of Akt in this pathway, we used VSMC to link Ang II-induced ArAc release and ROS production to the activation of Akt and VSMC growth. We observed that Ang II, ArAc, or H(2)O(2) increased Akt activation. The Akt inhibitor SH6 blocked Ang II-, ArAc-, or H(2)O(2)-induced Akt activation, as did inhibition of phosphoinositide 3-kinase (PI(3)K). Inhibition of cPLA(2) blocked Ang II effects, while the ROS scavenger NaC decreased Ang II- and ArAc-induced Akt activation. Inhibition of Akt blocked the (3)H-thymidine incorporation induced by all three agonists. Thus, Ang II-induced ArAc release and ROS production leads to the PI(3)K-dependant activation of Akt and VSMC growth.  相似文献   

19.
Thrombin plays a critical role in hemostasis, thrombosis, and inflammation. However, the responsible intracellular signaling pathways triggered by thrombin are still not well defined. We report here that thrombin rapidly and transiently induces activation of protein kinase D (PKD) in aortic smooth muscle cells. Our data demonstrate that protein kinase C (PKC) inhibitors completely block thrombin-induced PKD activation, suggesting that thrombin induces PKD activation via a PKC-dependent pathway. Furthermore, our results show that thrombin rapidly induces PKC delta phosphorylation and that the PKC delta-specific inhibitor rottlerin blocks thrombin-induced PKD activation, suggesting that PKC delta mediates the thrombin-induced PKD activation. Using dominant negative approaches, we demonstrated that expression of a dominant negative PKC delta inhibits the phosphorylation and activation of PKD induced by thrombin, whereas neither PKC epsilon nor PKC zeta affects thrombin-induced PKD activation. In addition, our results of co-immunoprecipitation assays showed that PKD forms a complex with PKC delta in smooth muscle cells. Taken together, the findings of the present study demonstrate that thrombin induces activation of PKD and reveal a novel role of PKC delta in mediating thrombin-induced PKD activation in vascular smooth muscle cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号