首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Norepinephrine(NE) release in posterior nucleus(PH) of the hypothalamus was examined before and during acute shaker (oscillation) stress in sinoaortic denervated(SAD) and sham-operated(SO) rats. NE in PH extracellular fluid of freely moving rats was collected by microdialysis and measured by sensitive radioenzymatic assay. Three days after SAD or SO operation, mean arterial pressure(MAP) and heart rate(HR) were significantly higher in SAD rats than SO rats. Baseline levels of NE in PH dialysate were also significantly elevated in SAD rats. Although five minutes of shaker stress elicited pressor and tachycardic responses coupled with increased NE release in PH of both groups, the increases in MAP and dialysate NE were larger in SAD than SO rats. These findings indicate that noradrenergic neurons in the PH respond to stress-induced stimuli and receive tonic input from baroreflex pathways.  相似文献   

2.
Noradrenergic and corticotropin-releasing factor (CRF) neuronal systems within the brain have been implicated in stress and anxiety. Synaptic release of cerebral norepinephrine (NE) is increased during stress, and following intracerebral CRF administration. Benzodiazepines are commonly used anxiolytic drugs but information on their effects on the stress- and CRF-related release of NE is limited. We have used in vivo microdialysis to test the effects of the benzodiazepine, chlordiazepoxide (CDP) on the noradrenergic responses to footshock and intracerebroventricular CRF in the medial hypothalamus and the medial prefrontal cortex (PFM) of freely moving rats. Footshock (60 x 0.1-0.2 mA shocks in 20 min) significantly increased microdialysate concentrations of NE in the first sample collected after initiating the footshock. In the hypothalamus, microdialysate NE was augmented 64% above baseline. A second footshock session (100 min after the first footshock) increased microdialysate NE to 313% of the baseline. Thus the noradrenergic responses to footshock were enhanced by preceding footshocks. CRF (100 ng) administered into the locus coeruleus (LC) almost tripled microdialysate concentrations of NE in the PFM. CDP (5mg/kg, i.p.) had no statistically significant effects on the basal dialysate concentrations of NE, but it significantly attenuated both footshock- and CRF-induced increases in dialysate NE. CDP may exert a direct inhibitory effect on the noradrenergic neurons, alter the input to LC noradrenergic neurons, or alter the ability of CRF to activate the LC noradrenergic system.  相似文献   

3.
1. Hypertension can be induced by some types of stress in the rat. The aim of the present work was to study the putative implication of brain norepinephrine (NE) in blood pressure increase due to social deprivation stress. 2. The effects of 6-hydroxydopamine (6-OHDA) lesions of the ventral noradrenergic bundle (VNEB) on the hypertensive response induced by brief social deprivation stress in young Wistar rats were examined. NE, dopamine (DA), and epinephrine (EPI) levels were measured by HPLC coupled with electrochemical detection in two brain areas (hypothalamus and medulla oblongata) relevant for blood pressure regulation. 3. VNEB lesions prevented the hypertensive response produced by isolation. Twelve or 20 days after 6-OHDA administration, NE and EPI but not DA levels decreased in the hypothalamus of the lesioned rats. In contrast, no catecholamine changes were detected in medulla oblongata. 4. These data suggest that the VNEB plays a role in the triggering of the hypertensive response induced by social deprivation stress in young Wistar rats.  相似文献   

4.
Abstract: Previous studies have shown that fetal ethanol exposure (FEE) may have long-term effects on the function of catecholaminergic neurons in different regions of the CNS. The present study is the first to examine the effects of FEE on regional brain catecholamine responses following acute stress (a single 60-min restraint stress), repeated stress (single periods of restraint stress on 1, 5, or 10 consecutive days), and recovery from stress (recovery for up to 60 min in the home cage following a single 60-min period of restraint stress). Both male and female offspring from FEE, pair-fed (PF), and ad libitum-fed control (C) groups were tested in adulthood to determine catecholamine content in the cortex, hypothalamus, and hippocampus. A single period of restraint reduced cortical norepinephrine (NE) content in FEE and PF animals compared with that in the cortex of C animals, and reduced hypothalamic NE content in FEE female offspring below that found in animals in all other groups. In contrast, hippo-campal NE content was higher in FEE than in C animals following a single period of restraint; PF animals had intermediate levels of hippocampus NE and did not differ significantly from either FEE or C animals. Following repeated periods of restraint, cortical NE content was lower in FEE than in C animals; PF animals once again had intermediate levels of NE. Importantly, basal (non stressed) NE content did not differ among groups in any brain area examined. In addition, several significant changes in regional brain catecholaminergic responses to acute stress were observed in animals across all treatment groups. Females generally had significantly lower cortical NE levels than males following both single and multiple exposures to restraint. In addition, the cortical NE content decreased below non-stressed levels in all groups following a single restraint period, and remained significantly below basal levels during the 60-min recovery period, whereas the hypothalamic NE content was significantly decreased immediately following the restraint period but showed some recovery toward basal levels by 60 min. There were no significant changes over time in hippocampal NE level or in cortical or hypothalamic dopamine (DA) content following a single restraint stress. Following multiple periods of restraint, hippocampal NE levels were significantly increased and hypothalamic DA levels were significantly decreased in all animals compared with basal levels. These data suggest that the brain noradrenergic response to acute stress is particularly sensitive to the effects of FEE, and that with regard to the hypothalamus, male and female offspring were differentially affected. Furthermore, nutritional effects appear to play some role in mediating the changes in regional brain catecholamine content that are observed. In addition, stress effects on brain catecholamine content across all treatment groups were found to be both region and sex specific.  相似文献   

5.
We investigated the central and peripheral sympathetic responses to intermittent dehydration in rats. The norepinephrine (NE) turnover, a biochemical index correlated with noradrenergic neuronal activity, was measured. The modification of blood pressure was also determined by telemetry during the different cycles of dehydration. Dehydration caused a decrease of NE turnover in A2, A5 and A6 nuclei and in peripheral organs. The vasopressinergic level of dehydrated rats decreased in hypophysis and hypothalamus, and increased in plasma. A repeated gradual increase of arterial blood pressure during the first three days of dehydration, followed by a sudden drop when the rats were rehydrated on the fourth day was observed. In conclusion, our study revealed an increase in blood pressure and in central sympathetic activity during dehydration.  相似文献   

6.
The role of hypothalamic structures in the regulation of chronic stress responses was studied by lesioning the mediobasal hypothalamus or the paraventricular nucleus of hypothalamus (PVH). Rats were acutely (60 min) and/or repeatedly (for 7 days) restrained. In controls, a single restraint elevated the plasma adrenocorticotropin (ACTH), corticosterone, and prolactin levels. Repeated restraint produced all signs of chronic stress, including decreased body and thymus weights, increased adrenal weight, basal corticosterone levels, and proopiomelanocortin (POMC) mRNA expression in the anterior pituitary. Some adaptation to repeated restraint of the ACTH response, but not of other hormonal responses, was seen. Lesioning of the mediobasal hypothalamus abolished the hormonal response and POMC mRNA activation to acute and/or repeated restraint, suggesting that the hypothalamo-pituitary-adrenal axis activation during repeated restraint is centrally driven. PVH lesion inhibited the ACTH and corticosterone rise to the first restraint by approximately 50%. In repeatedly restrained rats with PVH lesion, the ACTH response to the last restraint was reduced almost to basal control levels, and the elevation of POMC mRNA level was prevented. PVH seems to be important for the repeated restraint-induced ACTH and POMC mRNA stimulation, but it appears to partially mediate other restraint-induced hormonal changes.  相似文献   

7.
The role of endogenous catecholamines in the regulation of brain prostaglandin (PG) synthesis was studied in the rat. Male rats were injected in the brain lateral ventricle or in the ventral noradrenergic bundle with either the catecholaminergic neurotoxin 6-hydroxydopamine or vehicle. Other groups of rats were injected intraperitoneally with the tyrosine hydroxylase inhibitor, alpha-methyl-p-tyrosine, or with the inhibitor of dopamine-beta-hydroxylase, FLA-63. All these drugs produced a significant depletion of norepinephrine (NE) content in the cortex and hypothalamus. The rats that had lower levels of NE exhibited reduced capacity to synthesize PGE2 but not thromboxane B2 and 6-keto-PGE1 alpha in the cortex and hypothalamus. However, induced production of PG, stimulated by the bacterial endotoxin lipopolysaccharide (LPS), remained unchanged, namely, a similar (2- to 2.5-fold) increase of PG synthesis was noted in control and in NE-depleted rats. We suggest that the regulation of PG synthesis under basal condition requires intact adrenergic input, whereas LPS-induced production of PG is independent of the adrenergic innervation.  相似文献   

8.
In ISIAH rat strain with stress-sensitive form of hypertension, the expression level of glucocorticoid receptor (GR) gene has been evaluated in hippocampus, hypothalamus and pituitary under basal and 2-hr restraint stress conditions. Corticosterone (CS) level in peripheral blood was also evaluated. Normotensive WAG strain was used as a control. Under basal condition, there were no interstrain differences in GR-mRNA level in any brain region under study. However, under stress condition, ISIAH rats demonstrated a significant fall of GR-mRNA in hippocampus and increase the pituitary gland as compared to basal level. On the contrary, no differences with basal level were found in stressed WAG rats. CS concentration in blood was nearly the same in nonstressed WAG and ISIAH rats. Stress influence led to a marked increase of CS in both strains. However CS level was significantly higher in stressed ISIAH rats than in stressed WAG group.  相似文献   

9.
Mastication, which includes biting, is of great importance not only for the intake of food but also for the mental, physical and physiological functioning of the body. For example, biting suppresses the stress response. Although biting and nitric oxide (NO) appear to modulate brain dynamics during stress, the underlying mechanisms have not been elucidated. In this study, we examined the effect of biting during restraint stress on NO levels in the rat hypothalamus. To this end, we used NO-selective electrodes that were calibrated by electron spin resonance (ESR) spectroscopy. We implanted the electrodes and probes for perfusion of solutions into the brain of rats, near the hypothalamus. Saline containing 10 mM N-nitro-L-arginine methyl ester (L-NAME), which is one of the most commonly used inhibitors of nitric oxide synthase (NOS), was employed as the perfusate. L-NAME prevented increases in NO levels in the rat hypothalamus that were induced by restraint stress and biting. Hypothalamic NO levels in rats under restraint stress for 180 min were increased above levels observed in unrestrained control rats. The increase in hypothalamic NO (from 2.123 muM to 4.760 muM) during restraint stress was reduced after biting for 30 min. The decay rate of NO levels after biting was -0.584 pA/min (-0.071 muM/min). We conclude that: (i) it is possible to evaluate NO levels in vivo in rat brain; (ii) NO levels are increased by restraint stress; and (iii) this increase is prevented by biting behavior.  相似文献   

10.
Six-hydroxydopamine (6-OHDA) was administered intraventricularly to 6-week-old male spontaneously hypertensive (SH) rats of the Okomoto strain and to normotensive rats of the Kyoto-Wistar strain. In addition, bilateral lateral tegmental lesions were placed in 35-40-day-old SH rats to interrupt ascending noradrenergic pathways. SH rats treated with 6-OHDA did not develop hypertension and had lower heart rates than control rats. Blood pressure and heart rate of Kyoto-Wistar animals were unaffected by the drug treatment. 6-OHDA produced widespread depletion of norepinephrine throughout the CNS of both SH and Kyoto-Wistar rats. Bilateral lateral tegmental lesions interrupted the dorsal noradrenergic bundle and depleted forebrain norepinephrine. These lesions did not prevent the development of hypertension and led to an increased heart rate. It is concluded that 6-OHDA does not produce its effect through a nonspecific lowering of blood pressure, but rather, that it interferes with the expression of the hypertensive syndrome. The lack of effect seen following depletion of forebrain norepinephrine as the result of interruption of the dorsal noradrenergic bundle indicates that the fibers destroyed by this lesion are not essential for the development of genetically determined hypertension.  相似文献   

11.
Many aspects of drug abuse and addiction share neurobiological substrates with the modulatory processes underlying the response and adaptation to acute stress. In particular, the ascending noradrenergic system has been implicated in facilitating the response to stress, and in stress-induced reinstatement of drug seeking behavior. Thus, to better understand the link between stress and addictive behaviors, it would be informative to understand better the modulatory function of the ascending noradrenergic system, and its interaction with other neurotransmitters with which it is closely associated or co-localized, such as the neuropeptide galanin. In this paper, we review a series of studies investigating the functional interactions of norepinephrine and galanin in modulating the behavioral response to acute stress in two components of the extended amygdala, the central nucleus of the amygdala and the lateral bed nucleus of the stria terminalis. We showed that norepinephrine facilitates behavioral reactivity to stress on the elevated plus-maze and social interaction tests. However, when stress-induced activation of the noradrenergic system was enhanced by blocking inhibitory adrenergic autoreceptors, galanin release was recruited in the central amygdala, acting to attenuate the behavioral response to stress. By contrast, stress-induced galanin release in the lateral bed nucleus appeared to be independent of enhanced noradrenergic activation, and unlike the central amygdala, both galanin and norepinephrine facilitated behavioral stress reactivity in the bed nucleus. The different modes of interaction and differential region- and response-specificity of galanin and norepinephrine suggest that a complex neural circuit interconnecting these two regions is involved in the modulatory effects of norepinephrine and galanin on the behavioral response to stress. Such complexity may allow for flexibility and plasticity in stress adaptation, and may also contribute to behavioral changes induced by chronic drug administration. Thus, the interaction of galanin and norepinephrine may be a viable target for the future development of novel therapeutic strategies for treating behavioral disorders related to stress or drug abuse.  相似文献   

12.
Effect of Long-Lasting Diabetes Mellitus on Rat and Human Brain Monoamines   总被引:3,自引:1,他引:2  
Experimental alloxan- or streptozotocin-produced diabetes in rats was accompanied by an increase in the levels of norepinephrine, dopamine, and serotonin, whereas the contents of metabolites, i.e., 5-hydroxyindoleacetic acid and homovanillic acid, in the whole brain gradually decreased with the duration of diabetes. Among the striatum, thalamus, and hypothalamus of alloxan diabetic rats, monoamine alterations were observed only in the hypothalamus; after 1 week an increase of norepinephrine content and after 13 weeks an increase of norepinephrine and dopamine contents were found. Tissues of 11 brain regions of 10 diabetic and 12 control patients post mortem were investigated for monoamine concentrations. Patients were all male, of similar age and interval between death and autopsy. Diabetic patients had an increase in the content of serotonin in the medial and lateral hypothalamus. The content of dopamine increased in the medial hypothalamus, putamen, and medial and lateral pallidus. In diabetic patients, the content of norepinephrine increased in the lateral pallidus and decreased in the nucleus accumbens and claustrum. Thus, it seems that diabetes mellitus in rats, as well as in humans is associated with regionally specific changes in brain monoamines.  相似文献   

13.
The part of noradrenergic mechanisms in self-stimulation (SS) operant behaviour was studied in rats. In all experiments systolic blood pressure (BP) in the tail artery was measured by means of photocells. It was found, that small doses of noradrenaline facilitate the SS, while high doses depress or stop it. The depressive effect is accompanied by a marked increase of BP. Effective blockade of beta-adrenoceptive structures by inderal suppresses SS, and the inhibitory effect is accompanied by a small decrease of BP. Suppressing effect of alpha-adrenoblocking agent, phentolamine, is even more pronounced, but is accompanied by a marked decrease of BP. Beta-agonist isadrin causes a marked facilitation of SS without changes of BP. It is suggested that positive reward in the lateral hypothalamus is due to a direct stimulation of beta-adrenoceptive noradrenergic neuronal elements. Chronic neurogenic hypertension is developed by an overloading of the higher nervous activity. In chronic hypertensive rats there is a pronounced suppression of SS. A transient fail of BP caused by injection of catapresan (hemiton) results in a temporary recovery of normal SS behaviour. It may be concluded that reduction of lever-pressing rate during acute and chronic neurogenic hypertensions is related to baroreceptor mechanisms. The role of the autonomic nervous system in SS behaviour is discussed.  相似文献   

14.
The purpose of the present study was to assess whether, and to what extent prior handling, restraint or social crowding stress during 3-10 days affects the hypothalamic-pituitary-adrenocortical (HPA) response to an acute short-lasting restraint stress. Also the effect of a feedback inhibitory mechanism of corticosterone in the impairment of HPA axis by these stressors was investigated. Male Wistar rats were pretreated with handling 1 min/day for 3-10 days, restraint 2 times daily for 3-7 days and crowding stress for 7 days before exposure to acute restraint stress in metal tubes for 10 min. Some group of rats received exogenous s.c. corticosterone either once 25 mg/kg or 2 times daily 10 mg/kg for 3-10 days before restraint stress. After the last restraint the rats were decapitated and their trunk blood was collected for the measurement of plasma ACTH and serum corticosterone levels. Handling for 3-7 days, restraint for 3-7 days, and crowding for 7 days and a single pretreatment with corticosterone--all significantly and to a similar extent inhibited the restraint stress-induced increase in ACTH and corticosterone secretion. Chronic pretreatment with corticosterone blunted the restraint stress-induced increase in HPA axis activity. These results indicate that repeated short-lasting stress induced by handling, restraint, or crowding potently attenuates the acute restraint stress-induced stimulatory action of the HPA axis. They also indicate adaptive action of moderate stress on the HPA axis response to acute stress. The results also suggest that a short-lasting hypersecretion of corticosterone during psychological stress may induce a prolonged feedback inhibition of the HPA axis activity. The attenuation of HPA axis response by prior handling has also obvious methodological implications.  相似文献   

15.
The effect on emotional reactivity produced by a model for chronic stress in which different types of acute stresses were randomly combined for 29 days was studied in adult male rats. Chronically stressed rats showed a slight decrease in body weight gain and an increase in relative adrenal weight. Chronic stress did not modify defecation rate but reduced exploratory activity in the holeboard. Neither basal nor acute-stress induced levels of adrenocorticotropin (ACTH) were modified by previous chronic stress. Likewise, basal corticosterone levels were similar in both groups. However, corticosterone response to acute restraint stress was higher in chronically stressed than in control rats. The mechanisms underlying the dissociation between ACTH and corticosterone as well as its possible implications are discussed.  相似文献   

16.
Two distinct periods of sensitivity to elevated glucocorticoid hormone levels during postnatal development of the pituitary-adrenal axis were studied. Wistar rats were injected subcutaneously (s.c.) with cortisol (1 mg/kg) on postnatal days 1-5 or 14-18. The steroid treatment during the first postnatal week resulted in a decrease of the morning basal and stress-induced plasma corticosterone levels in 30 day-old male rats, as well as in rats that were injected with cortisol on the third postnatal week. Stress-induced corticosterone levels in 90-day old cortisol-treated rats were determined in blood samples drawn from the tail vein before the restraint stress, immediately after the 20-min long stress, then 60 and 180 min afterwards. Only the rats treated with cortisol during the third week showed a prolonged stress-induced corticosterone secretion, with the highest corticosterone level in 180 min after the restraint stress. The early neonatal cortisol treatment had no effect on (3)H-corticosterone binding in all studied brain areas of the 90-day old rats. The rats treated with cortisol at the 14-17th postnatal days showed a significantly lower (3)H-corticosterone binding in the frontal cortex, hippocampus, and hypothalamus. These findings suggest that the third week of life in rats is more sensitive to elevated levels of corticosterone than the first one. The high level of glucocorticoids at this period has long-term effects on the efficiency of the negative feedback mechanisms provided by hypothalamus-pituitary-adrenal axis.  相似文献   

17.
The influence of chronic stress (footshock combined with randomized light flashes) on acute stress-induced (immobilization) release of noradrenaline, dopamine and serotonin in rat lateral hypothalamus was assessed by microdialysis. The chronic stress resulted in an increase and prolongation of the acute stress-induced release of noradrenaline but not of dopamine and serotonin. The increased rate of accumulation of dioxyphenylacetic acid and unchanged accumulation of homovanillic acid (dopamine metabolites) and dopamine during and after the acute stress in chronically stressed animals reflect a rise of synthetic activity of catecholaminergic systems in response to acute stress and reuptake increase. Marked stress-induced increase in hydroxyindoleacetic acid in chronically stressed rats without any changes in the ST dynamics may be regarded in a similar way. A significant increase in potassium-stimulated release of all the studied monoamines was found while their basal level remained unchanged. The conclusions was made that the hyperergic release of neurotransmitters may be the basis of an inadequate response of animals to acute stress, i.e., one of the neurotic symptoms.  相似文献   

18.
丁虎  周期 《生理学报》1990,42(4):379-384
The content of norepinephrine (NE) and epinephrine (E) in the brain of spontaneously hypertensive rats has proved abnormal, but the cause remained unknown. It was shown in the recent work that NE content in pons, posterior hypothalamus, nucleus caudatus and E concentration in medulla oblongata, anterior and posterior hypothalamus of 12-week old stroke-prone spontaneously hypertensive rats (SHRSP) were much higher than those of age-matched Wister-Kyoto rats (WKY). SHRSP also showed higher levels of systolic blood pressure (SBP) and brain angiotensin II (A II) than WKY. Intracerebroventricular (icv) perfusion of angiotensin-converting enzyme inhibitor captopril (20 micrograms for each time and three times for each day for four weeks) inhibited the synthesis of brain A II and reduced SBP and NE, E contents in all examined brain areas in SHRSP and WKY. However, the effects of chronically perfused captopril on SBP and brain NE, E levels in SHRSP were much more significant than in WKY. The results indicate that the modulatory effects of central renin-angiotensin system (RAS) on central adrenergic and noradrenergic system might be overactivated in SHRSP, which might partially responsible for the abnormally high levels of NE, E in some of the brain areas of SHRSP.  相似文献   

19.
Chen L  Li RJ  Zhou YB  Chen JJ 《生理学报》1999,51(5):593-596
实验采用微量注射和荧光分光光度测定的方法,探讨了下丘脑前部减压区牛磺酸对大鼠血压的影响及其可能的机制。结果显示:(1)下丘脑前部减压区微量注射牛磺酸可致大鼠血压降低;(2)侧脑室注射β受体阻断剂心得安可阻断牛磺酸的降压效应。而α受体阻断剂酚妥拉明对牛磺酸的降压效应无明显影响;(3)下丘脑前部减压区注射牛磺酸后,可使下丘脑去甲肾上腺素含量明显增高。  相似文献   

20.
Formation of nitric oxide, an endothelium-derived relaxing factor, can be inhibited by administration of N-nitro-L-arginine methylesther (L-NAME). In the present study, the activity of the sympathoadrenal system in rats with blood pressure (BP) elevation induced by L-NAME was investigated. L-NAME was administered in a dose of 50 mg/kg, i.p. every 12 h for 4 days. Blood samples were collected via chronically inserted arterial catheters in conscious, freely moving rats at rest and during immobilization stress. Plasma epinephrine (EPI), norepinephrine (NE), and dopamine (DA), as well as catecholamine metabolites dihydroxyphenylglycol (DHPG) and dihydroxyphenylacetic acid (DOPAC) were measured by HPLC method. In L-NAME treated animals, which showed a significant increase in BP, plasma EPI levels were markedly elevated both before and during stress. Plasma NE levels were not significantly increased, however, DHPG levels, which indicate NE turnover and reuptake, were highly elevated. Plasma DA levels were not changed after L-NAME administration but DA metabolite DOPAC showed a significant elevation both under basal conditions and during stress. Thus, the present results indicate that the prolonged blockade of nitric oxide synthesis that causes arterial hypertension is associated with an activation of the sympathoadrenal system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号