首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Individual ionic channels were shown to be formed in the brain cholesterol containing phospholipid membranes by two-sided addition of the amphotericin B alkyl derivatives. At concentrations between 10−8 and 10−7 M, the resulting conductance appeared to be transient. Existence of different antibiotic assemblies was justified by the kinetic analysis of the membrane conductance decline following the antibiotic washing out. In order to account for the transient characteristics of the induced conductance, it was proposed that the antibiotic oligomers incorporate into the membrane from the aqueous phase, form channels aggregating with cholesterol, and then dissociate in the bilayer into non-active degraded oligomeric or monomeric forms.  相似文献   

2.
Amphotericin B alkyl derivatives increased conductivity of bilayer membranes by formation of channels in them. The properties of such channels were studied. A new method for determination of the polyene antibiotic toxicity is described. The method is based on measurement of the constant of the relaxation time on the antibiotic removal from the membrane solution. It was shown that the amphotericin B alkyl derivatives had very low toxicity for the mammalian cells and were highly toxic for the fungal cells. These antibiotics may be used as new effective antifungal compounds.  相似文献   

3.
S V Rudenko 《Biofizika》1986,31(1):59-63
It has been shown that structural rearrangements induced by glycerol in bilayer lipid membranes (BLM) containing cholesterol facilitate the transmembrane transport of amphotericin B molecules in the direction of glycerol gradient. The addition of amphotericin B to the same side with glycerol results in a change in bilayer selectivity from the cation to the anion one. Besides, the final conductivity is blocked by tetraethylammonium from the solution with no amphotericin B added. It testifies to the transport of amphotericin molecules to the opposite side of the membrane. The transport effect depends on the cholesterol content in bilayer, ionic strength of the medium and slightly depends on temperature. It is concluded that transport of amphotericin B in such conditions differs from the diffusive one and is due to the formation of intermediate lipid phases in the course of structural rearrangements of bilayers.  相似文献   

4.
This paper reports the effects of amphotericin B, a polyene antibiotic, on the water and nonelectrolyte permeability of optically black, thin lipid membranes formed from sheep red blood cell lipids dissolved in decane. The permeability coefficients for the diffusion of water and nonelectrolytes (PDDi) were estimated from unidirectional tracer fluxes when net water flow (Jw) was zero. Alternatively, an osmotic water permeability coefficient (Pf) was computed from Jw when the two aqueous phases contained unequal solute concentrations. In the absence of amphotericin B, when the membrane solutions contained equimolar amounts of cholesterol and phospholipid, Pf was 22.9 ± 4.6 µsec-1 and P DDHDH2O was 10.8 ± 2.4 µsec-1. Furthermore, PDDi was < 0.05 µsec-1 for urea, glycerol, ribose, arabinose, glucose, and sucrose, and σi, the reflection coefficient of each of these solutes was one. When amphotericin B (10-6 M) was present in the aqueous phases and the membrane solutions contained equimolar amounts of cholesterol and phospholipid, P DDHDH2O was 18.1 ± 2.4 µsec-1; Pf was 549 ± 143 µsec-1 when glucose, sucrose, and raffinose were the aqueous solutes. Concomitantly, PDDi varied inversely, and σi directly, with the effective hydrodynamic radii of the solutes tested. These polyene-dependent phenomena required the presence of cholesterol in the membrane solutions. These data were analyzed in terms of restricted diffusion and filtration through uniform right circular cylinders, and were compatible with the hypothesis that the interactions of amphotericin B with membrane-bound cholesterol result in the formation of pores whose equivalent radii are in the range 7 to 10.5 A.  相似文献   

5.
It is widely accepted that amphotericin B (AmB) together with sterol makes a mixed molecular assemblage in phospholipid membrane. By adding AmB to lipids prior to preparation of large unilamellar vesicles (LUV), we directly measured the effect of cholesterol on assemblage formation by AmB without a step of drug's binding to phospholipid bilayers. Potassium ion flux assays based on 31P-nuclear magnetic resonance (NMR) clearly demonstrated that cholesterol markedly inhibits ion permeability induced by membrane-bound AmB. This could be accounted for by a membrane-thickening effect of cholesterol since AmB actions are known to be markedly affected by the thickness of membrane. Upon addition of AmB to an LUV suspension, the ion flux gradually increased with increasing molar ratios of cholesterol up to 20 mol%. These biphasic effects of cholesterol could be accounted for, at least in part, by the ordering effect of cholesterol.  相似文献   

6.
It is widely accepted that amphotericin B (AmB) together with sterol makes a mixed molecular assemblage in phospholipid membrane. By adding AmB to lipids prior to preparation of large unilamellar vesicles (LUV), we directly measured the effect of cholesterol on assemblage formation by AmB without a step of drug's binding to phospholipid bilayers. Potassium ion flux assays based on 31P-nuclear magnetic resonance (NMR) clearly demonstrated that cholesterol markedly inhibits ion permeability induced by membrane-bound AmB. This could be accounted for by a membrane-thickening effect of cholesterol since AmB actions are known to be markedly affected by the thickness of membrane. Upon addition of AmB to an LUV suspension, the ion flux gradually increased with increasing molar ratios of cholesterol up to 20 mol%. These biphasic effects of cholesterol could be accounted for, at least in part, by the ordering effect of cholesterol.  相似文献   

7.
Amphotericin B (AmB) increased unidirectional Na transport and net transcellular sodium movements across the skin of the frog, Rana pipiens, when added to the solution bathing the corium side, but not from the outer epidermal surface. The AmB response was prevented with pretreatment with amiloride, ouabain and mucosal sodium substitution. Alteration in pH markedly reduced the permeability changes induced by AmB. AmB did not interfere with the increase in sodium transport induced by antidiuretic hormone. The present study demonstrates that AmB interacts with the skin of the frog, Rana pipiens, from the corium side specifically increasing transepithelial sodium transport. The increase in transport apparently occurs through the existing sodium pathway.  相似文献   

8.
The effects on intra- and extracellular pH of two polyenic derivatives of amphotericin B, N-fructosyl amphotericin B and N-fructosyl amphotericin B methyl-ester, were tested on HL-60 promyelocytic leukemia cells. Both derivatives raised the internal pH and reduced the external pH in weakly buffered medium. These results support the idea that both derivatives induce outward proton movement from the cell to the external solution. In this respect, the non-esterified derivative proved to be more powerful that the esterified one. Under the present conditions, there was little or no regulation of pH in HL-60 cells, which exhibited an almost constant pH gradient between the external and internal pH (acid inside relative to outside). This deficiency in pH homeostasis might be due to the immature state of the HL-60 cells.  相似文献   

9.
Summary Lysine-valinomycin and two N-acyl derivatives are compared with respect to their potency to transport Rb+ ions across thin lipid membranes. Lysine-valinomycin acts as a neutral ion carrier only above a pH of about 7 of the aqueous solutions, while at lower pH the molecules seem to be positively charged due to a protonation of the -NH2 group of the lysine residue.A kinetic analysis based on voltage jump relaxation experiments and on the nonlinearity of the current-voltage characteristics showed that the conductance increment per carrier molecule for uncharged lysine-valinomycin is similar to that of natural valinomycin. The attachment of a rather bulky side group such as the dansyl or para-nitrobenzyloxycarbonyl group reduced by approximately one order of magnitude.Some of the relaxation data of the valinomycin analogues were influenced by an unspedfic relaxation of the pure lipid membrane. This structural relaxation represents a limitation to the possibility of analyzing specific transport systems in thin lipid membranes by the voltage jump or charge pulse techniques. It is shown that the time dependence of this structural relaxation — which was first published by Sargent (1975) — is at variance with a three capacitor equivalent circuit of the membrane, which was suggested by Coster and Smith (1974) on the basis of a.c. measurements. A modified equivalent circuit has been found to represent a satisfactory analogue for the current relaxation in the presence of valinomycin. It turned out, however, that such an equivalent circuit provides little insight into the molecular mechanism of transport.  相似文献   

10.
R A Brutian 《Biofizika》1982,27(4):646-649
Single ionic channels of approximately 10 pS in magnitude and approximately 100 ms duration (in 2 M KCl solution) were recorded when amphotericin B (AB) was added to one side of a lipid bilayer. Using blocking ions it has been shown that these channels are asymmetrical half-pores (similar to those postulated by Marty and Finkelstein) which are capable of forming long-living symmetrical pores if AB is added to both sides of the membrane.  相似文献   

11.
Amphotericin B (AmB) is a well-known polyene macrolide antibiotic used to treat systemic fungal infections. AmB targets more efficiently fungal than animal membranes. However, there are only minor differences in the mode of action of AmB against both types of membranes, which is a source of AmB toxicity. In this work, we analyzed interactions of two low toxic derivatives of AmB (SAmE and PAmE), synthesized in our laboratory, with lipid membranes. Molecular dynamics simulations of the lipid bilayers containing ergosterol (fungal cells) or cholesterol (animal cells) and the studied antibiotic molecules were performed to compare the structural and dynamic properties of AmB derivatives and the parent drug inside the membrane. A number of differences was found for AmB and its derivatives' behavior in cholesterol- and ergosterol-containing membranes. We found that PAmE and SAmE can penetrate deeper into the hydrophobic region of the membrane compared to AmB. Modification of the amino and carboxyl group of AmB also resulted in the conformational transition within the antibiotic's polar head. Wobbling dynamics differentiation, depending on the sterol present, was discovered for the AmB derivatives. These differences may be interpreted as molecular factors responsible for the improved selectivity observed macroscopically for the studied AmB derivatives.  相似文献   

12.
Amphotericin B (AmB) is a polyene antibiotic frequently applied in the treatment of fungal infections. According to the general understanding, the mode of action of AmB is directly related to the molecular organization of the drug in the lipid environment, in particular to the formation of pore-like molecular aggregates. Electronic absorption and fluorescence techniques were applied to investigate formation of molecular aggregates of AmB in the lipid environment of liposomes and monomolecular layers formed at the argon-water interface. It appears that AmB dimers, stabilized by van der Waals interactions, are present in the membrane environment along with the aggregates formed by a greater number of molecules. Linear dichroism measurements reveal that AmB is distributed between two fractions of molecules, differently oriented with respect to the bilayer. Molecules in one fraction remain parallel to the plane of the membrane and molecules in the other one are perpendicular. Scanning Force Microscopy imaging of the surface topography of the monolayers formed with AmB in the presence of lipids reveals formation of pore-like structures characterized by the external diameter close to 17 A and the internal diameter close to 6 A. All the findings are discussed in terms of importance of the molecular organization of AmB in the pharmacological action, as well as of the toxic side effects of the drug.  相似文献   

13.
Lysine-valinomycine and two N epsilon-acyl derivatives are compared with respect to their potency to transport Rb+ ions across thin lipid membranes. Lysine-valinomycin acts as a neutral ion carrier only above a pH of about 7 of the aqueous solutions, while at lower pH the molecules seem to be positively charged due to a protonation of the epsilon-NH2 group of the lysine residue. A kinetic analysis based on voltage jump relaxation experiments and on the nonlinearity of the current-voltage characteristics showed that the conductance increment delta per carrier molecule for uncharged lysine-valinomycin is similar to that of natural valinomycin. The attachment of a rather bulky side group such as the dansyl or para-nitrobenzyloxycarbonyl group reduced delta by approximately one order of magnitude. Some of the relaxation data of the valinomycin analogues were influenced by an unspecific relaxation of the pure lipid membrane. This structural relaxation represents a limitation to the possibility of analyzing specific transport systems in thin lipid membranes by the voltage jump or charge pulse techniques. It is shown that the time dependence of this structural relaxation--which was first published by Sargent (1975)--is at variance with a three capacitor equivalent circuit of the membrane, which was suggested by Coster and Smith (1974) on the basis of a.c. measurements. A modified equivalent circuit has been found to represent a satisfactory analogue for the current relaxation in the presence of valinomycin. It turned out, however, that such an equivalent circuit provides little insight into the molecular mechanism of transport.  相似文献   

14.
Amphotericin B (AmB) is a well-known polyene macrolide antibiotic used to treat systemic fungal infections. AmB targets more efficiently fungal than animal membranes. However, there are only minor differences in the mode of action of AmB against both types of membranes, which is a source of AmB toxicity. In this work, we analyzed interactions of two low toxic derivatives of AmB (SAmE and PAmE), synthesized in our laboratory, with lipid membranes. Molecular dynamics simulations of the lipid bilayers containing ergosterol (fungal cells) or cholesterol (animal cells) and the studied antibiotic molecules were performed to compare the structural and dynamic properties of AmB derivatives and the parent drug inside the membrane. A number of differences was found for AmB and its derivatives' behavior in cholesterol- and ergosterol-containing membranes. We found that PAmE and SAmE can penetrate deeper into the hydrophobic region of the membrane compared to AmB. Modification of the amino and carboxyl group of AmB also resulted in the conformational transition within the antibiotic's polar head. Wobbling dynamics differentiation, depending on the sterol present, was discovered for the AmB derivatives. These differences may be interpreted as molecular factors responsible for the improved selectivity observed macroscopically for the studied AmB derivatives.  相似文献   

15.
Water permeability of thin lipid membranes   总被引:7,自引:11,他引:7  
The osmotic permeability coefficient, Pf, and the tagged water permeability coefficient, Pd, were determined for thin (<100 A) lipid membranes formed from ox brain lipids plus DL-α-tocopherol; their value of approximately 1 x 10-3 cm/sec is within the range reported for plasma membranes. It was established that Pf = Pd. Other reports that Pf > Pd can be attributed to the presence of unstirred layers in the experimental determination of Pd. Thus, there is no evidence for the existence of aqueous pores in these thin phospholipid membranes. The adsorption onto the membrane of a protein that lowers its electrical resistance by a factor of 103 was found not to affect its water permeability; however, glucose and sucrose were found to interact with the membrane to modify Pf. Possible mechanisms of water transport across these films are discussed, together with the implications of data obtained on these structures for plasma membranes.  相似文献   

16.
In this study amphotericin B released the divalent trace metals Zn2+, Co2+, Cu2+, Ni2+, Mn2+, Fe2+, Cd2+ and Pb2+ from multilamellar liposomes containing cholesterol. This observation is consistent with amphotericin B channels being permeable to these metals, and it is proposed, therefore, that the antibiotic may be useful in investigating the metabolism of these elements.  相似文献   

17.
Glucose permeability of lipid bilayer membranes   总被引:4,自引:0,他引:4  
  相似文献   

18.
The (1)H NMR technique was applied to study binding of AmB, an antifungal drug, to lipid membranes formed with egg yolk phosphatidylcholine. The analysis of (1)H NMR spectra of liposomes, containing also cholesterol and ergosterol (at 40 mol%), shows that AmB binds preferentially to the polar headgroups. Such a binding restricts molecular motion of the choline fragment in the hydrophilic region at the surface of liposomes but increases the segmental motional freedom in the hydrophobic core. The same effects are also observed in the sterol-containing membranes, except that the effect on the hydrophobic core was exclusively observed in the membranes containing ergosterol.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号