首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gene encoding the active site of the ammonia monooxygenase (amoA) has been exploited as molecular marker for studying ammonia-oxidizing bacteria (AOB) diversity in the environment. Primers amplifying functional genes are often degenerated and therefore produce multiple band patterns, when analysed with the Denaturing gradient gel electrophoresis (DGGE) approach. To improve the DGGE band patterns we have designed new primer sets which contain inosine residues and are specific for the amoA gene. Primers were evaluated analysing pure AOB cultures and two habitats (wastewater treatment plant, soda pools). We found that the application of inosine primers helped to reduce the apparent complexity of the DGGE band pattern. Comparison of sequences from environmental samples using either degenerated or inosine containing amoA primers retrieved both identical and additional sequences. Both primer sets seem to be limited in their ability to detect the presence of all AOB by DGGE analyses.  相似文献   

2.
The current perception of evolutionary relationships and the natural diversity of ammonia-oxidizing bacteria (AOB) is mainly based on comparative sequence analyses of their genes encoding the 16S rRNA and the active site polypeptide of the ammonia monooxygenase (AmoA). However, only partial 16S rRNA sequences are available for many AOB species and most AOB have not yet been analyzed on the amoA level. In this study, the 16S rDNA sequence data of 10 Nitrosomonas species and Nitrosococcus mobilis were completed. Furthermore, previously unavailable 16S rRNA sequences were determined for three Nitrosomonas sp. isolates and for the gamma-subclass proteobacterium Nitrosococcus halophilus. These data were used to revaluate the specificities of published oligonucleotide primers and probes for AOB. In addition, partial amoA sequences of 17 AOB, including the above-mentioned 15 AOB, were obtained. Comparative phylogenetic analyses suggested similar but not identical evolutionary relationships of AOB by using 16S rRNA and AmoA as marker molecules, respectively. The presented 16S rRNA and amoA and AmoA sequence data from all recognized AOB species significantly extend the currently used molecular classification schemes for AOB and now provide a more robust phylogenetic framework for molecular diversity inventories of AOB. For 16S rRNA-independent evaluation of AOB species-level diversity in environmental samples, amoA and AmoA sequence similarity threshold values were determined which can be used to tentatively identify novel species based on cloned amoA sequences. Subsequently, 122 amoA sequences were obtained from 11 nitrifying wastewater treatment plants. Phylogenetic analyses of the molecular isolates showed that in all but two plants only nitrosomonads could be detected. Although several of the obtained amoA sequences were only relatively distantly related to known AOB, none of these sequences unequivocally suggested the existence of previously unrecognized species in the wastewater treatment environments examined.  相似文献   

3.
The functional gene amoA was used to compare the diversity of ammonia-oxidizing bacteria (AOB) in the water column and sediment-water interface of the two freshwater lakes Plusssee and Sch?hsee and the Baltic Sea. Nested amplifications were used to increase the sensitivity of amoA detection, and to amplify a 789-bp fragment from which clone libraries were prepared. The larger part of the sequences was only distantly related to any of the cultured AOB and is considered to represent new clusters of AOB within the Nitrosomonas/Nitrosospira group. Almost all sequences from the water column of the Baltic Sea and from 1-m depth of Sch?hsee were related to different Nitrosospira clusters 0 and 2, respectively. The majority of sequences from Plusssee and Sch?hsee were associated with sequences from Chesapeake Bay, from a previous study of Plusssee and from rice roots in Nitrosospira-like cluster A, which lacks sequences from Baltic Sea. Two groups of sequences from Baltic Sea sediment were related to clonal sequences from other brackish/marine habitats in the purely environmental Nitrosospira-like cluster B and the Nitrosomonas-like cluster. This confirms previous results from 16S rRNA gene libraries that indicated the existence of hitherto uncultivated AOB in lake and Baltic Sea samples, and showed a differential distribution of AOB along the water column and sediment of these environments.  相似文献   

4.
好氧氨氧化菌的种群生态学研究进展   总被引:21,自引:1,他引:20  
好氧氨氧化菌是一类能够在好氧条件下将NH4^+转化为NO2^-的化能无机自养型细菌,其活动将直接或间接影响土壤养分循环、水体富营养化、温室气体(N2O)和生态系统的功能。现代分子生物学技术的发展促进了人们对好氧氨氧化菌种群生态学的研究。介绍了近年来基于16SrRNA和氨单加氧酶amoA基因序列分析的好氧氨氧化菌的系统发育研究,比较了两种基因序列分析在好氧氨氧化菌遗传多样性研究中存在的差异;概述了环境条件诸如铵浓度、酸度、氧的可利用性、温度、盐度等对好氧氨氧化菌种类、数量及其种群生态分布的影响;阐述了好氧氨氧化菌对铵、氧饥饿的响应特征及其在酸性环境中的生存机制;并对今后好氧氨氧化菌的应用生态学研究及其主要方向进行了展望。  相似文献   

5.
Palmer KM  Turner SL  Young JP 《Plasmid》2000,44(3):209-219
The repABC operon is essential for stable maintenance of some Rhizobiaceae plasmids and of pTAV320 from Paracoccus versutus. These plasmids are the largest described family of homologous, yet compatible replicons. The repC gene is essential for plasmid replication, and previous work identified four distinct sequence groups (repC1, repC2, repC3, and repC4) that appear to define different compatibility classes. Probes for these different groups were used to characterize plasmids in Rhizobium leguminosarum population studies and three new repC sequence groups, repC5, repC6, and repC7 were identified. The general repC primers were modified to amplify a wider range of repC sequences and repC sequences were identified in Sinorhizobium and Mesorhizobium type strains. We also showed that the repC3 group-specific primers described previously do not amplify all repC3 sequences and developed a new repC3 amplification strategy.  相似文献   

6.
We investigated the phylogenetic diversity of ammonia-oxidizing bacteria (AOB) in Yellow Sea continental shelf sediment by the cloning and sequencing of PCR-amplified amoA and 16S rRNA genes. Phylogenetic analysis of the amoA-related clones revealed that the diversity of AOB was extremely low at the study site. The majority (92.7%) of amoA clones obtained belonged to a single cluster, environmental amoA cluster-3, the taxonomic position of which was previously unknown. Phylogenetic analysis on AOB-specific 16S rRNA gene sequences also demonstrated a very low diversity. All of the cloned 16S rRNA gene sequences comprised a single phylotype that belonged to the members of uncultured Nitrosospira cluster-1, suggesting that AOB belonging to the uncultured Nitrosospira cluster- 1 could carry amoA sequences of environmental amoA cluster-3.  相似文献   

7.
Denaturing gradient gel electrophoresis (DGGE) of PCR amplicons of the ammonia monooxygenase gene (amoA) was developed and employed to investigate the diversity of ammonia-oxidizing bacteria (AOB) in four different habitats. The results were compared to DGGE of PCR-amplified partial 16S rDNA sequences made with primers specific for ammonia-oxidizing bacteria. Potential problems, such as primer degeneracy and multiple gene copies of the amoA gene, were investigated to evaluate and minimize their possible impact on the outcome of a DGGE analysis. amoA and 16S rDNA amplicons were cloned, and a number of clones screened by DGGE to determine the abundance of different motility types in the clone library. The abundance of clones was compared to the relative intensity of bands emerging in the band pattern produced by direct amplification of the genes from the environmental sample. Selected clones were sequenced to evaluate the specificity of the respective primers. The 16S rDNA primer pair, reported to be specific for ammonia-oxidizing bacteria (AOB), generated several sequences that were not related to the known Nitrosospira-Nitrosomonas group and, thus, not likely to be ammonia oxidizers. However, no false positives were found among the sequences retrieved with the modified amoA primers. Some phylogenetic information could be deduced from the position of amoA bands in DGGE gels. The Nitrosomonas-like sequences were found within a denaturant range from 30% to 46%, whereas the Nitrosospira-like sequences migrated to 50% to 60% denaturant. The majority of retrieved sequences from all four habitats with high ammonia loads were Nitrosomonas-like and only few Nitrosospira-like sequences were detected.  相似文献   

8.
Use of amoB as a new molecular marker for ammonia-oxidizing bacteria   总被引:3,自引:0,他引:3  
Specific molecular determination and classification of ammonia-oxidizing bacteria have relied on the use of conventional markers such as 16S rDNA. However, this gene does not satisfactorily provide a wide vision of all phylogenetic lineages. Despite the initial expectations, the use of functional genes as for example amoA has only been useful to corroborate the established taxonomy. Ammonia-oxidizing bacteria constitute a physiological group that crosses over principal phylogenetic radiations. Therefore, it is necessary to look for novel functional markers, which are needed for both diversity and taxonomic studies. In this work, the available amoB sequences have been used to design a new degenerate set of primers flanking a ca. 500-bp region. Partial amoB gene sequences of up to 16 AOB strains (5 Nitrosomonas, 10 Nitrosospira, and 1 Nitrosococcus) belonging to both the beta- and the gamma-Proteobacteria have been obtained. Comparison of both DNA and deduced amino acid sequences results in three subgroups, two of them of the beta-Proteobacteria and a third one of the gamma-Proteobacteria displaying 75% and 35% homology in their deduced amino acid sequences, respectively. This gene has proven to be a suitable molecular marker to study AOB, as well as providing a new insight into the classification of this group.  相似文献   

9.
【目的】本研究皆在了解虾养殖底泥中氨氧化细菌与氨氧化古菌群落多态性。【方法】以功能基因为基础,构建氨氧化细菌(AOB)与氨氧化古菌(AOA)的氨单加氧酶α亚基基因(amoA)克隆文库。利用限制性片段长度多态性(Restriction Fragment Length Polymorphism,RFLP)技术将克隆文库阳性克隆子进行归类分析分成若干个可操作分类单元(Operational Taxa Units,OTUs)。【结果】通过序列多态性分析,表明AOB amoA基因克隆文库中所有序列都属于变形杆菌门β亚纲(β-Proteobacteria)中的亚硝化单细胞菌属(Nitrosomonas)及Nitrosomonas-like,未发现亚硝化螺旋菌属(Nitrosospira)。AOA amoA基因克隆文库中只有一个OTU序列属于未分类的古菌(Unclassified-Archaea),其余序列都属于泉古菌门(Crenarchaeote)。AOA群落结构单一且存在一个绝对优势类群OTU3,其克隆子数目占克隆文库的57.45%。AOB和AOA amoA基因克隆文库分别包括13个OTUs和9个OTUs,其文库覆盖率分别为73.47%和90.43%。AOB amoA基因克隆文库的Shannon-Wiener指数、Evenness指数、Simpson指数、Richness指数均高于AOA。【结论】虾养殖塘底泥中存在氨氧化古菌的amoA基因,且多态性低于氨氧化细菌,表明氨氧化古菌在虾养殖塘底泥的氮循环中可能具有重要的作用。  相似文献   

10.
11.
A fragment of the ammonia monooxygenase gene (amoA) from 31 strains of ammonia-oxidizing bacteria (AOB) was sequenced and analysed phylogenetically. The results were compared with the phylogeny of 16S rDNA from AOB. For most groups of AOB we found a high consistency between the phylogenetic trees based on the 16S rDNA and amoA sequences. Although it is not a phylogenetic marker, using the amoA as a probe when studying microbial diversity will probably reduce the amount of non-AOB detected, compared to using rDNA based probes. The data presented in this paper extend and improve the basis for application of amoA in studies of AOB in the environment.  相似文献   

12.
This study determined nitrification activity and nitrifier community composition in soils under stands of red alder (Alnus rubra) and Douglas fir (Pseudotsuga menziesii) at two sites in Oregon. The H.J. Andrews Experimental Forest, located in the Cascade Mountains of Oregon, has low net N mineralization and gross nitrification rates. Cascade Head Experimental Forest, in the Coast Range, has higher net N mineralization and nitrification rates and soil pH is lower. Communities of putative bacterial [ammonia-oxidizing bacteria (AOB)] and archaeal [ammonia-oxidizing archaea (AOA)] ammonia oxidizers were examined by targeting the gene amoA, which codes for subunit A of ammonia monooxygenase. Nitrification potential was significantly higher in red alder compared with Douglas-fir soil and greater at Cascade Head than H.J. Andrews. Ammonia-oxidizing bacteria amoA genes were amplified from all soils, but AOA amoA genes could only be amplified at Cascade Head. Gene copy numbers of AOB and AOA amoA were similar at Cascade Head regardless of tree type (2.3-6.0 x 10(6)amoA gene copies g(-1) of soil). DNA sequences of amoA revealed that AOB were members of Nitrosospira clusters 1, 2 and 4. Ammonia-oxidizing bacteria community composition, determined by terminal restriction fragment length polymorphism (T-RFLP) profiles, varied among sites and between tree types. Many of the AOA amoA sequences clustered with environmental clones previously obtained from soil; however, several sequences were more similar to clones previously recovered from marine and estuarine sediments. As with AOB, the AOA community composition differed between red alder and Douglas-fir soils.  相似文献   

13.
PCR amplification, restriction fragment length polymorphism, and phylogenetic analysis of oxygenase genes were used for the characterization of in situ methane- and ammonia-oxidizing bacteria from free-living and attached communities in the Eastern Snake River Plain aquifer. The following three methane monooxygenase (MMO) PCR primer sets were used: A189-A682, which amplifies an internal region of both the pmoA gene of the MMO particulate form and the amoA gene of ammonia monooxygenase; A189-mb661, which specifically targets the pmoA gene; and mmoXA-mmoXB, which amplifies the mmoX gene of the MMO soluble form (sMMO). Whole-genome amplification (WGA) was used to amplify metagenomic DNA from each community to assess its applicability for generating unbiased metagenomic template DNA. The majority of sequences in each archive were related to oxygenases of type II-like methanotrophs of the genus Methylocystis. A small subset of type I sequences found only in free-living communities possessed oxygenase genes that grouped nearest to Methylobacter and Methylomonas spp. Sequences similar to that of the amoA gene associated with ammonia-oxidizing bacteria (AOB) most closely matched a sequence from the uncultured bacterium BS870 but showed no substantial alignment to known cultured AOB. Based on these functional gene analyses, bacteria related to the type II methanotroph Methylocystis sp. were found to dominate both free-living and attached communities. Metagenomic DNA amplified by WGA showed characteristics similar to those of unamplified samples. Overall, numerous sMMO-like gene sequences that have been previously associated with high rates of trichloroethylene cometabolism were observed in both free-living and attached communities in this basaltic aquifer.  相似文献   

14.
Ammonia-oxidizing archaea (AOA) outnumber ammonia-oxidizing bacteria (AOB) in many terrestrial and aquatic environments. Although nitrification is the primary function of aquarium biofilters, very few studies have investigated the microorganisms responsible for this process in aquaria. This study used quantitative real-time PCR (qPCR) to quantify the ammonia monooxygenase (amoA) and 16S rRNA genes of Bacteria and Thaumarchaeota in freshwater aquarium biofilters, in addition to assessing the diversity of AOA amoA genes by denaturing gradient gel electrophoresis (DGGE) and clone libraries. AOA were numerically dominant in 23 of 27 freshwater biofilters, and in 12 of these biofilters AOA contributed all detectable amoA genes. Eight saltwater aquaria and two commercial aquarium nitrifier supplements were included for comparison. Both thaumarchaeal and bacterial amoA genes were detected in all saltwater samples, with AOA genes outnumbering AOB genes in five of eight biofilters. Bacterial amoA genes were abundant in both supplements, but thaumarchaeal amoA and 16S rRNA genes could not be detected. For freshwater aquaria, the proportion of amoA genes from AOA relative to AOB was inversely correlated with ammonium concentration. DGGE of AOA amoA genes revealed variable diversity across samples, with nonmetric multidimensional scaling (NMDS) indicating separation of freshwater and saltwater fingerprints. Composite clone libraries of AOA amoA genes revealed distinct freshwater and saltwater clusters, as well as mixed clusters containing both freshwater and saltwater amoA gene sequences. These results reveal insight into commonplace residential biofilters and suggest that aquarium biofilters may represent valuable biofilm microcosms for future studies of AOA ecology.  相似文献   

15.
Ammonia-oxidizing bacteria (AOB) play an important role in nitrogen cycling in estuaries, but little is known about AOB diversity, distribution and activity in relation to the chemical and physical changes encountered in estuary systems. Although estuarine salinity gradients are well recognized to influence microbial community structure, few studies have examined the influence of varying salinity on the diversity and stability of AOB populations. To investigate these relationships, we collected sediment samples from low-, mid- and high-salinity sites in Plum Island Sound estuary, MA, during spring and late summer over 3 years. Ammonia-oxidizing bacteria distribution and diversity were assessed by terminal restriction fragment length polymorphism (TRFLP) analysis of the ammonia monooxygenase (amoA) gene, and fragments were identified by screening amoA clone libraries constructed from each site. Most striking was the stability and low diversity of the AOB community at the high-salinity site, showing little variability over 3 years. Ammonia-oxidizing bacteria at the high-salinity site were not closely related to any cultured AOB, but were most similar to Nitrosospira spp. Ammonia-oxidizing bacteria at the mid- and low-salinity sites were distributed among Nitrosospira-like sequences and sequences related to Nitrosomonas ureae/oligotropha and Nitrosomonas sp. Nm143. Our study suggests that salinity is a strong environmental control on AOB diversity and distribution in this estuary.  相似文献   

16.
Communities of ammonia-oxidizing bacteria (AOB) were characterized in two acidic soil sites experimentally subjected to varying levels of nitrogen and sulphur deposition. The sites were an acidic spruce forest soil in Deepsyke, Southern Scotland, with low background deposition, and a nitrogen-saturated upland grass heath in Pwllpeiran, North Wales. Betaproteobacterial ammonia-oxidizer 16S rRNA and ammonia monooxygenase (amoA) genes were analysed by cloning, sequencing and denaturing gradient gel electrophoresis (DGGE). DGGE profiles of amoA and 16S rRNA gene fragments from Deepsyke soil in 2002 indicated no effect of nitrogen deposition on AOB communities, which contained both Nitrosomonas europaea and Nitrosospira. In 2003, only Nitrosospira could be detected, and no amoA sequences could be retrieved. These results indicate a decrease in the relative abundance of AOB from the year 2002 to 2003 in Deepsyke soil, which may be the result of the exceptionally low rainfall in spring 2003. Nitrosospira-related sequences from Deepsyke soil grouped in all clusters, including cluster 1, which typically contains only sequences from marine environments. In Pwllpeiran soil, 16S rRNA gene libraries were dominated by nonammonia oxidizers and no amoA sequences were detectable. This indicates that autotrophic AOB play only a minor role in these soils even at high nitrogen deposition.  相似文献   

17.
Primers targeting part of the ammonia-monooxygenase gene (amoA) have been used to detect and characterize ammonia-oxidizing bacteria (AOB) in different environments. In this study, a quantitative polymerase chain reaction (PCR) technique using a competitive template for the amoA primer pair is described and evaluated. The method is based on addition of an internal standard to the PCR, a competitive template, which is amplified together with the template in the environmental sample. By adding different amounts of competitive template to the sample and observing the relative intensity of environmental amplificate and competitive amplificate, the number of amoA gene copies can be determined. Different tests were made to evaluate the competitive PCR method (cPCR) with respect to equal amplification efficiency of the two templates, degeneracy of the priming site and the importance of flanking regions surrounding the competitive template. Calibration curves made by addition of known amounts of Nitrosomonas europaea to soil samples revealed a detection limit for this technique of less than 1000 cells g(-1) soil and a linear response over a wide range of cell additions. Cloning and sequencing of amoA amplificates have confirmed the specificity of the primers, as we have not detected any false positives among the more than 200 clones investigated. The vertical distribution of ammonia-oxidizers in the upper cm of a waterlogged rice paddy soil was compared to nitrate and oxygen concentration profiles determined with microsensors and to net process rates derived from these profiles.  相似文献   

18.
19.
20.
Many but not all ammonia-oxidizing bacteria (AOB) produce urease (urea amidohydrolase, EC 3.5.1.5) and are capable of using urea for chemolithotrophic growth. We sequenced the urease operons from two AOB, the beta-proteobacterium Nitrosospira sp. strain NpAV and the gamma-proteobacterium Nitrosococcus oceani. In both organisms, all seven urease genes were contiguous: the three structural urease genes ureABC were preceded and succeeded by the accessory genes ureD and ureEFG, respectively. Green fluorescent protein reporter gene fusions revealed that the ure genes were under control of a single operon promoter upstream of the ureD gene in Nitrosococcus oceani. Southern analyses revealed two copies of ureC in the Nitrosospira sp. strain NpAV genome, while a single copy of the ure operon was detected in the genome of Nitrosococcus oceani. The ureC gene encodes the alpha subunit protein containing the active site and conserved nickel binding ligands; these conserved regions were suitable primer targets for obtaining further ureC sequences from additional AOB. In order to develop molecular tools for detecting the ureolytic ecotype of AOB, ureC genes were sequenced from several beta-proteobacterial AOB. Pairwise identity values ranged from 80 to 90% for the UreC peptides of AOB within a subdivision. UreC sequences deduced from AOB urease genes and available UreC sequences in the public databases were used to construct alignments and make phylogenetic inferences. The UreC proteins from beta-proteobacterial AOB formed a distinct monophyletic group. Unexpectedly, the peptides from AOB did not group most closely with the UreC proteins from other beta-proteobacteria. Instead, it appears that urease in beta-proteobacterial autotrophic ammonia oxidizers is the product of divergent evolution in the common ancestor of gamma- and beta-proteobacteria that was initiated before their divergence during speciation. Sequence motifs conserved for the proteobacteria and variable regions possibly discriminatory for ureC from beta-proteobacterial AOB were identified for future use in environmental analysis of ureolytic AOB. These gene sequences are the first publicly available for ure genes from autotrophic AOB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号