首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comparative study of two staphylococcus aureus 209P strains--resistant and susceptible to gramicidin S demonstrated that peptidoglycanes of two strains differ by ratio glycine/serine at peptide bridges. Besides peptidoglycanes significantly differ by amidation of alfa-carboxyles of glutamic acid in muropeptide. This peptidoglycane modification of resistant cells along with enhanced content of etherized D-alanine in teichoic acid provides lower negative charge of cell wall components. It may influence the cell wall ability to react with positively charged gramicidin molecules. It was shown that isolated cell walls and peptidoglycane of resistant cells binds significantly less gramicidin than cell walls and peptodoglyce of susceptable cells. Simultaneous determination of gramicidin binding by intact S. aureus cells and their killing revealed that lower ability of resistant cells to bind gramicidin is significant but not critical factor of gramicidin resistance.  相似文献   

2.
Cell walls in 2 strains of Staphylococcus aureus 209P, i.e. actinomycin D susceptible and resistant ones were comparatively investigated. The resistant cells contained much more wall material per a unit of the biomass weight vs the susceptible strain cells, that conformed to thickening of the resistant cell walls detected by electron microscopy and a sharp increase of their electron density. Investigation of peptidoglycans and teichoic acids did not reveal any significant alterations in the structure of the wall components in the actinomycin D resistant cells. Only some increase of glucosamine in the peptidoglycan fraction of the resistant cells vs the susceptible ones was observed. It was shown that preparations of the resistant cell walls and peptidoglycan isolated from the resistant cells were able to bind somewhat lower quantities of actinomycin D vs the analogous preparations of the susceptible cells. The significant decrease of the antibiotic binding by live cells of the resistant strain probably slightly depended on the structure characteristics of the main wall components. The barrier properties of the walls in resistant staphylococci are most likely defined by the wall thickening and consolidation while adapting to actinomycin D.  相似文献   

3.
Staphylococcus aureus strains, resistant to actinomycin D (AMD) and to gramicidin S (GS) were selected by S. aureus 209P passing on the media containing the above mentioned drugs. Strain R80 resistant to AMD and strain R9 resistant to GS and AMD and described before didn't perform enzyme inactivation of AMD. Cells of both strains had diminished ability to bind exogenous AMD. Electron microscopy investigation revealed that cells of R80 strain had thickened cell walls and they are characterized by more electron density then cells of R9 strain and of parent strain. Adaption to AMD and GS influenced also on functions of some staphylococcal surface proteins--the activity of endogenous coagulase (clumping factor) was found only in R9 strain. Exogenous coagulase was present in all the strains, but development of resistant to AMD and GS diminished this enzyme activity. It is concluded that development of resistance to AMD and GS causes substantial changes in staphylococcal cell wall, but the type of these changes differ.  相似文献   

4.
Methicillin-resistant (MR) Staphylococcus aureus strains have previously been reported to be deficient in surface negative charge; this has been correlated with methicillin resistance and ascribed to a deficiency of teichoic acid at the cell surface (A. W. Hill and A. M. James, Microbios 6:157-167, 1972). Teichoic acid was present in walls of MR organisms as revealed by appreciable phosphate levels and detection of ribitol residues. Phosphate levels in walls from five MR strains (0.54 to 0.77 mumol/mg of wall) were lower than in three unrelated methicillin-sensitive (MS) strains (0.86 to 1.0 mumol/mg of wall). However, two MS strains derived from two of the MR strains had wall phosphate levels very similar to those of the MR strains. No evidence for unusual wall polymers was found. Simple deficiency of wall teichoic acid does not result in methicillin resistance since an independently isolated teichoic acid-deficient strain (0.1 mumol of phosphate per mg of wall) was not methicillin resistant. In studies of biological properties possibly related to wall teichoic acid, it was discovered that walls isolated from MR organisms grown in the presence of methicillin autolyzed more rapidly than those isolated from organisms grown in the absence of the drug. Since methicillin resistance is enhanced by NaCl and suppressed by ethylenediaminetetraacetate, the effects of these compounds on autolysis of isolated walls were studied. NaCl (1.0 M) and ethylenediaminetetraacetate (1.0 mM) inhibited the autolysis of walls isolated from MR and MS strains. An MR strain bound phage 47, 52A, and 3A only slightly less well than their respective propagating strains.  相似文献   

5.
Gram-positive bacteria possess a permeable cell wall that usually does not restrict the penetration of antimicrobials. However, resistance due to restricted penetration can occur, as illustrated by vancomycin-intermediate resistant Staphylococcus aureus strains (VISA) which produce a markedly thickened cell wall. Alterations in these strains include increased amounts of nonamidated glutamine residues in the peptidoglycan and it is suggested that the resistance mechanism involves 'affinity trapping' of vancomycin in the thickened cell wall. VISA strains have reduced doubling times, lower sensitivity to lysostaphin and reduced autolytic activity, which may reflect changes in the D-alanyl ester content of the wall and membrane teichoic acids. Mycobacterial cell walls have a high lipid content, which is assumed to act as a major barrier to the penetration of antimicrobial agents. Relatively hydrophobic antibiotics such as rifampicin and fluoroquinolones may be able to cross the cell wall by diffusion through the hydrophobic bilayer composed of long chain length mycolic acids and glycolipids. Hydrophilic antibiotics and nutrients cannot diffuse across this layer and are thought to use porin channels which have been reported in many species of mycobacteria. The occurrence of porins in a lipid bilayer supports the view that the mycobacterial wall has an outer membrane analogous to that of gram-negative bacteria. However, mycobacterial porins are much less abundant than in the gram-negative outer membrane and allow only low rates of uptake for small hydrophilic nutrients and antibiotics.  相似文献   

6.
Bacteriophage-resistant strains of Staphylococcus aureus H were isolated after mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine. Cell walls isolated from about half of these resistant strains were incapable of inactivating phages and were shown to lack N-acetyl-d-glucosamine (GlcNAc) in their cell wall teichoic acid. Apart from the lack of GlcNAc, two of these mutant strains were deficient in cell wall phosphorus and ester-linked d-alanine. These two strains were also found to be resistant to both phage K and a host-range mutant isolated from the parent phage. These two phages could lyse the other phage-resistant mutants which lacked GlcNAc in their teichoic acid. Cell walls from the remaining phage-resistant mutant strains did inactivate phages and were found to have normal cell wall teichoic acid. Although GlcNAc in teichoic acid was required for phage inactivation, no difference in phage inactivation ability was detected with cell walls isolated from strains of S. aureus having exclusively alpha- or exclusively beta-linked GlcNAc in their cell wall teichoic acid.  相似文献   

7.
A series of isogenic methicillin-resistant Staphylococcus aureus isolates recovered from a bacteremic patient were shown to acquire gradually increasing levels of resistance to vancomycin during chemotherapy with the drug (K. Sieradzki, T. Leski, L. Borio, J. Dick, and A. Tomasz, J. Clin. Microbiol. 41:1687-1693, 2003). We compared properties of the earliest (parental) vancomycin-susceptible isolate, JH1 (MIC, 1 microg/ml), to two late (progeny) isolates, JH9 and JH14 (vancomycin MIC, 8 microg/ml). The resistant isolates produced abnormally thick cell walls and poorly separated cells when grown in antibiotic-free medium. Chemical analysis of the resistant isolates showed decreased cross-linkage of the peptidoglycan and drastically reduced levels of PBP4 as determined by the fluorographic assay. Resistant isolates showed reduced rates of cell wall turnover and autolysis. In vitro hydrolysis of resistant cell walls by autolytic extracts prepared from either susceptible or resistant strains was also slow, and this abnormality could be traced to a quantitative (or qualitative) change in the wall teichoic acid component of resistant isolates. Some change in the structure and/or metabolism of teichoic acids appears to be an important component of the mechanism of decreased susceptibility to vancomycin in S. aureus.  相似文献   

8.
Two natural variants of the actinomycin C-producing organism Actinomyces sp-26-115, i.e. H1 and H2 differ in their sensitivity to exogenic actinomycin, colony morphology, growth dynamics on the synthetic medium and stability to ultrasound and lysozyme. Both variants synthesize no actinomycin. Variant H1 is sensitive to exogenic actinomycin, while variant H2 is resistant to it. Variants H1 and H2 have some similarity in the composition of membrane proteins. Still, they differ in the protein molecular masses, which are equal to 600000--500000, 220000, 130000. The active variant A and nonactive variant H2 have the most similar compositions of membrane proteins. These variants are also close in their growth dynamics, colony morphology, sensitivity to ultrasound and lysozyme. The membranes of all the variants studied contain phosphatidyl ethanol amide as the main phospholipid component. Insignificant differences are observed only with respect to the minor components. The content of teichoic acids in the cell walls of variant H2 is very high, slightly changes during the developmental stage and insignificantly increases on addition of actinomycin to the medium. The cell wall of variant H1 contains less amounts of teichoic acids. During the developmental stage they are liberated from the wall at a higher rate than peptidoglycan. The sensitivity to actinomycin does not increase with an increase in the culture age. It is probable that teichoic acid of the cell wall is one of the factors providing resistance to actinomycin in variant H2. It may be considered as a barrier preventing transport of exogenic actinomycin into the cell.  相似文献   

9.
The cell walls and peptidoglycans of two mutant strains, Streptomyces chrysomallus var. carotenoides and Streptomyces chrysomallus var. macrotetrolidi, were studied. The strains are organisms producing carotenes and antibiotics of the macrotetrolide group. By the qualitative composition of the peptidoglycans the mutants belong to Streptomyces and are similar. Their glycan portion consists of equimolar quantities of N-acetyl glucosamine and muramic acid. The peptide subunit is presented by glutamic acid, L, L-diaminopimelic acid, glycine and alanine. The molar ratio of alanine is 1.2-1.3. The mutant strains differ in the content of carbohydrates, total phosphorus and phosphorus belonging to teichoic acids. Teichoic acids of the cell walls of the both strains are of the ribitolhosphate nature. The cell walls of the mutants contain polysaccharides differing from teichoic acids and consisting of glucose, galactose, arabinose and fucose. The influence of the cell wall composition of the mutant strains on their morphology and metabolism and comparison of the data relative to the mutant strains with those relative to the starting strain are discussed.  相似文献   

10.
Thermally injured cells of Staphylococcus aureus lack the ability to grow on tryptic soy agar containing 7.5% NaCl. This injury phenomenon was examined in three strains of S. aureus: MF-31; H (Str); and, isolated from H (Str), 52A5, a mutant which lacks teichoic acid in the cell wall. Temperatures for sublethal heat treatment were selected to produce maximum injury with minimum death for each strain. Examination of isolated cell walls showed that magnesium was lost from the wall during heating, and that the degree of cell injury was accentuated when magnesium ions were either removed from or made unavailable to the cell. S. aureus 52A5 was more heat sensitive than its parent strain. Cells containing higher levels of wall teichoic acid generally showed less injury than normal cells. Cells with the weaker cation-binding polymer, teichuronic acid, in the cell wall generally showed greater injury. These data suggest that cell wall teichoic acid of S. aureus aids in the survival of the cell by the maintenance of an accessible surface pool of magnesium.  相似文献   

11.
Staphylococcus simulans biovar staphylolyticus produces an extracellular glycylglycine endopeptidase (lysostaphin) that lyses other staphylococci by hydrolyzing the cross bridges in their cell wall peptidoglycans. The genes for endopeptidase (end) and endopeptidase resistance (epr) reside on plasmid pACK1. An 8.4-kb fragment containing end was cloned into shuttle vector pL150 and was then introduced into Staphylococcus aureus RN4220. The recombinant S. aureus cells produced endopeptidase and were resistant to lysis by the enzyme, which indicated that the cloned fragment also contained epr. Treatments to remove accessory wall polymers (proteins, teichoic acids, and lipoteichoic acids) did not change the endopeptidase sensitivity of walls from strains of S. simulans biovar staphylolyticus or of S. aureus with and without epr. Immunological analyses of various wall fractions showed that there were epitopes associated with endopeptidase resistance and that these epitopes were found only on the peptidoglycans of epr+ strains of both species. Treatment of purified peptidoglycans with endopeptidase confirmed that resistance or susceptibility of both species was a property of the peptidoglycan itself. A comparison of the chemical compositions of these peptidoglycans revealed that cross bridges in the epr+ cells contained more serine and fewer glycine residues than those of cells without epr. The presence of the 8.4-kb fragment from pACK1 also increased the susceptibility of both species to methicillin.  相似文献   

12.
Preparations of purified cell walls from Staphylococcus aureus were shown to contain small amounts of phospholipid and glycerol teichoic acid. Since these are components of the cell membrane, it is probable that the wall itself contains no lipid, but does retain fragments of membrane because of physical connections between wall and membrane. In walls of S. aureus strain 52A5, which completely lacks ribitol teichoic acid, the only phosphorylated compound identified as a genuine wall component was a phosphorylated derivative of murein that gave rise to muramic acid phosphate on acid hydrolysis. Muramic acid phosphate was also identified in hydrolysates of walls from S. aureus H and strain 52A2.  相似文献   

13.
Physically purified cell walls were prepared from selected pleiotropic novobiocin-resistant staphylococcal strains. The quantitative amino acid, amino sugar, and phosphorus contents of these walls are reported. This pleiotype was culturally diagnosed by its inability to support the growth of typing phages, inability to release latent bacteriophage, failure to elaborate coagulase, altered sugar catabolic pattern, and resistance to novobiocin. The strains were divided into two groups on the basis of wall composition. The walls of both groups of strains appeared to possess at least two phosphorus-containing polymers. On group of strains contained elevated levels of phosphorus in the cell walls. The second group contained the novel amino sugar galactosamine in the cell walls. This amino sugar is probably associated with one of the phosphorus-containing wall polymers of this group. On the basis of the data presented, it is suggested that the pleiotropy of these strains is the result of genetic change in the control of the biosynthesis of teichoic acids.  相似文献   

14.
1. Ribitol teichoic acids prepared by fractional precipitation of trichloroacetic acid extracts of bacterial cell walls are essentially undegraded and have similar chain length to the teichoic acid originally present in the walls. 2. The chain length of teichoic acid can be determined directly, without prior extraction from the wall. Accurate values have been obtained by measurement of the formaldehyde produced by oxidation of walls with periodate. Less accurate values have been derived from the amount of inorganic phosphate formed by heating walls at pH4. 3. The relative amounts of N-acetylglucosaminylribitol and its mono- and di-phosphates produced by heating walls of Staphylococcus aureus with alkali agree with the amounts calculated for the hydrolysis of teichoic acid having the chain length determined by other methods. 4. Chemical considerations indicate that the linkage between teichoic acid and the wall may involve a phosphoramidate bond between the terminal phosphate of the teichoic acid and one of the amino groups in the glycosaminopeptide.  相似文献   

15.
A mutant of Staphylococcus aureus H (RUS3) uas isolated after mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine. The rate of autolysis of whole cells and isolated cell walls of RUS3 was less than 10% of the parent strain. In addition, the ability of the crude soluble enzyme isolated from RUS3 to degrade cell walls was negligible compared with the parent strain. The cell wall composition and the generation time of RUS3 were comparable to the parent strain. Unlike S. aureus H, RUS3 grew in clumps and did not undergo cell wall turnover. Both strains exhibited identical kinetics of killing by penicillin G. This may indicate that autolytic enzymes play a role in cell wall turnover and cell separation, but in S. aureus most of the autolytic activity is unrelated to the lethal effect of cell wall antibiotics.  相似文献   

16.
The cell wall teichoic acid structures of 22 staphylococci including 13 type strains were determined. Most of the strains contain a poly(polyolphosphate) teichoic acid with glycerol and/or ribitol as polyol component. The polyolphosphate backbone is partially substituted with various combinations of sugars and/or amino sugars. Most of the substituents occur in a monomeric form but some strains also contain dimers of N-acetylglucosamine as substituents. Staphylococcus hyicus subsp. hyicus NCTC 10350 and S. sciuri DSM 20352 revealed rather complex cell wall teichoic acids. They consist of repeating sequences of phosphate-glycerol-phosphate-N-acetylglucosamine. The amino sugar component is present in this case as a monomer or an oligomer (n less than or equal to 3). Moreover, the glycerol residues are partially substituted with N-acetylglucosamine. The cell wall teichoic acid of S. auricularis is a poly(N-acetylglucosaminyl-phosphate) polymer similar to that found in S. caseolyticus ATCC29750. The cell wall teichoic acid structures for type strains of S. auricularis, S. capitis, S. cohnii, S. haemolyticus, S. hominis, S. hyicus subsp. hyicus, S. sciuri, S. xylosus and S. warneri were determined for the first time in detail. The structures of some of the previously described teichoic acids had to be revised (S. epidermidis, S. simulans, S. aureus phage type 187).  相似文献   

17.
Summary A localized region of low DNA sequence homology was revealed in two strains of Bacillus subtilis by a specific 100-fold reduction in transformation by W23 DNA of the tag1 locus, a teichoic acid marker of strain 168. Fifty nine rare recombinants, hybrid at this locus, had all acquired donor-specific phage resistance characters, while losing those specific to the 168 recipient. Chemical analysis of isolated cell walls showed that these modifications are associated with major changes in the wall teichoic acids. Genetic analysis demonstrated that determinants for the ribitol phosphate polymer of strain W23 had been transferred to 168, replacing those for the glycerol phosphate polymer in the recipient. All W23 genes coding for poly(ribitol phosphate) in the hybrids and those specifying anionic wall polymers in strain 168 are clustered near hisA. In addition to tag1, the region exchanged extends just beyond gtaA in some hybrids, whereas in others it may include the more distant gtaB marker, encompassing a region sufficient to contain at least 20 average-sized genes. Surface growth, flagellation, transformability and sporulation all appeared normal in hybrids examined. Recombinants without a major wall teichoic acid from either strain were not found, suggesting that an integral transfer of genes for poly(ribitol phosphate) from W23 had occurred in all hybrids isolated. We interpret these results as indicating an essential role for anionic wall polymers in the growth of B. subtillis.  相似文献   

18.
Wall teichoic acids are cell wall polymers that maintain the integrity of the cellular envelope and contribute to the virulence of Staphylococcus aureus. Despite the central role of wall teichoic acid in S. aureus virulence, details concerning the biosynthetic pathway of the predominant wall teichoic acid polymer are lacking, and workers have relied on a presumed similarity to the putative polyribitol phosphate wall teichoic acid pathway in Bacillus subtilis. Using high-resolution polyacrylamide gel electrophoresis for analysis of wall teichoic acid extracted from gene deletion mutants, a revised assembly pathway for the late-stage ribitol phosphate-utilizing enzymes is proposed. Complementation studies show that a putative ribitol phosphate polymerase, TarL, catalyzes both the addition of the priming ribitol phosphate onto the linkage unit and the subsequent polymerization of the polyribitol chain. It is known that the putative ribitol primase, TarK, is also a bifunctional enzyme that catalyzes both ribitol phosphate priming and polymerization. TarK directs the synthesis of a second, electrophoretically distinct polyribitol-containing teichoic acid that we designate K-WTA. The biosynthesis of K-WTA in S. aureus strain NCTC8325 is repressed by the accessory gene regulator (agr) system. The demonstration of regulated wall teichoic acid biosynthesis has implications for cell envelope remodeling in relation to S. aureus adhesion and pathogenesis.  相似文献   

19.
Cell walls of strains of Lactobacillus plantarum lacking the group D precipitinogen (a glucosylribitol teichoic acid) contain glucosylglycerol teichoic acid in which the glycosidic substituents are attached to the primary hydroxyl group of glycerol. Three distinct repeating units have been isolated from the teichoic acid preparation of strain C106, indicating either that the polymer is complex or that the wall contains a mixture of teichoic acids. Walls of streptobacteria differ from those of L. plantarum and contain neither teichoic acid nor diaminopimelic acid.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号