首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shoot Resistance to Water Flow in Cotton   总被引:2,自引:0,他引:2  
Studies using excised cotton (Gossypium hirsutum L.) plants,attached to a free water source and undergoing transpirationcycles, were conducted at intervals over a 2 year period inorder to quantify shoot resistance components of cotton canopies.Leaf water potential was found to be a linear function of transpirationrate at rates above 0.1 mm h–1, so shoot resistance wasevaluated as the slope of this function. The value of 4.8 104h (0.48 MPa h mm–1) total shoot resistance was consistentfor 1.10 m tall, well irrigated, fruit-bearing cotton plants.Further tests, with pre-wrapped and exposed leaves, revealedthat total shoot resistance was comprised of an axial component(40%) and a leaf component (60%). The total shoot resistanceof 0.48 MPa h mm–1 is likely to be relevant for modellingcotton water relations when LWP is evaluated on exposed, topof the canopy leaves, such as in the ‘big leaf’type models. Key words: Leaf water potential, axial resistance, leaf resistance  相似文献   

2.
Research has shown that when plant roots are exposed to a dryingsoil a non-hydraulic (chemical) signal is produced in the rootand transported to the shoot, causing stomatal closure and growthretardation. This study was designed to reveal genetic diversityin wheat response to soil conditions which elicit a root signal,as the first step in the investigation of the genetic controlof the production of and the response to the root signal. Five spring wheat (Triticum aestivum L.) cultivars were establishedin the growth chamber in soil-filled polyvinyl chloride tubes,120 cm long and of an internal diameter of 10·2 cm. Soilwas well fertilized and wet to field capacity at emergence whentwo treatments were imposed: (1) tubes were watered from thetop as needed to eliminate stress (control); and (2) tubes hada constant water table at a soil depth of 100 to 120 cm, withno applied water. Measurements were performed on five dateson leaf water status and stomatal diffusive resistance. Above-groundbiomass and grain yield per plant were determined at maturity. The water table treatment resulted in dry and hard top soilconditions which were previously indicated to elicit a possibleroot signal. Under these experimental conditions, cultivarsdiffered in their leaf water status, stomatal diffusive resistance(Rs) and plant production. In the control treatment, Rs of cultivarsincreased with reductions in their relative water content (RWC)and leaf water potential (LWP), indicating the expected controlof Rs by leaf water status. Under conditions of a drying topsoil, relative water content (RWC) and leaf water potential(LWP) increased in cultivars that had a higher Rs, indicatingthat stomatal activity was controlling leaf water status. Itwas therefore suggested that the drying top soil elicited aroot signal which caused stomatal closure and reduced plantproduction. Under such conditions, two cultivars (Bethlehemand V748) consistently maintained relatively low Rs and highplant production, despite their relatively lower RWC and LWP,as compared with cvs C97, V747 and V652. Limited observationssuggest that in these two cultivars relatively fewer roots mayhave been exposed to the drying top soil, as compared with theother three cultivars. Key words: Triticum aestivum, cultivars, soil moistrue, drought stress, root, root signal, stomata, relative water content, leaf water potential, biomass, yield  相似文献   

3.
Alarcón  J.J.  Domingo  R.  Green  S.R.  Nicolás  E.  Torrecillas  A. 《Plant and Soil》2003,253(1):125-135
Using the heat pulse and other techniques, the hydraulic architecture of apricot trees was mapped out. The flows (overall flow, flow across the four main branches) and forces (water potential differences between xylem and leaves) measured allowed us to quantify hydraulic conductance of branches and of the root/soil resistance. The experiment was carried out in a commercial orchard of 11-year-old apricot trees (Prunus armeniaca L., cv. Búlida, on Real Fino apricot rootstock) during 1 week (October 27–November 3, 1998). Three representative trees with a cylindrical trunk divided into four main branches of different sizes, orientation and local microclimate were chosen for the experiment. Sap flow was measured throughout the experimental period. Twelve sets of heat-pulse probes were used, one for each main branch. The diurnal course of the environmental conditions, the fraction of the area irradiated and leaf water relations were also considered in each main branch. The relationships between leaf water potential, xylem water potential and transpiration were established for different branches and also for the total plant. Using the slopes of these regressions, total plant conductance, the hydraulic conductance of the stem and root pathway, the hydraulic conductance of the canopy and the hydraulic conductance of each branch were estimated. Our findings show that the root conductance and the canopy hydraulic conductance are similar in magnitude. Leaf hydraulic conductance per leaf area unit was similar for each of the four branch orientations, indicating that, while the light microclimate has a dominant influence on transpiration, in this case it had little effect on the hydraulic properties of the canopy.  相似文献   

4.
Water relations and hydraulic architecture of woody hemiepiphytes   总被引:2,自引:0,他引:2  
Several parameters related to the water relations of eight woodyhemiepiphytes with different photosynthetic pathways were studiedin situ and in the laboratory on Barro Colorado Island, Panama.As a group, woody hemiepiphytes tended to have less conductivestems per unit leaf area (lower kL) and invested less wood cross-sectionper unit leaf area compared to free-standing trees, while theirspecific conductivity (Ks) was significantly higher. Among hemiepiphytes,there were significant differences between C3 and CAM (CrassulaceanAcid Metabolism) species in respect to leaf characteristics,transpiration rates, diel patterns of water flow through aerialroots, and in hydraulic architecture parameters. Average transpirationrates of the two Clusia species (C3-CAM) were lower by aboutan order of magnitude compared to the C3 species. In all C3species, sap flow through aerial roots (F) closely followedtranspiration (E), whereas E and F were decoupled in time inthe C3-CAM species Clusia uvitana: considerable long-distancewater flow occurred at night. The hydraulic efficiency of theother C3-CAM species, C. minor was the lowest of the five speciesinvestigated. Key words: Hemiepiphytes, water relations, hydraulic architecture, aerial roots, CAM  相似文献   

5.
Current methods for determining the influence of xylem cavitationon hydraulic conductance are limited to unbranched stem or rootsegments with hydraulic conductances above c. 2 mmol s–1MPa–1. Lower conductances and/or highly branched systemsare encountered in seedlings, arid-land shrubs, herbs, and distalportions of shoot and root systems of trees. In order to quantifythe hydraulic impact of cavitation in such systems, existingtechniques have been modified. Branched shoot or root systemswere prepared for measurement by removal of leaves, or roottips, respectively. The shoot or root system was enclosed ina vacuum chamber with the proximal end protruding and suppliedwith perfusing solution. Flow through the xylem was inducedby chamber vacuum. Hydraulic conductance was determined fromthe slope of the flow rate versus pressure relationship. Xylemembolism was quantified from the increase in hydraulic conductancefollowing high pressure (100 kPa) perfusion of solution throughthe plant. Examples are provided of the application of the methodto cavitation studies in the cold desert shrub Artemisia tridentata. Key words: Hydraulic conductance, xylem cavitation, embolism, whole root/shoot system  相似文献   

6.
Abstract

From the measurements of the profiles of hydraulic conductance and water potential from soil through to the leaf system in fully established melon plants, the limits to water flow set by coupling of hydraulic conductance (k) with water relation parameters was evaluated in the laboratory using high pressure flow device (HPFM) and evaporative flux method (EF). The rootstock Arava was grafted onto self, and onto two genotypes (AR57 and AR82) using side and V graft types, and there was an ungrafted control. Hydraulic transport efficiency was estimated from measurements of evaporative flux (transpiration rate) and leaf water potential (ψL) measured between pre-dawn and sunset during the growth cycle. Measured parameters to characterize the hydraulic efficiency (architecture) of the vascular system of melon were normalized to areas of leaves and stem cross section; this enabled the examination of their physiological and ecological functions. The effects of rootstock genotype were more marked on graft union and scion water relations. Differences in the magnitudes of water relation parameters of hydraulic conductance, water potential (lwp) and evaporative water loss (EF) were detected. AR/RS82 side grafted exhibited high EF and Kh despite its lower leaf water potential compared to AR/RS57 V grafted. Self grafting (Arava/Arava grafts) in melon seems to improve water relations and xylem water transport efficiency. Parameters describing the hydraulic efficiency (architecture) of vascular system of melon plants were described in relation to plant attributes. The expression of hydraulic conductance of the root and shoot system relative to plant attributes did not eliminate differences in the magnitudes of conductance elements in tomato and melon. Differences obtained among the different melon grafts in whole plant leaf and stem area specific hydraulic conductance (Kl) indicate the carbon efficiency and hence the cost of resource allocation to areas of root surface and leaves. The role of plant water relations in root-shoot communications and whole plant regulation of water flux are inferred from this study.  相似文献   

7.
The concept of root contact hypothesizes that the absorbing roots grown in sandy soil are only partially effective in water uptake. Co-ordination of water supply and demand in the plant requires that the capacity for water uptake from the soil should correspond to an operational rate of water loss from the leaves. To examine how the plant hydraulic system responds to variations in soil texture or evaporative demand through long-term acclimation, an experiment was carried on cotton plants (Gossypium herbaceum L.), where three grades of soil texture and three grades of evaporative demand were applied for the whole life cycle of the plants. Plants were harvested 50 and 90 d (fully grown) after sowing and root length and leaf area measured. At 90 d hydraulic conductance was measured as the ratio of sap flow (measured with sap flow sensors or gravimetrically) and water potential. Results showed that for plants grown at the same evaporative demand, those in sandy soil, where root-specific hydraulic conductance was low, developed more absorbing roots than those grown in heavy-textured soil, where root specific conductance was high. This resulted in the same leaf specific hydraulic conductance (1.8 × 10−4 kg s−1 Mpa−1 m−2) for all three soils. For plants grown in the same sandy soil, those subjected to strong evaporative demand developed more absorbing roots and higher leaf-specific hydraulic conductance than those grown under mild evaporative demand. It is concluded that when soil texture or atmospheric evaporative demand varies, plants co-ordinate their capacities for liquid phase and vapour phase water transport through long-term acclimation of the hydraulic system, or plastic morphological adaptation of the root/leaf ratio.  相似文献   

8.
A root excision technique was used to estimate the proportionof total resistance to water flux residing in the soil, theroot, and the xylem of lodgepole pine (Pinus contorta Douglex. Loud.) trees in the field. Root excision at mid-day alwaysresulted in rapid recovery of leaf water potential when waterwas supplied to the cut stem, suggesting a high soil-root resistance.Transpiration was unaffected if leaf water potential beforecutting was not limiting leaf conductance. By mid-June wateruptake by the excised stem always exceeded calculated crowntranspiration indicating recharge of internal sapwood storage.Predawn leaf water potential before root excision was highlycorrelated with total soil-plant resistance (r2 = 0·89)and calculated root water uptake (r2 = 0·92).  相似文献   

9.
Abstract The effcct of the transition from fully to partially wetted soil voluine on transpiration rate and hydraulic conductance of mature citrus trees was examined in a 23-year-old, coninicrcial, sprinklerirrigated, Shanio u t i orange orchard. I rriga t i on frequency was determined by the rate of water loss from the soil, a s measured by neutron probes. The hydraulic conductance of tlic tree was coniputed from the rclationship between sap flow i n the trunk and leaf water potential. The diurnal valucs of leaf water potential and sap flow shifted towards lower levels as tlie water stored in the root zone was depleted. In the fully wetted soil volume the tree hydraulic conductance remained constant throughout the irrigation period, from June to Novcniber. However, partial wetting of the soil volume (40%) caused a reduction in the hydraulic conductance of the tree. Tlie decreased hydraulic conductance is attributed to tlie permanent interruption of water transport in part of tlie root system. Tlie rcsults of tlie experiment suggest that despite tlie increase of irrigation frequency, partial wetting intensifies water stress in tlie trees.  相似文献   

10.
Hydraulic properties and gas exchange were measured in branches of two tropical tree species (Simarouba amara Aubl. and Tapirira guianensis Aubl.) in a moist lowland forest in Panama. Branch-level sapflow, leaf-level stomatal conductance, and water potential measurements, along with measurements of specific hydraulic conductivity of stems in crown tops, were used to relate hydraulic parameters to leaf conductance in two individuals of each species. Branches of the taller trees for each species (28 m, 31 m) showed much higher leaf-specific hydraulic conductance and leaf vapor-phase conductance than those of the smaller trees (18m, 23m). This was probably related to the leaf-to-sapwood area ratio in branches of taller trees, which was less than half that in branches of smaller trees. Dye staining showed evidence of massive cavitation in all trees, indicating that stomata do not control leaf water potential to prevent xylem cavitation in these species. Stomatal conductance of intact leaves also appeared to be insensitive to leaf area removal treatment of nearby foliage. Nevertheless, a simple mass-balance model of water flux combining hydraulic and vapor transport was in close agreement with observed maximal vapor-phase conductance in the four trees (r2=0.98, P=0.006). Our results suggest that the major organismal control over water flux in these species is by structural (leaf area) rather than physiological (stomatal) means.  相似文献   

11.
The ‘Hydraulic Tree Model’ of the root system simulateswater uptake through root systems by coupling a root architecturemodel with laws for water flow into and along roots (Doussan,Pagès and Vercambre,Annals of Botany81: 213–223,1998). A detailed picture of water absorption in all roots comprisingthe root system is thus provided. Moreover, the influence ofdifferent distributions of radial and axial hydraulic conductancesin the root system on the patterns of water uptake can be analysed.Use of the model with Varney and Canny's data (1993) for flowalong maize roots demonstrated that a constant conductance inthe root system cannot reproduce the observed water flux profiles.Taking into account the existing data on hydraulic conductancesin maize roots, we fitted the distribution of conductances inthe root system to the observed flux data. The result is that,during root tissue maturation, the radial conductivity decreasesby one order of magnitude while the axial conductance increasesby about three orders of magnitude. Both types of conductanceexhibit abrupt changes in their evolution. Due to the conductancedistribution in the root system, appreciable water potentialgradients may develop in the roots, in both the branch rootsand main axes. An important point is that the conductance distributionin the branch roots described by the model should be relatedto the age of the tissue (and not the distance from the branchroot tip) and is therefore closely related to the developmentprocess. Thus for branch roots, which represent about 90% ofthe calculated total water uptake in 43-d-old maize, water absorptionwill depend on the opening of the metaxylem in the axes, andon the time dependent variation of the conductances in the branchroots.Copyright 1998 Annals of Botany Company Water; absorption; root system; architecture; model; hydraulic conductance;Zea maysL.  相似文献   

12.
It is well known that rootstocks can have an effect on the vegetative growth and development of the tree; however, there has been no clear explanation about the physiological mechanism involved in this phenomenon. Evidence indicates that the rootstock effects on tree vegetative growth may be related to hydraulic limitations of the rootstock. The objective of these experiments was to investigate the shoot growth, water potential, and gas exchange of peach trees on different rootstocks in response to manipulations of water relations of trees on rootstocks that differ in root hydraulic conductance. Tree water relations were manipulated by applying different amounts of pneumatic pressure on the root system and then relative shoot extension growth rate, tree transpiration rate, leaf water potential, leaf conductance, leaf transpiration, and net CO(2) exchange rate responses were measured. Root pressurization increased leaf water potential, relative shoot extension growth rate, leaf conductance, leaf transpiration, and net CO(2) exchange rates of trees on both vigorous and dwarfing rootstocks. There was a significant positive linear correlation between applied pneumatic pressure and tree transpiration rate and leaf water potential. Leaf conductance, transpiration rate, and net CO(2) exchange rate as well as relative shoot extension growth rates were also positively correlated with the applied pneumatic pressure on the root system. These relationships were consistent across both vigorous and size-controlling rootstocks, indicating that rootstock hydraulic limitation may be directly involved in the vegetative growth control of peach trees.  相似文献   

13.
SHERIFF  D. W. 《Annals of botany》1982,50(4):535-548
The hydraulic conductances of leaves of a species which exhibitsstomatal responses to humidity (Nicotiana glauca) are significantlylower than the conductances in a species which does not exhibitsuch responses (Tradescantia virginiana). This difference couldat least partly account for their difference in stomatal responseto humidity. In both species, the hydraulic conductance betweenthe leaf bulk and its epidermis is much lower than the conductancein any other part of the pathway. The apparently conflictingresults, reported in recent literature, on the hydraulic conductancesand water pathways in leaves are reinterpreted, and shown tobe due to misinterpretation of results. The recently publishedcriticisms of a technique used to measure hydraulic conductivityare commented on and refuted. An examination of the factors that influence the water potentialat the sites of evaporation from the inner walls of the epidermisnear stomatal pores showed that the water potential at thesesites is lower than the bulk epidermal water potential. Thewater potential at these sites changes in a complex way as stomatalaperture changes. As it is reduced the ratio of: ‘waterpotential at sites of evaporation on the inner walls of theepidermis near stomatal pores/bulk leaf water potential‘increases. The positive feedback effect of this phenomenon,which tends to keep stomatal water potential constant as thestomata close and therefore enhances closure, and two other‘passive’ positive feedback effects on the waterpotential at sites of evaporation near stomata that have beenreported in the literature are briefly discussed. Nicotiana glauca (Grah.), Tradescantia virginiana (L.), sub-stomatal cavities, peristomatal evaporation, stomata, humidity response, leaf hydraulic conductance, water potential  相似文献   

14.
LEVY  Y. 《Annals of botany》1980,46(6):695-700
Conductance, transpirational flux and xylem pressure potentialwere measured in leaves of well-watered 5-year-old lemon trees(Citrus limon (L.) Burm. f.) subjected to different levels ofevaporative demand. Increased leaf-to-air absolute humiditydifference generally decreased stomatal conductance and increasedxylem pressure potential, with a good correlation between thelast two parameters; but this trend was reversed on days withvery high evaporative demand, when stomata opened in spite ofthe low humidity. Citrus limon (L.) Burm. f., lemon, water stress, stomatal conductance, leaf water potential, transpiration, air humidity  相似文献   

15.
A comparison of plant hydraulic conductances in wheat and lupins   总被引:3,自引:1,他引:2  
Previous studies have shown similar water use for lupins (Lupinusangustifolius L.) and wheat (Triticum aestivum L.), despitea considerably smaller root system in lupins. A field studyand an experiment under controlled conditions using pressure-fluxrelationships were conducted to examine whether higher hydraulicconductances were responsible for the greater water uptake perunit root length in lupins. In the field experiment, the fluxof water and differences in water potential through the soil-plantsystem were measured for both species and used to calculatethe hydraulic conductance through the plant and through theroot and shoot. The hydraulic conductance for the whole plantwas 3–5 times greater in lupins than in wheat. This relativedifference between the species was similar when plant hydraulicconductance was expressed per unit of root length. This occurreddespite the difference in midday water potential between soiland leaves, being consistently greater in wheat (–1.0MPa) than in lupins (–0.7 MPa). When the total plant conductancewas separated into its components, the combined soil and rootconductance and the shoot conductance were 2 and 6 times greater,respectively, in lupins than in wheat. In the experiment undercontrolled conditions, hydraulic conductance for the entireroot system was determined using a pressure chamber. The specificroot hydraulic conductances were 4 times greater in lupins thanin wheat. The results from both field and controlled conditionsexperiments suggest that the greater water uptake per unit rootlength in lupins compared to wheat results from appreciablylarger root and shoot hydraulic conductances. Key words: Lupins, wheat, hydraulic conductances, water, uptake, pressure-flux  相似文献   

16.
17.
Background and AimsLeaf biomechanical resistance protects leaves from biotic and abiotic damage. Previous studies have revealed that enhancing leaf biomechanical resistance is costly for plant species and leads to an increase in leaf drought tolerance. We thus predicted that there is a functional correlation between leaf hydraulic safety and biomechanical characteristics.MethodsWe measured leaf morphological and anatomical traits, pressure–volume parameters, maximum leaf hydraulic conductance (Kleaf-max), leaf water potential at 50 % loss of hydraulic conductance (P50leaf), leaf hydraulic safety margin (SMleaf), and leaf force to tear (Ft) and punch (Fp) of 30 co-occurring woody species in a sub-tropical evergreen broadleaved forest. Linear regression analysis was performed to examine the relationships between biomechanical resistance and other leaf hydraulic traits.Key ResultsWe found that higher Ft and Fp values were significantly associated with a lower (more negative) P50leaf and a larger SMleaf, thereby confirming the correlation between leaf biomechanical resistance and hydraulic safety. However, leaf biomechanical resistance showed no correlation with Kleaf-max, although it was significantly and negatively correlated with leaf outside-xylem hydraulic conductance. In addition, we also found that there was a significant correlation between biomechanical resistance and the modulus of elasticity by excluding an outlier.ConclusionsThe findings of this study reveal leaf biomechanical–hydraulic safety correlation in sub-tropical woody species.  相似文献   

18.
以豆科(Fabaceae)11个复叶树种和6个单叶树种为材料,测定他们的气孔导度、叶片水力导度、水势、相对含水量等指标,分析叶型对枝叶光合水分关系的影响。结果显示,复叶树种正午叶轴水势(-0.91 MPa)与单叶树种正午枝条水势(-0.88 MPa)间无显著差异,但正午枝条水势(-0.60 MPa)显著高于单叶树种。复叶树种正午气孔导度降低的百分比(55.3%)显著高于单叶树种(34.1%)。叶片、叶轴和枝条正午水势两两之间均显著正相关,但与正午气孔导度之间均不存在相关性。本研究中,17个树种的正午叶片水力导度与气孔导度间显著正相关(r=0.79,P<0.001),但他们与气孔导度降低百分比间呈负相关(r=-0.81,P<0.001),说明叶片导水率对日间气孔导度的维持具有重要作用。研究结果表明单叶和复叶树种在光合水分关系上存在明显差异,说明他们对环境条件具有不同的适应策略。  相似文献   

19.
Hydraulic properties of entire root systems and isolated rootsof three contrasting sugarcane clones were evaluated using transpiration-induceddifferences in hydrostatic pressure across intact root systems,root pressure-generated xylem sap exudation, and pressure-fluxrelationships. Regardless of the measurement technique employed,the clones were ranked in the same order on the basis of theirleaf area–specific total root system hydraulic conductance(Croot). All methods employed detected large developmental changesin Grootroot with maximum values occurring in plants with approximately02 m2 total leaf area. Genotypic ranking according to Groot,was reflected as a similar ranking according to root length-specifichydraulic conductance (L) of individual excised roots. Genotypicdifferences in Groot and L were consistent with anatomical characteristicsobserved in individual roots. Patterns of Groot, during soildrying and following re-irrigation suggested that the declinein Groot, observed during soil drying occurred within the rootsrather than at the soil–root interface and may have beencaused in part by xylem cavitation in the roots. Key words: Root hydraulic conductance, Saccharum spp, transpiration, root pressure, pressure-flux  相似文献   

20.
To evaluate whether abscisic acid (ABA) in the xylem sap playsan important role in controlling stomatal aperture of field-grownPrunus persica trees under drought conditions, stomatal conductance(g) and xylem ABA concentrations were monitored both in irrigatedand non-irrigated trees, on two consecutive summer days (threetimes a day). Stomata1 conductance of non-irrigated trees hada morning maximum and declined afterwards. The changes in gduring the day, rather than resulting from variations in theconcentrations of ABA in the xylem sap or the delivery rateof this compound to the leaves, were associated with changesin the relationship between g and xylem ABA. The stomata ofwater-stressed trees opened during the first hours of the day,despite the occurrence of a high concentration of ABA in thexylem sap. However, stomatal responsiveness to ABA in the xylemwas enhanced throughout the day. As a result, a tight inverserelationship between g and the logarithm of xylem ABA concentrationwas found both at midday and in the afternoon. A similar relationshipbetween g and ABA was found when exogenous ABA was fed to leavesdetached from well-watered trees. These results indicate thatABA derived from the xylem may account for the differences ing observed between field-grown peach trees growing with differentsoil water availabilities. Several possible explanations forthe apparent low stomatal sensitivity to xylem ABA in the morning,are discussed, such as high leaf water potential, low temperatureand high cytokinin activity. Key words: Prunus persica L., stomata, xylem ABA, water deficits, root-to-shoot communication  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号