首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Scaffold proteins in mammalian MAP kinase cascades   总被引:1,自引:0,他引:1  
The mitogen-activated protein kinase (MAPK) signaling pathway, which is conserved from yeast to humans, is activated in response to a variety of extra- and intracellular stimuli, and plays key roles in multiple cellular processes, including proliferation, differentiation, and apoptosis. The MAPK pathway transmits its signal through the sequential phosphorylation of MAPK kinase kinase to MAPK kinase to MAPK. Specific and efficient activation of the MAPK cascades is crucial for proper cellular responses to stimuli. As shown in yeast, the mammalian MAPK signaling system may also employ scaffold proteins, in part, to organize the MAPK signaling components into functional MAPK modules, thereby enabling the efficient activation of specific MAPK pathways. This review article describes recent advances in the study of potential mammalian scaffold proteins that may help us understand the complex regulation, including the spatial and temporal control, of the mammalian MAPK signaling pathways.  相似文献   

2.
Regulation of cross-talk in yeast MAPK signaling pathways   总被引:1,自引:0,他引:1  
MAP kinase (MAPK) modules are conserved three-kinase cascades that serve central roles in intracellular signal transduction in eukaryotic cells. MAPK pathways of different inputs and outputs use overlapping sets of signaling components. In yeast, for example, three MAPK pathways (pheromone response, filamentous growth response, and osmostress adaptation) all use the same Ste11 MAPK kinase kinase (MAPKKK). How undesirable leakage of signal, or cross-talk, is prevented between these pathways has been a subject of intensive study. This review discusses recent findings from yeast that indicate that there is no single mechanism, but that a combination of four general strategies (docking interactions, scaffold proteins, cross-pathway inhibition, and kinetic insulation) are utilized for the prevention of cross-talk between any two MAPK modules.  相似文献   

3.
4.
Mitogen-activated protein kinase (MAPK) signaling cascades are evolutionarily conserved fundamental signal transduction pathways. A MAPK cascade consists of many distinct MAPKKK–MAPKK–MAPK modules linked to various upstream receptors and downstream targets through sequential phosphorylation and activation of the cascade components. These cascades collaborate in transmitting a variety of extracellular signals and in controlling cellular responses and processes such as growth, differentiation, cell death, hormonal signaling, and stress responses. Although MAPK proteins play central roles in signal transduction pathways, our knowledge of MAPK signaling in hormonal responses in rice has been limited to a small subset of specific upstream and downstream interacting targets. However, recent studies revealing direct MAPK and MAPKK interactions have provided the basis for elucidating interaction specificities, functional divergence, and functional modulation during hormonal responses. In this review, we highlight current insights into MAPKK–MAPK interaction patterns in rice, with emphasis on the biological significance of these interacting pairs in SA (salicylic acid), JA (jasmonic acid), ET (ethylene), and ABA (abscisic acid) responses, and discuss the challenges in understanding functional signal transduction networks mediated by these hormones.  相似文献   

5.
MAP Kinase Pathways in the Yeast Saccharomyces cerevisiae   总被引:29,自引:0,他引:29       下载免费PDF全文
A cascade of three protein kinases known as a mitogen-activated protein kinase (MAPK) cascade is commonly found as part of the signaling pathways in eukaryotic cells. Almost two decades of genetic and biochemical experimentation plus the recently completed DNA sequence of the Saccharomyces cerevisiae genome have revealed just five functionally distinct MAPK cascades in this yeast. Sexual conjugation, cell growth, and adaptation to stress, for example, all require MAPK-mediated cellular responses. A primary function of these cascades appears to be the regulation of gene expression in response to extracellular signals or as part of specific developmental processes. In addition, the MAPK cascades often appear to regulate the cell cycle and vice versa. Despite the success of the gene hunter era in revealing these pathways, there are still many significant gaps in our knowledge of the molecular mechanisms for activation of these cascades and how the cascades regulate cell function. For example, comparison of different yeast signaling pathways reveals a surprising variety of different types of upstream signaling proteins that function to activate a MAPK cascade, yet how the upstream proteins actually activate the cascade remains unclear. We also know that the yeast MAPK pathways regulate each other and interact with other signaling pathways to produce a coordinated pattern of gene expression, but the molecular mechanisms of this cross talk are poorly understood. This review is therefore an attempt to present the current knowledge of MAPK pathways in yeast and some directions for future research in this area.  相似文献   

6.
Due to the central position of scaffold proteins in numerous signaling networks, especially in MAPK pathways, considerable efforts have been made to identify new scaffolds and to characterize their function and regulation. Most of our knowledge stems from studies of yeast MAPK scaffolds, but the identification of such scaffolds in higher eukaryotes provided a new dimension to this field and led to exciting and promising new insights into the regulation of MAPK signaling. In this review, we shortly summarize the well-established basic functions of scaffolds in yeast and highlight concepts emerging from recent studies in yeast and higher eukaryotes. In particular, we discuss how scaffolds may actively influence MAPK signaling by inducing conformational changes of bound kinases or substrates, by controlling the localization of activated MAPK and the extent and output of MAPK activation, and by modulating MAPK kinetics through the recruitment of phosphatases or ubiquitin-ligases. Finally, we summarize the current knowledge of scaffold regulation, and how these events may be functionally important for MAPK signaling.  相似文献   

7.
Interactions of proteins regulate signaling, catalysis, gene expression and many other cellular functions. Therefore, characterizing the entire human interactome is a key effort in current proteomics research. This challenge is complicated by the dynamic nature of protein-protein interactions (PPIs), which are conditional on the cellular context: both interacting proteins must be expressed in the same cell and localized in the same organelle to meet. Additionally, interactions underlie a delicate control of signaling pathways, e.g. by post-translational modifications of the protein partners - hence, many diseases are caused by the perturbation of these mechanisms. Despite the high degree of cell-state specificity of PPIs, many interactions are measured under artificial conditions (e.g. yeast cells are transfected with human genes in yeast two-hybrid assays) or even if detected in a physiological context, this information is missing from the common PPI databases. To overcome these problems, we developed a method that assigns context information to PPIs inferred from various attributes of the interacting proteins: gene expression, functional and disease annotations, and inferred pathways. We demonstrate that context consistency correlates with the experimental reliability of PPIs, which allows us to generate high-confidence tissue- and function-specific subnetworks. We illustrate how these context-filtered networks are enriched in bona fide pathways and disease proteins to prove the ability of context-filters to highlight meaningful interactions with respect to various biological questions. We use this approach to study the lung-specific pathways used by the influenza virus, pointing to IRAK1, BHLHE40 and TOLLIP as potential regulators of influenza virus pathogenicity, and to study the signalling pathways that play a role in Alzheimer''s disease, identifying a pathway involving the altered phosphorylation of the Tau protein. Finally, we provide the annotated human PPI network via a web frontend that allows the construction of context-specific networks in several ways.  相似文献   

8.
Mitogen-activated protein kinase (MAPK) pathways are well conserved in most organisms, from yeast to humans. The principal components of these pathways are MAP kinases whose activity is regulated by phosphorylation, implicating various MAPK protein effectors-in particular, protein phosphatases that inactivate MAPKs by dephosphorylation. The molecular basis of binding specificity of such regulatory phosphatases to MAPKs is poorly understood. To try to pinpoint potential functional regions within the sequences and to help identify new family members, we have applied a multimotif pattern-recognition approach to characterize two MAPK phosphatase subfamilies (tyrosine-specific and dual specificity) that are crucial in the regulation of MAPKs. We built "fingerprints" for these two subfamilies that are unique to, and highly discriminatory for, each group of proteins. The fingerprints were used in a genome-wide screen, identifying more than 80 MAPK phosphatase domains, several of which were in partial sequences or unclassified proteins. We confirmed experimentally that one predicted MAPK phosphatase orthologue in Xenopus binds to ERK1/2, suggesting a role in MAPK signaling and thus supporting our functional predictions. Further analysis, mapping the fingerprints on the three-dimensional structure of MAPK phosphatases, revealed that some of the fingerprint motifs reside in the N-terminal noncatalytic regions coinciding with reported MAPK binding sites, while others lie within the catalytic phosphatase domain. These results also suggest the presence of putative allosteric sites in the catalytic region for modulation of protein-protein interactions, and provide a framework for future experimental validation.  相似文献   

9.
The Ras-MAPK and PI3K-AKT pathways are conserved in metazoan organisms, which involve a series of signaling cascades and form the basis for numerous physiological and pathological processes. Here we report on yeast two hybrid screening results of a protein interaction network around the known components of human Ras-MAPK/PI3K pathways. A total of 42 independent cDNA library screenings resulted in 200 protein-protein interaction (PPI) pairs among 180 molecules. Most of the proteins formed a large cluster that contains 193 PPIs between 169 proteins. Seventy-four interactions indicate high-confidence according to bioinformatics analysis. The prey list contains high enrichment genes with specific Gene Ontology (GO) terms such as response to stress and response to external stimulus. Most interactions link the Ras signaling pathway with various cellular processes. Five interactions were validated by coimmunoprecipitation and colocalization assays in mammalian cells to confirm their in vivo interactions. This protein interaction network provides further insights into the molecular mechanism of Ras-MAPK/PI3K signaling pathways.  相似文献   

10.
Wang L  Yang Z  Li Y  Yu F  Brindley PJ  McManus DP  Wei D  Han Z  Feng Z  Li Y  Hu W 《FEBS letters》2006,580(15):3677-3686
At present, little is known about signal transduction mechanisms in schistosomes, which cause the disease of schistosomiasis. The mitogen-activated protein kinase (MAPK) signaling pathways, which are evolutionarily conserved from yeast to Homo sapiens, play key roles in multiple cellular processes. Here, we reconstructed the hypothetical MAPK signaling pathways in Schistosoma japonicum and compared the schistosome pathways with those of model eukaryote species. We identified 60 homologous components in the S. japonciumMAPK signaling pathways. Among these, 27 were predicted to be full-length sequences. Phylogenetic analysis of these proteins confirmed the evolutionary conservation of the MAPK signaling pathways. Remarkably, we identified S. japonicum homologues of GTP-binding protein beta and alpha-I subunits in the yeast mating pathway, which might be involved in the regulation of different life stages and female sexual maturation processes as well in schistosomes. In addition, several pathway member genes, including ERK, JNK, Sja-DSP, MRAS and RAS, were determined through quantitative PCR analysis to be expressed in a stage-specific manner, with ERK, JNK and their inhibitor Sja-DSP markedly upregulated in adult female schistosomes.  相似文献   

11.
MAPK signaling cascades are evolutionally conserved. The bacterial effector, YopJ, uses the unique activity of Ser/Thr acetylation to inhibit the activation of the MAPK kinase (MKK) and prevent activation by phosphorylation. YopJ is also able to block yeast MAPK signaling pathways using this mechanism. Based on these observations, we performed a genetic screen to isolate mutants in the yeast MKK, Pbs2, that suppress YopJ inhibition. One suppressor contains a mutation in a conserved tyrosine residue and bypasses YopJ inhibition by increasing the basal activity of Pbs2. Mutations on the hydrophobic face of the conserved G alpha-helix in the kinase domain prevent both binding and acetylation by YopJ. Corresponding mutants in human MKKs showed that they are conserved not only structurally, but also functionally. These studies reveal a conserved binding site found on the superfamily of MAPK kinases while providing insight into the molecular interactions required for YopJ inhibition.  相似文献   

12.
Cells sense several kinds of stimuli and trigger corresponding responses through signaling pathways. As a result, cells must process and integrate multiple signals in parallel to maintain specificity and avoid erroneous cross-talk. In this study, we focus our theoretical effort on understanding specificity of a model network system in yeast, Saccharomyces cerevisiae, which contains three mitogen-activated protein kinase (MAPK) signal transduction cascades that share multiple signaling components. The cellular response to the pheromone, the filamentous growth and osmotic pressure stimuli in yeast is described and an integrative mathematical model for the three MAPK cascades is developed using available literature and experimental data. The theoretical framework for analyzing the specificity of signaling networks [Bardwell, L., Zou, X.F., Nie, Q., Komarova, N.L., 2007. Mathematical models of specificity in cell signaling. Biophys. J. 92, 3425-3441] is extended to include multiple interacting pathways with shared components. Simulations are also performed with any one stimulus, with any two simultaneous stimuli, and with the simultaneous application of the three stimuli. The interactions between the three pathways are systematically investigated. Moreover, the specificity and fidelity of this model system are calculated using our newly developed concept under different stimuli or with specific mutants. Our simulated and calculated results demonstrate that the yeast MAPK signaling network can achieve specificity and fidelity by filtering out spurious cross-talk between the relevant pathways through different mechanisms, such as scaffolding, cross-inhibiting, and feedback control. Proof that Pbs2 and Hog1 are essential for the maintenance of signaling specificity is presented. Our studies provide novel insights into integration of relevant signaling pathways in a biological system and the mechanisms conferring specificity in cellular signaling networks.  相似文献   

13.
14.
Human endometrium-derived mesenchymal stem cells (hMESC) under the sublethal oxidative stress induced by H2O2 activate both the p53/p21/Rb and p38/MAPKAPK-2 pathways that are responsible for the induction of hMESC premature senescence (Borodkina et al., 2014). However, the interrelations between the p53/p21/Rb and MAPK signaling pathways, including ERK1/2, p38, and JNK, remain yet unexplored. Here, we used the specific inhibitors—pifithrin-α (PFT), U0126, SB203580, and SP600125 to “switch off” one of the proteins in these cascades and to evaluate the functional status alterations of the rest of the proteins. Each MAPK suppression significantly increased the p53 phosphorylation level, as well as p21 protein expression followed by Rb hypophosphorylation. On the other hand, PFT-induced p53 inhibition enhanced mostly the ERK1/2 activation rather than p38 and JNK. These results suggest the existence of a reciprocal negative regulation between p53- and MAPK-dependent signaling pathways. By analyzing the possible interactions among the members of the MAPK family, we showed that p38 and JNK can function as ERK antagonists: JNK is able to activate ERK, while p38 may block ERK activation. Together, these results demonstrate the existence of complex links between different signaling cascades in stressed hMESC, implicating ERK, p38, and JNK in regulation of premature senescence via the p53/p21/Rb pathway.  相似文献   

15.

Background

Reversible interactions between the components of cellular signaling pathways allow for the formation and dissociation of multimolecular complexes with spatial and temporal resolution and, thus, are an important means of integrating multiple signals into a coordinated cellular response. Several mechanisms that underlie these interactions have been identified, including the recognition of specific docking sites, termed a D-domain and FXFP motif, on proteins that bind mitogen-activated protein kinases (MAPKs). We recently found that phosphatidylinositol-specific phospholipase C-γ1 (PLC-γ1) directly binds to extracellular signal-regulated kinase 2 (ERK2), a MAPK, via a D-domain-dependent mechanism. In addition, we identified D-domain sequences in several other PLC isozymes. In the present studies we sought to determine whether MAPK docking sequences could be recognized in other enzymes that metabolize phosphatidylinositols (PIs), as well as in enzymes that metabolize inositol phosphates (IPs).

Results

We found that several, but not all, of these enzymes contain identifiable D-domain sequences. Further, we found a high degree of conservation of these sequences and their location in human and mouse proteins; notable exceptions were PI 3-kinase C2-γ, PI 4-kinase type IIβ, and inositol polyphosphate 1-phosphatase.

Conclusion

The results indicate that there may be extensive crosstalk between MAPK signaling and signaling pathways that are regulated by cellular levels of PIs or IPs.  相似文献   

16.
17.
Enzymes often work sequentially in pathways; and consecutive reaction steps are typically carried out by molecules associated in the same multienzyme complex. Localization confines the enzymes; anchors them; increases the effective concentration of substrates and products; and shortens pathway timescales; however, it does not explain enzyme coordination or pathway branching. Here, we distinguish between metabolic and signaling multienzyme complexes. We argue for a central role of scaffolding proteins in regulating multienzyme complexes signaling and suggest that metabolic multienzyme complexes are less dependent on scaffolding because they undergo conformational control through direct subunit–subunit contacts. In particular, we propose that scaffolding proteins have an essential function in controlling branching in signaling pathways. This new broadened definition of scaffolding proteins goes beyond cases such as the classic yeast mitogen-activated protein kinase Ste5 and encompasses proteins such as E3 ligases which lack active sites and work via allostery. With this definition, we classify the mechanisms of multienzyme complexes based on whether the substrates are transferred through the involvement of scaffolding proteins, and outline the functional merits to metabolic or signaling pathways. Overall, while co-localization topography helps multistep pathways non-specifically, allosteric regulation requires precise multienzyme organization and interactions and works via population shift, either through direct enzyme subunit–subunit interactions or through active involvement of scaffolding proteins. This article is part of a Special Issue entitled: The emerging dynamic view of proteins: Protein plasticity in allostery, evolution and self-assembly.  相似文献   

18.
Utilizing a functional screen in the yeast Saccharomyces cerevisiae we identified mammalian proteins that activate heterotrimeric G-protein signaling pathways in a receptor-independent fashion. One of the identified activators, termed AGS1 (for activator of G-protein signaling), is a human Ras-related G-protein that defines a distinct subgroup of the Ras superfamily. Expression of AGS1 in yeast and in mammalian cells results in specific activation of Galpha(i)/Galpha(o) heterotrimeric signaling pathways. In addition, the in vivo and in vitro properties of AGS1 are consistent with it functioning as a direct guanine nucleotide exchange factor for Galpha(i)/Galpha(o). AGS1 thus presents a unique mechanism for signal integration via heterotrimeric G-protein signaling pathways.  相似文献   

19.
Protein-protein interaction maps provide a valuable framework for a better understanding of the functional organization of the proteome. To detect interacting pairs of human proteins systematically, a protein matrix of 4456 baits and 5632 preys was screened by automated yeast two-hybrid (Y2H) interaction mating. We identified 3186 mostly novel interactions among 1705 proteins, resulting in a large, highly connected network. Independent pull-down and co-immunoprecipitation assays validated the overall quality of the Y2H interactions. Using topological and GO criteria, a scoring system was developed to define 911 high-confidence interactions among 401 proteins. Furthermore, the network was searched for interactions linking uncharacterized gene products and human disease proteins to regulatory cellular pathways. Two novel Axin-1 interactions were validated experimentally, characterizing ANP32A and CRMP1 as modulators of Wnt signaling. Systematic human protein interaction screens can lead to a more comprehensive understanding of protein function and cellular processes.  相似文献   

20.
G‐protein‐coupled receptors (GPCRs) are the largest family of integral membrane receptors with key roles in regulating signaling pathways targeted by therapeutics, but are difficult to study using existing proteomics technologies due to their complex biochemical features. To obtain a global view of GPCR‐mediated signaling and to identify novel components of their pathways, we used a modified membrane yeast two‐hybrid (MYTH) approach and identified interacting partners for 48 selected full‐length human ligand‐unoccupied GPCRs in their native membrane environment. The resulting GPCR interactome connects 686 proteins by 987 unique interactions, including 299 membrane proteins involved in a diverse range of cellular functions. To demonstrate the biological relevance of the GPCR interactome, we validated novel interactions of the GPR37, serotonin 5‐HT4d, and adenosine ADORA2A receptors. Our data represent the first large‐scale interactome mapping for human GPCRs and provide a valuable resource for the analysis of signaling pathways involving this druggable family of integral membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号