首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Gene-specific probes (3' ends of cDNAs) were obtained from barley cDNAs encoding two types of glycine-rich proteins: HvGRP2, characterized by a cytokeratin-like and a cysteine-rich domain, and HvGRP3, whose main feature was an RNA-binding domain. Expression of genes Hvgrp2 and Hvgrp3, which are present at one (or two) copies per haploid genome, was ubiquitous and gene Hvgrp3 was under light/darkness modulation. Cold treatment increased Hvgrp2 and Hvgrp3 mRNA levels. Methyl jasmonate (10 M) switched off the two genes. Expression of Hvgrp2, but not that of Hvgrp3, was induced by ethylene treatment (100 ppm). Fungal pathogens Erysiphe graminis and Rhynchosporium secalis increased the mRNAs levels of the two genes, both in compatible and in incompatible interactions, while bacterial pathogens did not.  相似文献   

2.
3.
    
We investigated the role of metabolite transporters in cold acclimation by comparing the responses of wild-type (WT) Arabidopsis thaliana (Heynh.) with that of transgenic plants over-expressing sucrose-phosphate synthase (SPSox) or with that of antisense repression of cytosolic fructose-1,6-bisphosphatase (FBPas). Plants were grown at 23 degrees C and then shifted to 5 degrees C. We compared the leaves shifted to 5 degrees C for 3 and 10 d with new leaves that developed at 5 degrees C with control leaves on plants at 23 degrees C. At 23 degrees C, ectopic expression of SPS resulted in 30% more carbon being fixed per day and an increase in sucrose export from source leaves. This increase in fixation and export was supported by increased expression of the plastidic triose-phosphate transporter AtTPT and, to a lesser extent, the high-affinity Suc transporter AtSUC1. The improved photosynthetic performance of the SPSox plants was maintained after they were shifted to 5 degrees C and this was associated with further increases in AtSUC1 expression but with a strong repression of AtTPT mRNA abundance. Similar responses were shown by WT plants during acclimation to low temperature and this response was attenuated in the low sucrose producing FBPas plants. These data suggest that a key element in recovering flux through carbohydrate metabolism in the cold is to control the partitioning of metabolites between the chloroplast and the cytosol, and Arabidopsis modulates the expression of AtTPT to maintain balanced carbon flow. Arabidopsis also up-regulates the expression of AtSUC1, and to lesser extent AtSUC2, as down-stream components facilitate sucrose transport in leaves that develop at low temperatures.  相似文献   

4.
5.
6.
Antifreeze proteins in Alaskan insects and spiders   总被引:13,自引:0,他引:13  
Prior to this study, antifreeze proteins (AFPs) had not been identified in terrestrial arthropods from the Arctic or anywhere in Alaska. The hemolymph of 75 species of insects and six spiders from interior and arctic Alaska were screened for thermal hysteresis (a difference between the freezing and melting points), characteristic of the presence of AFPs. Eighteen species of insects and three spiders were shown to have AFPs. Ten of the insects with AFPs were beetles including the first species from the families Chrysomelidae, Pythidae, Silphidae and Carabidae. In addition, the first Neuropteran to have AFPs was identified, the lacewing Hemerobius simulans together with the second and third Diptera (the first Tipulids) and the second and third Hemiptera, the stinkbug Elasmostethus interstinctus (the first Pentatomid), and the water strider Limnoporus dissortis (the first Gerrid). Prior to this study, 33 species of insects and three spiders had been reported to have AFPs. Most AFP-producing terrestrial arthropods are freeze avoiding, and the AFPs function to prevent freezing. However, some of the AFP- producing insects identified in this study are known to be freeze tolerant (able to survive freezing) to very low temperatures (-40 to -70 degrees C).  相似文献   

7.
Molecular investigation of the process of cold acclimation in woody plants has been limited by the superimposition of dormancy-related events on the process of cold tolerance development. To address this limitation, we have used the grape Vitis labruscana L. ev. Concord to develop a system in which the developmental programme of dormancy can be induced seperately from cold acclimation. Using this system we have characterized differential accumulation of several proteins in grape buds during the normally superimposed endodormancy and cold acclimation programmes, and in buds which have entered only the endodormancy programme. A set of 47 kD proteins accumulated during endodormancy without cold acclimation to a level similar to that found in endodormant and cold-acclimated buds, but without any associated increase in bud cold-acclimation level. However, a 27 kD LEA-like protein accumulated only in cold acclimated buds. We conclude that expression of the 47 kD glycoprotein is endodormancy-related, but is not strictly related to the development of cold acclimation, while the 27 kD protein appears to be more specific to cold acclimation. In addition to strengthening the association of LEA-like proteins with cold acclimation, this system allows more specific assessment of cold acclimation-associated phenomena in overwintering buds.  相似文献   

8.
9.
10.
11.
12.
BACKGROUND AND AIMS: Frost tolerance of wheat depends primarily upon a strong vernalization requirement, delaying the transition to the reproductive phase. The aim of the present study was to learn how saturation of the vernalization requirement and apical development stage are related to frost tolerance in wheat. METHODS: 'Mironovskaya 808', a winter variety with a long vernalization requirement, and 'Leguan', a spring variety without a vernalization requirement, were acclimated at 2 degrees C at different stages of development. Plant development (morphological stage of the shoot apex), vernalization requirement (days to heading) and frost tolerance (survival of the plants exposed to freezing conditions) were evaluated. KEY RESULTS: 'Mironovskaya 808' increased its frost tolerance more rapidly; it reached a higher level of tolerance and after a longer duration of acclimation at 2 degrees C than was found in 'Leguan'. The frost tolerance of 'Mironovskaya 808' decreased and its ability to re-acclimate a high tolerance was lost after saturation of its vernalization requirement, but before its shoot apex had reached the double-ridge stage. The frost tolerance of 'Leguan' decreased after the plants had reached the floret initiation stage. CONCLUSIONS: The results support the hypothesis that genes for vernalization requirement act as a master switch regulating the duration of low temperature induced frost tolerance. In winter wheat, due to a longer vegetative phase, frost tolerance is maintained for a longer time and at a higher level than in spring wheat. After the saturation of vernalization requirement, winter wheat (as in spring wheat) established only a low level of frost tolerance.  相似文献   

13.
14.
《环境昆虫学报》2014,(5):805-813
昆虫是变温动物,温度对其生长发育、基本行为及进化途径都会产生很大的影响,种群的繁衍面临如何安全度过漫长而寒冷的冬季的挑战。通过长时间的进化,昆虫获得一系列完整的耐寒策略。绝大多数的昆虫都是耐寒昆虫,在陆地寒冷温度刺激下,昆虫受抗寒基因的调控,体内产生大量抗寒物质,如海藻糖、甘油、山梨醇、抗冻蛋白、热激蛋白等,提高昆虫的耐寒能力,使其得以在低温寒冷的条件下成功越冬。同样,经过冷驯化后的昆虫能显著提高昆虫的耐寒力。近年来,关于昆虫耐寒性、抗寒类蛋白的研究不断开展,研究内容涉及昆虫的耐寒性、抗寒基因HSPs和AFPs的调控、冷驯化诱导抗寒等方面。本文综述了昆虫耐寒性、主要耐寒策略及冷驯化诱发昆虫耐寒性增强等研究内容。有助于全面认识昆虫耐寒性及其作用机制,为天敌昆虫低温储存和提高生物防治等应用打下坚实的基础。  相似文献   

15.
16.
Saponins of two alfalfa cultivars   总被引:1,自引:0,他引:1  
A saponin mixture was separated from the forage of DuPuits and Lahontan cultivars of Medicago sativa and found to contain about 30 saponins. Glucose, galactose, xylose, arabinose and rhamnose, were the principal sugars; the sapogenins comprised soyasapogenols A and B, lucernic acid, medicagenic acid together with four unidentified but related triterpenoids. Medicagenic acid was the predominant sapogenin of the DuPuits cultivar, whereas soyasapogenot A was prominent in Lahontan saponins. Galactose was found in the saponins of monocarboxylic or nonacidic sapogenins but was absent in those containing dicarboxylic sapogenins, such as medicagenic acid.  相似文献   

17.
A plasmalemma fraction was isolated from homogenized apple tree (Mains domestica Borkh 'Golden Delicious') hark tissues using aqueous phase partitioning and ultra-centrifugation. Results of marker enzyme assays indicated that a membrane preparation highly enriched in plasma membranes was obtained. ATPase activity in this preparation possessed a high specificity for ATP as substrate, was inhibited by vanadate, diethylstilbcsterol and dicyclohexylcarbocHimide, and was insensitive to inhibitors of mitochondria! and tonoplasl ATPases. Specific activity of the plasma-lemma ATPase increased during cold acclimation prior to the attainment of vegetative maturity. Kinetic parameters (Km, Vln) determined from assays performed at different temperatures (10, 30°C) indicated a differential effect of cold acclimation on enzyme activity. Vm increased during cold acclimation, whereas Km increased when determined at 30°C but declined at 10°C. Acclimation treatments during April and May resulted in alteration of ATPase kinetics in the absence of any increase in bark frost hardiness. Changes in ATPase kinetics may be related more to enhanced low temperature metabolism than to frost hardiness per se.  相似文献   

18.
Plastids are surrounded by two membrane layers, the outer and inner envelope membranes, which have various transport and metabolic activities. A number of envelope membrane proteins have been identified by biochemical approaches and have been assigned to specific functions. Despite those efforts, the chloroplast envelope membrane is expected to contain a number of as yet unidentified proteins that may affect specific aspects of plant growth and development. In this report, we identify and characterize a novel class of inner envelope membrane proteins, designated as Cor413 chloroplast inner envelope membrane group (Cor413im). Both in vivo and in vitro studies indicate that Cor413im proteins are targeted to the chloroplast envelope. Biochemical analyses of Cor413im1 demonstrate that it is an integral membrane protein in the inner envelope of chloroplasts. Quantitative real-time PCR analysis reveals that COR413IM1 is more abundant than COR413IM2 in cold-acclimated Arabidopsis leaves. The analyses of T-DNA insertion mutants indicate that a single copy of COR413IM genes is sufficient to provide normal freezing tolerance to Arabidopsis. Based on these data, we propose that Cor413im proteins are novel components that are targeted to the chloroplast inner envelope in response to low temperature.  相似文献   

19.
We have isolated a rab-related (responsive to ABA) gene, rab18 from Arabidopsis thaliana. The gene encodes a hydrophilic, glycine-rich protein (18.5 kDa), which contains the conserved serine- and lysine-rich domains characteristic of similar RAB proteins in other plant species. The rab18 mRNA accumulates in plants exposed to low temperature, water stress or exogenous ABA but not in plants subjected to heat shock. This stress-related accumulation of the rab18 mRNA is markedly decreased in the ABA-synthesis mutant aba-1, the ABA-response mutant abi-1 or in wild-type plants treated with the carotenoid synthesis inhibitor, fluridone. Exogenous ABA treatment can induce the rab18 mRNA in the aba-1 mutant but not in the abi-1 mutant. These results provide direct genetic evidence for the ABA-dependent regulation of the rab18 gene in A. thaliana.  相似文献   

20.
Glycerol and glucose accumulation during diapause in a tropical beetle   总被引:2,自引:0,他引:2  
Abstract. Carbohydrate changes were measured during the 10-month adult diapause in the neotropical beetle, Stenotarsus rotundus Arrow (Endomychidae, Coleoptera) to test the hypothesis that metabolic suppression causes the accumulation of polyols in the absence of the need for cold tolerance. Glycerol and glucose both accumulate during the first 3 months from June to September, but decline in October, accumulate again in December-January and finally decline after January and stay low until the adults leave their diapause site in April. Any adaptive significance for this pattern is unknown but its coincidence with previously measured metabolic suppression suggests that glycerol and glucose accumulate as a result of metabolic adjustments during diapause. The relevance of these results to the evolution of polyol accumulation for cryoprotection in temperate insects in discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号