首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
Carbon isotope fractionation during aerobic mineralization of 1,2-dichloroethane (1,2-DCA) by Xanthobacter autotrophicus GJ10 was investigated. A strong enrichment of 13C in residual 1,2-DCA was observed, with a mean fractionation factor α ± standard deviation of 0.968 ± 0.0013 to 0.973 ± 0.0015. In addition, a large carbon isotope fractionation between biomass and inorganic carbon occurred. A mechanistic model that links the fractionation factor α to the rate constants of the first catabolic enzyme was developed. Based on the model, it was concluded that the strong enrichment of 13C in 1,2-DCA arises because the first irreversible step of the initial enzymatic transformation of 1,2-DCA consists of an SN2 nucleophilic substitution. SN2 reactions are accompanied by a large kinetic isotope effect. The substantial carbon isotope fractionation between biomass and inorganic carbon could be explained by the kinetic isotope effect associated with the initial 1,2-DCA transformation and by the metabolic pathway of 1,2-DCA degradation. Carbon isotope fractionation during 1,2-DCA mineralization leads to 1,2-DCA, inorganic carbon, and biomass with characteristic carbon isotope compositions, which may be used to trace the process in contaminated environments.  相似文献   

2.
1,2-Dichloroethane (1,2-DCA), a chlorinated aliphatic hydrocarbon, is a well-known groundwater contaminant. In this study, fractionation of stable carbon isotope values of 1,2-DCA during biodegradation was used as a novel reaction probe to provide information about the mechanism of 1,2-DCA biodegradation under both aerobic (O2-reducing) and anaerobic (NO3-reducing) conditions. Under O2-reducing conditions, an isotopic enrichment value (epsilon) of -25.8 +/- 1.1 per thousand (+/-95% confidence intervals) was measured for the enrichment culture. Under NO3-reducing conditions, an epsilon-value of -25.8 +/- 3.5 per thousand was measured. The microbial culture produced isotopic enrichment values (epsilon) that are not only large and reproducible, but also are the same whether O2 or NO3 was used as an electron acceptor. Combining data measured under both O2- and NO3-reducing conditions, an isotopic enrichment value (epsilon) of -25.8 +/- 1.6 per thousand is measured for the microbial culture during 1,2-DCA degradation. The epsilon-value can be converted into a kinetic isotope effect (KIE) value to relate the observed isotopic fractionation to the mechanism of degradation. This KIE value (1.05) is consistent with degradation via hydrolytic dehalogenation under both electron-accepting conditions. This study demonstrates the added value of compound-specific isotope analysis not only as a technique to verify the occurrence and extent of biodegradation in the field, but also as a natural reaction probe to provide insight into the enzymatic mechanism of contaminant degradation.  相似文献   

3.
Forest floor mineral soil mix (FMM) and peat mineral soil mix (PMM) are cover soils commonly used for reclamation of open‐pit oil sands mining disturbed land in northern Alberta, Canada; coarse woody debris (CWD) is another source of organic matter for land reclamation. We investigated net nitrogen (N) transformation rates in FMM and PMM cover soils near and away from CWD 4–6 years after oil sands reclamation. Monthly net nitrification and N mineralization rates varied over time; however, mean rates across the incubation periods and microbial biomass were greater (p < 0.05) in FMM than in PMM. Net N mineralization rates were positively related to soil temperature (p < 0.001) and microbial biomass carbon (p = 0.045). Net N transformation rates and inorganic N concentrations were not affected by CWD; however, the greater 15N isotope ratio of ammonium near CWD than away from CWD indicates that CWD application increased both gross N mineralization/nitrification (causing N isotope fractionation) and gross N immobilization (no isotopic fractionation). Microbial biomass was greater near CWD than away from CWD, indicating the greater potential for N immobilization near CWD. We conclude that (1) CWD application affected soil microbial properties and would create spatial variability and diverse microsites and (2) cover soil type and CWD application had differential effects on net N transformation rates. Applying FMM with CWD for oil sands reclamation is recommended to increase N availability and microsites.  相似文献   

4.
Compound-specific isotope analysis has the potential to distinguish physical from biological attenuation processes in the subsurface. In this study, carbon and hydrogen isotopic fractionation effects during biodegradation of benzene under anaerobic conditions with different terminal-electron-accepting processes are reported for the first time. Different enrichment factors (epsilon ) for carbon (range of -1.9 to -3.6 per thousand ) and hydrogen (range of -29 to -79 per thousand ) fractionation were observed during biodegradation of benzene under nitrate-reducing, sulfate-reducing, and methanogenic conditions. These differences are not related to differences in initial biomass or in rates of biodegradation. Carbon isotopic enrichment factors for anaerobic benzene biodegradation in this study are comparable to those previously published for aerobic benzene biodegradation. In contrast, hydrogen enrichment factors determined for anaerobic benzene biodegradation are significantly larger than those previously published for benzene biodegradation under aerobic conditions. A fundamental difference in the previously proposed initial step of aerobic versus proposed anaerobic biodegradation pathways may account for these differences in hydrogen isotopic fractionation. Potentially, C-H bond breakage in the initial step of the anaerobic benzene biodegradation pathway may account for the large fractionation observed compared to that in aerobic benzene biodegradation. Despite some differences in reported enrichment factors between cultures with different terminal-electron-accepting processes, carbon and hydrogen isotope analysis has the potential to provide direct evidence of anaerobic biodegradation of benzene in the field.  相似文献   

5.
Biodegradation of 1,2-dichloroethane (1,2-DCA) by cometabolism was investigated in a continuous-flow nitrifying biofilm reactor over a time period of 218 days. The removal efficiency of 1,2-DCA ranged between 70 and 90%. Using the generation of chloride (Cl) as an indicator of 1,2-DCA mineralization, it was shown that the cometabolic degradation of 1,2-DCA was initiated through oxidative dechlorination. However, Cl production rates were observed to be lower than the stoichiometric ones which indicated the partial mineralization of 1,2-DCA and the possibility of by-product formation due to incomplete dechlorination. At high 1,2-DCA removal rates, Cl release seemed to reach a saturation due to 1,2-DCA-dependent inactivation of NH4–N oxidation. The cometabolic 1,2-DCA degradation capacity of nitrifiers was quite comparable to metabolic 1,2-DCA degradation capacities of pure cultures. A strong linear relationship was found between 1,2-DCA transformation yields and NH4–N and 1,2-DCA loadings. The effect of 1,2-DCA loading on nitrifier population was monitored using molecular microbiological tools. Long-term input of 1,2-DCA to the biofilm reactor resulted in no significant changes in the quantities of Nitrosomonas, Nitrobacter and Nitrospira species and no shift in the diversities of ammonia oxidizing species. Those findings provide an insight into both the operation and the community structure in natural and managed nitrifying biofilm systems where cometabolic 1,2-DCA takes place.  相似文献   

6.
Many organisms have been found to readily oxidize the prevalent contaminant 1,2-dichloroethane (1,2-DCA) to CO2 under aerobic conditions. Some organisms have also been isolated that can reduce 1,2-DCA to ethene via dihaloelimination under anaerobic, fermentative conditions. However, none have been described that can metabolize 1,2-DCA under anoxic, nitrate-reducing conditions. In microcosms prepared from aquifer material and groundwater samples from a contaminated site in eastern Louisiana, USA, 1,2-DCA was observed to degrade with nitrate as the terminal electron acceptor. Nitrate-dependent enrichment cultures were developed from these microcosms that sustained rapid 1,2-DCA degradation rates of up to 500 microM day(-1). This degradation was tightly coupled to complete reduction of nitrate via nitrite to nitrogen gas. A novel 1,2-DCA-degrading organism belonging to the Betaproteobacteria (affiliated with the genus Thauera) was isolated from this enrichment culture. However, degradation rates were much slower in cultures of the isolate than observed in the parent mixed culture. Complete mineralization of 1,2-DCA to CO2 was linked to cell growth and to nitrate reduction in both enrichment and isolated cultures. Monochloroacetate, a putative metabolite of 1,2-DCA degradation, could also be mineralized by these cultures.  相似文献   

7.
Primary features of hydrogen and carbon isotope fractionation during toluene degradation were studied to evaluate if analysis of isotope signatures can be used as a tool to monitor biodegradation in contaminated aquifers. D/H hydrogen isotope fractionation during microbial degradation of toluene was measured by gas chromatography. Per-deuterated toluene-d(8) and nonlabeled toluene were supplied in equal amounts as growth substrates, and kinetic isotope fractionation was calculated from the shift of the molar ratios of toluene-d(8) and nondeuterated toluene. The D/H isotope fractionation varied slightly for sulfate-reducing strain TRM1 (slope of curve [b] = -1.219), Desulfobacterium cetonicum (b = -1.196), Thauera aromatica (b = -0.816), and Geobacter metallireducens (b = -1.004) and was greater for the aerobic bacterium Pseudomonas putida mt-2 (b = -2.667). The D/H isotope fractionation was 3 orders of magnitude greater than the (13)C/(12)C carbon isotope fractionation reported previously. Hydrogen isotope fractionation with nonlabeled toluene was 1.7 and 6 times less than isotope fractionation with per-deuterated toluene-d(8) and nonlabeled toluene for sulfate-reducing strain TRM1 (b = -0.728) and D. cetonicum (b = -0.198), respectively. Carbon and hydrogen isotope fractionation during toluene degradation by D. cetonicum remained constant over a growth temperature range of 15 to 37 degrees C but varied slightly during degradation by P. putida mt-2, which showed maximum hydrogen isotope fractionation at 20 degrees C (b = -4.086) and minimum fractionation at 35 degrees C (b = -2.138). D/H isotope fractionation was observed only if the deuterium label was located at the methyl group of the toluene molecule which is the site of the initial enzymatic attack on the substrate by the bacterial strains investigated in this study. Use of ring-labeled toluene-d(5) in combination with nondeuterated toluene did not lead to significant D/H isotope fractionation. The activity of the first enzyme in the anaerobic toluene degradation pathway, benzylsuccinate synthase, was measured in cell extracts of D. cetonicum with an initial activity of 3.63 mU (mg of protein)(-1). The D/H isotope fractionation (b = -1.580) was 30% greater than that in growth experiments with D. cetonicum. Mass spectroscopic analysis of the product benzylsuccinate showed that H atoms abstracted from the toluene molecules by the enzyme were retained in the same molecules after the product was released. Our findings revealed that the use of deuterium-labeled toluene was appropriate for studying basic features of D/H isotope fractionation. Similar D/H fractionation factors for toluene degradation by anaerobic bacteria, the lack of significant temperature dependence, and the strong fractionation suggest that analysis of D/H fractionation can be used as a sensitive tool to assess degradation activities. Identification of the first enzyme reaction in the pathway as the major fractionating step provides a basis for linking observed isotope fractionation to biochemical reactions.  相似文献   

8.
Biogeochemical transformations occurring in the anoxic zones of stratified sedimentary microbial communities can profoundly influence the isotopic and organic signatures preserved in the fossil record. Accordingly, we have determined carbon isotope discrimination that is associated with both heterotrophic and lithotrophic growth of pure cultures of sulfate-reducing bacteria (SRB). For heterotrophic-growth experiments, substrate consumption was monitored to completion. Sealed vessels containing SRB cultures were harvested at different time intervals, and delta(13)C values were determined for gaseous CO(2), organic substrates, and products such as biomass. For three of the four SRB, carbon isotope effects between the substrates, acetate or lactate and CO(2), and the cell biomass were small, ranging from 0 to 2 per thousand. However, for Desulfotomaculum acetoxidans, the carbon incorporated into biomass was isotopically heavier than the available substrates by 8 to 9 per thousand. SRB grown lithoautotrophically consumed less than 3% of the available CO(2) and exhibited substantial discrimination (calculated as isotope fractionation factors [alpha]), as follows: for Desulfobacterium autotrophicum, alpha values ranged from 1.0100 to 1.0123; for Desulfobacter hydrogenophilus, the alpha value was 0.0138, and for Desulfotomaculum acetoxidans, the alpha value was 1.0310. Mixotrophic growth of Desulfovibrio desulfuricans on acetate and CO(2) resulted in biomass with a delta(13)C composition intermediate to that of the substrates. The extent of fractionation depended on which enzymatic pathways were used, the direction in which the pathways operated, and the growth rate, but fractionation was not dependent on the growth phase. To the extent that environmental conditions affect the availability of organic substrates (e.g., acetate) and reducing power (e.g., H(2)), ecological forces can also influence carbon isotope discrimination by SRB.  相似文献   

9.
Compound-specific isotope analysis has the potential to distinguish physical from biological attenuation processes in the subsurface. In this study, carbon and hydrogen isotopic fractionation effects during biodegradation of benzene under anaerobic conditions with different terminal-electron-accepting processes are reported for the first time. Different enrichment factors () for carbon (range of −1.9 to −3.6‰) and hydrogen (range of −29 to −79‰) fractionation were observed during biodegradation of benzene under nitrate-reducing, sulfate-reducing, and methanogenic conditions. These differences are not related to differences in initial biomass or in rates of biodegradation. Carbon isotopic enrichment factors for anaerobic benzene biodegradation in this study are comparable to those previously published for aerobic benzene biodegradation. In contrast, hydrogen enrichment factors determined for anaerobic benzene biodegradation are significantly larger than those previously published for benzene biodegradation under aerobic conditions. A fundamental difference in the previously proposed initial step of aerobic versus proposed anaerobic biodegradation pathways may account for these differences in hydrogen isotopic fractionation. Potentially, C-H bond breakage in the initial step of the anaerobic benzene biodegradation pathway may account for the large fractionation observed compared to that in aerobic benzene biodegradation. Despite some differences in reported enrichment factors between cultures with different terminal-electron-accepting processes, carbon and hydrogen isotope analysis has the potential to provide direct evidence of anaerobic biodegradation of benzene in the field.  相似文献   

10.
Methylobacterium dichloromethanicum was found to be able to utilize dichloromethane (DCM) as the source of carbon and energy with the production of biomass, CO2, and HCl. A comparative analysis of abundances of the major DCM isotopomers 35Cl(2)12C1H2, 35Cl37Cl12C1H2 and 37Cl(2)12CH2 made it possible to estimate the fractionation of chlorine isotopes during the bacterial metabolism of DCM. The kinetic chlorine isotope effects for 35Cl37Cl12C1H2 (m/z 86) and 37Cl(2)12C1H2 (m/z 88) relative to 35Cl(2)12C1H2 (m/z 84) turned out to be alpha 86/84 = 1.006 +/- 0.002 and alpha 88/84 = 1.023 +/- 0.003, respectively. The inference is made that the growth of M. dichloromethanicum on DCM is accompanied by the mass-independent fractionation of the DCM isotopomers.  相似文献   

11.
Experiments were conducted using the Fe+3‐reducing bacterium Shewanella putrefaciens strain 200R to determine the stable carbon isotope fractionation during dissimilatory Fe (III) reduction and associated lactate oxidation at circum‐neutral pH. Previous studies used equilibrium fractionation factors (~14.3‰) between bacterial biomass and synthesized fatty acids to identify the predominant carbon fixation pathways for some of the most frequently isolated microbes including Shewanella under anaerobic conditions. We investigated the carbon isotope disproportionation among organic carbon substrate (lactate), biomass and respired carbon dioxide at the lag to stationary phase of the growth curve. Ferric citrate and sodium lactate were used as electron acceptor and donor, respectively. Sodium bicarbonate or potassium phosphate was used as buffering agent. Iron (II), iron (III), dissolved inorganic carbon (DIC) and carbon isotope ratios were measured for both bicarbonate‐ and phosphate‐buffered systems. Carbon isotope ratio measurements were made on the respired CO2 (as DIC) and microbial biomass for both buffering conditions. The fraction of lactate consumed was estimated using DIC as a proxy and was verified by direct measurement using HPLC. Our result showed that bicarbonate‐buffered system has an enhancing effect in the reduction process compared to the phosphate system. Both systems resulted in carbon isotope fractionations between the lactate substrate and DIC that could be modelled as a Rayleigh process. The biomass produced under both buffer conditions was depleted on average by ~2‰ relative to the substrate and enriched by ~5‰ relative to the DIC. This translates to an overall isotopic fractionation of 10–12‰ between the biomass and respired CO2 in both buffering systems.  相似文献   

12.
Mass-spectrometric investigation of carbon isotope composition (δ13C) was carried out for suspended organic matter and dissolved mineral compounds for the water column of some meromictic water bodies differing in salinity and trophic state. As a rule, a more pronounced carbon isotope fractionation (resulting from the metabolism of phytoplankton and anoxygenic phototrophic bacteria) was revealed in the zones of enhanced oxygenic and anoxygenic photosynthesis. Carbon isotope fractionation at the border between oxidized and reduced waters depends both on the activity of microbial communities and on the dominant species of phototrophic microorganisms. Analysis of the distribution profiles of the isotopic composition of suspended organic matter and dissolved mineral carbon revealed active mineralization of the organic matter newly formed via anoxygenic photosynthesis in the monimolimnion by microbial communities, resulting in the release of isotopically light carbon dioxide. Mineral carbon in the anaerobic zones of highly productive meromictic water bodies is therefore enriched with the light 12C isotope.  相似文献   

13.
Pure cultures of ammonia-oxidizing bacteria, Nitrosomonas europaea, were exposed to trichloroethylene (TCE), 1,1-dichloroethylene (1,1-DCE), chloroform (CF), 1,2-dichloroethane (1,2-DCA), or carbon tetrachloride (CT), in the presence of ammonia, in a quasi-steady-state bioreactor. Estimates of enzyme kinetics constants, solvent inactivation constants, and culture recovery constants were obtained by simultaneously fitting three model curves to experimental data using nonlinear optimization techniques and an enzyme kinetics model, referred to as the inhibition, inactivation, and recovery (IIR) model, that accounts for inhibition of ammonia oxidation by the solvent, enzyme inactivation by solvent product toxicity, and respondent synthesis of new enzyme (recovery). Results showed relative enzyme affinities for ammonia monooxygenase (AMO) of 1,1-DCE approximately TCE > CT > NH(3) > CF > 1,2-DCA. Relative maximum specific substrate transformation rates were NH(3) > 1,2-DCA > CF > TCE approximately 1,1-DCE > CT (=0). The TCE, CF, and 1,1-DCE inactivated the cells, with 1,1-DCE being about three times more potent than TCE or CF. Under the conditions of these experiments, inactivating injuries caused by TCE and 1,1-DCE appeared limited primarily to the AMO enzyme, but injuries caused by CF appeared to be more generalized. The CT was not oxidized by N. europaea while 1,2-DCA was oxidized quite readily and showed no inactivation effects. Recovery capabilities were demonstrated with all solvents except CF. A method for estimating protein yield, the relationship between the transformation capacity model and the IIR model, and a condition necessary for sustainable cometabolic treatment of inactivating substrates are presented. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 520-534, 1997.  相似文献   

14.
高山苔原生态系统的土壤无机氮含量较低,对氮的缓冲性弱而易受外源氮输入的影响.本研究以长白山北坡苔原带土壤为研究对象,通过室内培养试验,以NH4NO3为外加氮源,设置3个施氮水平:对照(CK,0 kg·hm-2),低氮(N1,25 kg·hm-2),高氮(N2,50 kg·hm-2),分析长白山苔原带土壤碳、氮矿化对氮沉降的响应.结果表明: 氮添加处理对长白山苔原带土壤碳矿化速率影响不显著,但对土壤碳矿化累积矿化量影响显著,N2抑制了土壤的碳矿化作用.培养40 d后,氮添加处理提高了土壤无机氮含量;而培养80 d后,N2与N1的无机氮含量差异不显著,但都明显高于CK,氮输入促进了土壤氮的矿化.培养过程中,N1处理下的微生物生物量碳、氮高于N2和CK处理,说明低氮输入对土壤微生物活性的促进作用更明显.在未来氮沉降增加的背景下,长白山苔原土壤碳、氮周转可能加快,提高土壤无机氮含量.土壤中无机氮含量增加,虽然可以为植物生长提供更多生长所需的氮素,但也提高了土壤氮素的流失风险.  相似文献   

15.
The degradation of trichloroethylene (TCE), chloroform (CF), and 1,2-dichloroethane (1,2-DCA) by four aerobic mixed cultures (methane, propane, toluene, and phenol oxidizers) grown under similar chemostat conditions was measured. Methane and propane oxidizers were capable of degrading both saturated and unsaturated chlorinated organics (TCE, CF, and 1,2-DCA). Toluene and phenol oxidizers degraded TCE but were not able to degrade CF, 1,2-DCA, or other saturated organics. None of the cultures tested were able to degrade perchloroethylene (PCE) or carbon tetrachloride (CC(4)). For the four cultures tested, degradation of each of the chlorinated organics resulted in cell inactivation due to product toxicity. In all cases, the toxic products were rapidly depleted, leaving no toxic residues in solution. Among the four tested cultures, the resting cells of methane oxidizers exhibited the highest transformation capacities (T(c)) for TCE, CF, and 1,2-DCA. The T(c) for each chlorinated organic was observed to be inversely proportional to the chlorine carbon ratio (Cl/C). The addition of low concentrations of growth substrate or some catabolic intermediates enhanced TCE transformation capacities and degradation rates, presumably due to the regeneration of reducing energy (NADH); however, addition of higher concentrations of most amendments reduced TCE transformation capacities and degradation rates. Reducing energy limitations and amendment toxicity may significantly affect T(c) measurements, causing a masking of the toxicity associated with chlorinated organic degradation. (c) 1995 John Wiley & Sons, Inc.  相似文献   

16.
D R Arnelle  M H O'Leary 《Biochemistry》1992,31(17):4363-4368
Phosphoenolpyruvate carboxykinase [ATP:oxaloacetate carboxy-lyase (transphosphorylating), EC 4.1.1.49] from Chloris gayana Kunth has been purified by a combination of ammonium sulfate fractionation, ion exchange, gel filtration, and affinity chromatography on agarose-hexane-ATP. In the direction of OAA formation, the specific activity of the enzyme was 33 mumol/(min.mg of protein). The carbon isotope effect on carboxylation was measured by successive analysis of remaining CO2 over the course of the reaction. At 22 mM PEP and 1.3 mM MgADP, pH 7.5, the isotope effect is 1.024 +/- 0.001. When the concentration of PEP was reduced to 1 mM, the isotope effect rose to 1.034 +/- 0.004; when the concentration of MgADP was reduced to 60 microM, the value rose to 1.040 +/- 0.006. The variation of the carbon isotope effect on carboxylation with both substrate concentrations indicates that the enzyme operates by a random kinetic mechanism. This in turn requires that the enzyme have a binding site for substrate CO2; this is one of the first enzymes for which such a site has been demonstrated.  相似文献   

17.
The mechanism of carbon isotope fractionation in metabolic paths of autotrophic organisms is considered. The principal features of the mechanism proposed are: 1) the emergence of a one-stage kinetic isotope effect of pyruvate decarboxylation during respiration resulting in the formation of two flows of the carbon substrate with different isotope compositions; 2) the multiplication of the one-stage isotope effect by means of the repeated circulation of a light isotope fraction (C2-fragments) in lipid-carbohydrate metabolism and by the simultaneous removal of a heavy isotope carbon dioxide in the Krebs cycle. On the basis of the above mechanism carbon isotope effects are explained of CO2 assimilation and respiration as well as sequential decrease of 13C content in the series of lipids, carbohydrates and proteins. The cuase of the enrichment of the whole organisms in the light isotope in respect to the carbon dioxide of the environment is discussed.  相似文献   

18.
An anaerobic enrichment culture with glucose as the sole source of carbon and energy plus trichloroethene (TCE) as a potential electron acceptor was inoculated with material from a full size anaerobic charcoal reactor that biologically eliminated dichloromethane from contaminated groundwater (Stromeyer et al. 1991). In subcultures of this enrichment complete sequential transformation of 10 µM TCE viacis-dichloroethene and chloroethene to ethene was reproducibly observed. Maintenance of this activity on subcultivation required the presence of TCE in the medium. The enrichment culture was used to inoculate an anaerobic fixed-bed reactor containing sintered glass Raschig elements as support material. The reactor had a total volume of 1780 ml and was operated at 20 °C in an up-flow mode with a flow rate of 50 ml/h. It was fed continuously with 2 mM glucose and 55 µM TCE. Glucose was converted to acetate as the major product and to a minor amount of methane; TCE was quantitatively dehalogenated to ethene. When, in addition to TCE, tetrachloroethene or 1,2-dichloroethane were added to the system, these compounds were also dehalogenated to ethene. In contrast, 1,1,1-trichloroethane was not dehalogenated, but at 40 µM severely inhibited acetogenesis and methanogenesis. When the concentration of TCE in the feed was raised to 220 µM, chloroethene transiently accumulated, but after an adaptation period ethene was again the only volatile product detected in the effluent. The volumetric degradation rate at this stage amounted to 6.2 µmol/l/h. Since complete transformation of TCE occurred in the first sixth of the reactor volume, the degradation capacity of the system is estimated to exceed this value by factor of about ten.Abbreviations CA chloroethane - 1,1-DCA 1,1-dichloroethane - 1,2-DCA 1,2-dichloroethane - 1,1-DCE 1,1-dichloroethene - c-DCE cis-1,2-dichloroethene - t-DCE trans-1,2-dichloroethene - PCE tetrachloroethene, perchloroethene - 1,1,1-TCA 1,1,1-trichloroethane - TCE trichloroethene - VC chloroethene, vinyl chloride  相似文献   

19.
Thermodynamic calculations were coupled with time-series measurements of chemical species (parent and daughter chlorinated solvents, H(2), sulfite, sulfate and methane) to predict the anaerobic transformation of cis-1,2-dichloroethene (cis-1,2-DCE) and 1,2-dichloroethane (1,2-DCA) in constructed wetland soil microcosms inoculated with a dehalorespiring culture. For cis-1,2-DCE, dechlorination occurred simultaneously with sulfite and sulfate reduction but competitive exclusion of methanogenesis was observed due to the rapid H(2) drawdown by the dehalorespiring bacteria. Rates of cis-1,2-DCE dechlorination decreased proportionally to the free energy yield of the competing electron acceptor and proportionally to the rate of H(2) drawdown, suggesting that H(2) competition between dehalorespirers and other populations was occurring, affecting the dechlorination rate. For 1,2-DCA, dechlorination occurred simultaneously with methanogenesis and sulfate reduction but occurred only after sulfite was completely depleted. Rates of 1,2-DCA dechlorination were unaffected by the presence of competing electron-accepting processes. The absence of a low H(2) threshold suggests that 1,2-DCA dechlorination is a cometabolic transformation, occurring at a higher H(2) threshold, despite the high free energy yields available for dehalorespiration of 1,2-DCA. We demonstrate the utility of kinetic and thermodynamic calculations to understand the complex, H(2)-utilizing reactions occurring in the wetland bed and their effect on rates of dechlorination of priority pollutants.  相似文献   

20.
Organic carbon (C) and nitrogen (N) are essential for heterotrophic soil microorganisms, and their bioavailability strongly influences ecosystem C and N cycling. We show here that the natural 15N abundance of the soil microbial biomass is affected by both the availability of C and N and ecosystem N processing. Microbial 15N enrichment correlated negatively with the C : N ratio of the soil soluble fraction and positively with net N mineralization for ecosystems spanning semiarid, temperate and tropical climates, grassland and forests, and over four million years of ecosystem development. In addition, during soil incubation, large increases in microbial 15N enrichment corresponded to high net N mineralization rates. These results support the idea that the N isotope composition of an organism is determined by the balance between N assimilation and dissimilation. Thus, 15N enrichment of the soil microbial biomass integrates the effects of C and N availability on microbial metabolism and ecosystem processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号