首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 94 毫秒
1.
Triacylglycerol (TAG) stored in adipose tissue can be rapidly mobilized by the hydrolytic action of lipases, with the release of fatty acids (FA) that are used by other tissues during times of energy deprivation. Unlike synthesis of TAG, which occurs not only in adipose tissue but also in other tissues such as liver for very-low-density lipoprotein formation, hydrolysis of TAG, lipolysis, predominantly occurs in adipose tissue. Until recently, hormone-sensitive lipase was considered to be the key rate-limiting enzyme responsible for regulating TAG mobilization. However, recent studies on hormone-sensitive lipase-null mice have challenged such a concept. A novel lipase named desnutrin/ATGL has been recently discovered to play a key role in lipolysis in adipocytes. Lipolysis is under tight hormonal regulation. Although opposing regulation of lipolysis in adipose tissue by insulin and catecholamines is well understood, autocrine/paracrine factors may also participate in its regulation. Intricate cooperation of these endocrine and autocrine/paracrine factors leads to a fine regulation of lipolysis in adipocytes, needed for energy homeostasis. In this review, we summarize and discuss the recent progress made in the regulation of adipocyte lipolysis.  相似文献   

2.
Lipolysis and lipid mobilization in human adipose tissue   总被引:1,自引:0,他引:1  
Triacylglycerol (TAG) stored in adipose tissue (AT) can be rapidly mobilized by the hydrolytic action of the three main lipases of the adipocyte. The non-esterified fatty acids (NEFA) released are used by other tissues during times of energy deprivation. Until recently hormone-sensitive lipase (HSL) was considered to be the key rate-limiting enzyme responsible for regulating TAG mobilization. A novel lipase named adipose triglyceride lipase/desnutrin (ATGL) has been identified as playing an important role in the control of fat cell lipolysis. Additionally perilipin and other proteins of the surface of the lipid droplets protecting or exposing the TAG core of the droplets to lipases are also potent regulators of lipolysis. Considerable progress has been made in understanding the mechanisms of activation of the various lipases. Lipolysis is under tight hormonal regulation. The best understood hormonal effects on AT lipolysis concern the opposing regulation by insulin and catecholamines. Heart-derived natriuretic peptides (i.e., stored in granules in the atrial and ventricle cardiomyocytes and exerting stimulating effects on diuresis and natriuresis) and numerous autocrine/paracrine factors originating from adipocytes and other cells of the stroma-vascular fraction may also participate in the regulation of lipolysis. Endocrine and autocrine/paracrine factors cooperate and lead to a fine regulation of lipolysis in adipocytes. Age, anatomical site, sex, genotype and species differences all play a part in the regulation of lipolysis. The manipulation of lipolysis has therapeutic potential in the metabolic disorders frequently associated with obesity and probably in several inborn errors of metabolism.  相似文献   

3.
4.
Chaves VE  Frasson D  Kawashita NH 《Biochimie》2011,93(10):1631-1640
Adipose tissue is the only tissue capable of hydrolyzing its stores of triacylglycerol (TAG) and of mobilizing fatty acids and glycerol in the bloodstream so that they can be used by other tissues. The full hydrolysis of TAG depends on the activity of three enzymes, adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL) and monoacylglycerol lipase, each of which possesses a distinct regulatory mechanism. Although more is known about HSL than about the other two enzymes, it has recently been shown that HLS and ATGL can be activated simultaneously, such that the mechanism that enables HSL to access the surface of lipid droplets also permits the stimulation of ATGL. The classical pathway of lipolysis activation in adipocytes is cAMP-dependent. The production of cAMP is modulated by G-protein-coupled receptors of the Gs/Gi family and cAMP degradation is regulated by phosphodiesterase. However, other pathways that activate TAG hydrolysis are currently under investigation. Lipolysis can also be started by G-protein-coupled receptors of the Gq family, through molecular mechanisms that involve phospholipase C, calmodulin and protein kinase C. There is also evidence that increased lipolytic activity in adipocytes occurs after stimulation of the mitogen-activated protein kinase pathway or after cGMP accumulation and activation of protein kinase G. Several agents contribute to the control of lipolysis in adipocytes by modulating the activity of HSL and ATGL. In this review, we have summarized the signalling pathways activated by several agents involved in the regulation of TAG hydrolysis in adipocytes.  相似文献   

5.
6.
The phylogenetic position of eleven 14-3-3 proteins from five protozoal species was tested relative to other eukaryotic 14-3-3 versions representing many of the previously described isoforms. The protozoal proteins, four from Entodinium caudatum, three from Entameoba histolytica and four from apicomplexan parasites formed clusters closer to the plant and animal epsilon isoforms than to the animal beta, gamma/eta, sigma/theta, and zeta isoforms. This extends the preliminary findings of Wang and Shakes (1996) but data from a wider range of genera are still required to strengthen our hypothesis that the protozoan isoforms may constitute novel isoforms of the 14-3-3 family.  相似文献   

7.
Triacylglycerol (TAG) lipases are required for mobilization of TAG stored in lipid particles. Recently, Tgl3p was identified as a major TAG lipase of the yeast Saccharomyces cerevisiae (Athenstaedt, K., and Daum, G. (2003) J. Biol. Chem. 278, 23317-23323). Here, we report the identification of Tgl4p and Tgl5p as additional TAG lipases of the yeast. Both polypeptides, encoded by open reading frames YKR089c/TGL4 and YOR081c/TGL5, share 30 and 26% homology, respectively, to Tgl3p. Cell fractionation experiments and microscopic inspection of strains bearing Tgl4p-GFP and Tgl5p-GFP hybrids demonstrated that both proteins are localized to lipid particles similar to Tgl3p. A 1.7-fold increased amount of TAG enriched in myristic and palmitic acids and the reduced mobilization rate of TAG from tgl4Delta in the presence of the fatty acid synthesis inhibitor cerulenin demonstrated the lipolytic function of Tgl4p in vivo. In contrast, neither the total amount of TAG nor the TAG mobilization rate after addition of cerulenin was affected in tgl5Delta cells. However, the enrichment of C26:0 esterified to TAG of tgl5Delta, an additional increase of TAG in the tgl4Deltatgl5Delta double deletion mutant compared with tgl4Delta, and the impairment of TAG mobilization in the tgl4Deltatgl5Delta strain in the presence of cerulenin suggested that also Tgl5p functions as a TAG lipase in vivo. Most importantly, the purified His(6)-tagged Tgl4p and Tgl5p hybrids exhibited TAG lipase activity demonstrating their function in vitro. In summary, our data obtained by biochemical, molecular, and cell biological analyses unambiguously identified Tgl4p and Tgl5p as novel TAG lipases of yeast lipid particles with certain enzymatic specificities.  相似文献   

8.
The complete sequence of the horse pancreatic lipase was elucidated by combining polypeptide chain and cDNA sequencing. Among the structural features of horse lipase, it is worth mentioning that Lys373 is not conserved. This residue, which is present in human, porcine and canine lipases, has been assumed to be involved in p-nitrophenyl acetate hydrolysis by pancreatic lipases. Kinetic investigation of the p-nitrophenyl acetate hydrolysis by the various pancreatic lipases and by the C-terminal domain (336-449) of human lipase reveals that this hydrolysis is the result of the superimposition of independent events; a specific linear hydrolysis occurring at the active site of lipase, a fast acylation depending on the presence of Lys373 and a non-specific hydrolysis most likely occurring in the C-terminal domain of the enzyme. This finding definitely proves that pancreatic lipase bears only one active site and raises the question of a covalent catalysis by pancreatic lipases. Moreover, based on sequence comparison with the above-mentioned pancreatic lipases, three residues located in the C-terminal domain, Lys349, Lys398 and Lys419, are proposed as possible candidates for lipase/colipase binding.  相似文献   

9.
H M Kim  T Shin 《Life sciences》1999,65(8):805-812
Protein kinase C (PKC) is encoded by a complex of a gene family, and its multiple isoforms are expressed in various mammalian tissues. The objective of this study was to investigate the expression and localization of a PKC theta isoform in mouse testis. PKC theta displays the highest homology to PKC delta, lacks the Ca2+-binding C2 domain and, thus, belongs to the subfamily of Ca2+-independent PKC enzymes which also includes the delta, epsilon, zeta and eta isoforms. We analyzed the PKC theta mRNA and protein by Northern blotting, in situ hybridization, and immunohistochemistry. In testes of normal mice, signals of PKC theta isoform expression were detected specifically in the interstitial cells of testes. The expression of PKC theta isoform was also detected in testes of germ cell-deficient W/W(v) mice. These results suggest that PKC theta isoform has the specific biological functions in the interstitial cells of testis.  相似文献   

10.
The triglyceride lipase gene subfamily plays a central role in lipid and lipoprotein metabolism. There are three members of this subfamily: lipoprotein lipase, hepatic lipase, and endothelial lipase. Although these lipases are implicated in the pathophysiology of hyperlipidemia and atherosclerosis, their structures have not been fully solved. In the current study, we established homology models of these three lipases, and carried out analysis of their activity sites. In addition, we investigated the kinetic characteristics for the catalytic residues using a molecular dynamics simulation strategy. To elucidate the molecular interactions and determine potential key residues involved in the binding to lipase inhibitors, we analyzed the binding pockets and binding poses of known inhibitors of the three lipases. We identified the spatial consensus catalytic triad “Ser-Asp-His”, a characteristic motif in all three lipases. Furthermore, we found that the spatial characteristics of the binding pockets of the lipase molecules play a key role in ligand recognition, binding poses, and affinities. To the best of our knowledge, this is the first report that systematically builds homology models of all the triglyceride lipase gene subfamily members. Our data provide novel insights into the molecular structures of lipases and their structure-function relationship, and thus provides groundwork for functional probe design towards lipase-based therapeutic inhibitors for the treatment of hyperlipidemia and atherosclerosis.  相似文献   

11.
The human cruciform binding protein (CBP), a member of the 14-3-3 protein family, has been recently identified as an origin of DNA replication binding protein and involved in DNA replication. Here, pure recombinant 14-3-3zeta tagged with maltose binding protein (r14-3-3zeta-MBP) at its N-terminus was tested for binding to cruciform DNA either in the absence or presence of F(TH), a CBP-enriched fraction, by electromobility shift assay (EMSA), followed by Western blot analysis of the electroeluted CBP-cruciform DNA complex. The r14-3-3zeta-MBP was found to have cruciform binding activity only after preincubation with F(TH). Anti-MBP antibody immunoprecipitation of F(TH) preincubated with r14-3-3zeta-MBP, followed by Western blot analysis with antibodies specific to the beta, gamma, epsilon, zeta, and sigma 14-3-3 isoforms showed that r14-3-3zeta-MBP heterodimerized with the endogenous beta, epsilon, and zeta isoforms present in the F(TH) but not with the gamma or sigma isoforms. Immunoprecipitation of endogenous 14-3-3zeta from nuclear extracts (NE) of HeLa cells that were either serum-starved (s-s) or blocked at the G(1)/S or G(2)/M phases of the cell cycle revealed that at G(1)/S and G(2)/M, the zeta isoform heterodimerized only with the beta and epsilon isoforms, while in s-s extracts, the 14-3-3zeta/epsilon heterodimer was never detected, and the 14-3-3zeta/beta heterodimer was seldom detected. Furthermore, addition of r14-3-3zeta-MBP to HeLa cell extracts used in a mammalian in vitro replication system increased the replication level of p186, a plasmid bearing the minimal 186-bp origin of the monkey origin of DNA replication ors8, by approximately 3.5-fold. The data suggest that specific dimeric combinations of the 14-3-3 isoforms have CBP activity and that upregulation of this activity leads to an increase in DNA replication.  相似文献   

12.
13.
We have previously demonstrated a high level of stratifin, also known as 14-3-3 sigma in differentiated keratinocyte cell lysate and conditioned medium (CM). In this study, we asked the question of whether other 14-3-3 isoforms are expressed in human dermal fibroblasts, keratinocytes, intact dermal and epidermal layers of skin. In order to address this question, total proteins extracted from cultured cells or skin layers were subjected to western blot analysis using seven different primary antibodies specific to well-known mammalian isoforms, beta, gamma, epsilon, eta, sigma, tau, and zeta of 14-3-3 protein family. The autoradiograms corresponding to each isoform were then quantified and compared. The results revealed the presence of very high levels of all seven isoforms in cultured keratinocyte and conditioned medium. With the exception of tau isoform, other 14-3-3 isoforms were also present in intact epidermal layer of normal skin. The profile of 14-3-3 proteins in whole skin was similar to that of epidermis. In contrast, only gamma 14-3-3 isoform, was present in dermal layer obtained from the same skin sample. On the other hand, cultured fibroblasts express a high level of beta, epsilon, gamma and eta and a low level of zeta and tau, but not sigma isoform. However, the levels of 14-3-3 epsilon, gamma and eta were barely detectable in fibroblast conditioned medium. Further, we also used immunohistochemical staining to identify the 14-3-3 isoform expressing cells in human skin sections. The finding revealed different expression profile for each of these isoforms mainly in differentiated keratinocytes located within the layer of lucidum. However, fibroblasts located within the dermal layer did not show any detectable levels of these proteins. In conclusion, all members of 14-3-3 proteins are expressed by cells of epidermal but not dermal layer of skins and that these proteins are mainly expressed by differentiated keratinocytes.  相似文献   

14.
Adipose triglyceride lipase (ATGL) is rate-limiting for the initial step of triacylglycerol (TAG) hydrolysis, generating diacylglycerol (DAG) and fatty acids. DAG exists in three stereochemical isoforms. Here we show that ATGL exhibits a strong preference for the hydrolysis of long-chain fatty acid esters at the sn-2 position of the glycerol backbone. The selectivity of ATGL broadens to the sn-1 position upon stimulation of the enzyme by its co-activator CGI-58. sn-1,3 DAG is the preferred substrate for the consecutive hydrolysis by hormone-sensitive lipase. Interestingly, diacylglycerol-O-acyltransferase 2, present at the endoplasmic reticulum and on lipid droplets, preferentially esterifies sn-1,3 DAG. This suggests that ATGL and diacylglycerol-O-acyltransferase 2 act coordinately in the hydrolysis/re-esterification cycle of TAGs on lipid droplets. Because ATGL preferentially generates sn-1,3 and sn-2,3, it suggests that TAG-derived DAG cannot directly enter phospholipid synthesis or activate protein kinase C without prior isomerization.  相似文献   

15.
Bacterial lipases from family I.1 and I.2 catalyze the hydrolysis of triacylglycerol between 25–45°C and are used extensively as biocatalysts. The lipase from Proteus mirabilis belongs to the Proteus/psychrophilic subfamily of lipase family I.1 and is a promising catalyst for biodiesel production because it can tolerate high amounts of water in the reaction. Here we present the crystal structure of the Proteus mirabilis lipase, a member of the Proteus/psychrophilic subfamily of I.1lipases. The structure of the Proteus mirabilis lipase was solved in the absence and presence of a bound phosphonate inhibitor. Unexpectedly, both the apo and inhibitor bound forms of P. mirabilis lipase were found to be in a closed conformation. The structure reveals a unique oxyanion hole and a wide active site that is solvent accessible even in the closed conformation. A distinct mechanism for Ca2+ coordination may explain how these lipases can fold without specific chaperones.  相似文献   

16.
In the present study, we propose a general and accessible method for the resolution of enantiomeric 1,2-sn- and 2,3-sn-diacylglycerols based on derivatization by isocyanates, which can be easily used routinely by biochemists to evaluate the stereopreferences of lipases in a time course of triacylglycerol (TAG) hydrolysis. Diacylglycerol (DAG) enantiomers were transformed into carbamates using achiral and commercially available reagents. Excellent separation and resolution factors were obtained for diacylglycerols present in lipolysis reaction mixtures. This analytical method was then applied to investigate the stereoselectivity of three model lipases (porcine pancreatic lipase, PPL; lipase from Rhizomucor miehei, MML; and recombinant dog gastric lipase, rDGL) in the time course of hydrolysis of prochiral triolein as a substrate. From the measurements of the diglyceride enantiomeric excess it was confirmed that PPL was not stereospecific (position sn-1 vs sn-3 of triolein), whereas MML and rDGL preferentially hydrolyzed the ester bond at position sn-1 and sn-3, respectively. The enantiomeric excess of DAGs was not constant with time, decreasing with the course of hydrolysis. This was due to the fact that DAGs can be products of the stereospecific hydrolysis of TAGs and substrates for stereospecific hydrolysis into monoacylglycerols.  相似文献   

17.
Lipase PS-30 (pseudomonas cepacia) and Lipase F (Rhizopus oryzae), immobilized within a phyllosilicate sol-gel matrix, catalyzed the esterification of glycerol with short, medium and long-chain fatty acids to produce mono (MAG), di (DAG) and tri (TAG) acylglycerols. The results from the above esterification reactions were compared to reactions using a commercially available immobilized lipase, Lipozyme IM-60. Time course studies showed that free Lipase PS-30 or Lipase F enhanced esterification reactions with the use of silica-supported glycerol. In contrast, immobilized Lipase PS-30-catalyzed reactions occurred at the same conversion rate when using either free or silica-supported glycerol. For immobilized Lipase F and Lipozyme IM-60 reactions, the use of silica-supported glycerol favored the production of DAG and TAG over MAG. All three immobilized lipases could be reused for acylglycerol production.  相似文献   

18.
Storage oil breakdown plays an important role in the life cycle of many plants by providing the carbon skeletons that support seedling growth immediately following germination. This metabolic process is initiated by lipases (EC: 3.1.1.3), which catalyze the hydrolysis of triacylglycerols (TAGs) to release free fatty acids and glycerol. A number of lipases have been purified to near homogeneity from seed tissues and analysed for their in vitro activities. Furthermore, several genes encoding lipases have been cloned and characterised from plants. However, only recently has data been presented to establish the molecular identity of a lipase that has been shown to be required for TAG breakdown in seeds. In this review we briefly outline the processes of TAG synthesis and breakdown. We then discuss some of the biochemical literature on seed lipases and describe the cloning and characterisation of a lipase called SUGAR-DEPENDENT1, which is required for TAG breakdown in Arabidopsis thaliana seeds.  相似文献   

19.
Triacylglycerol (TAG) is a major storage reserve in many plant seeds. We previously identified a TAG lipase mutant called sugar-dependent1 (sdp1) that is impaired in TAG hydrolysis following Arabidopsis (Arabidopsis thaliana) seed germination (Eastmond, 2006). The aim of this study was to identify additional lipases that account for the residual TAG hydrolysis observed in sdp1. Mutants were isolated in three candidate genes (SDP1-LIKE [SDP1L], ADIPOSE TRIGLYCERIDE LIPASE-LIKE, and COMPARATIVE GENE IDENTIFIER-58-LIKE). Analysis of double, triple, and quadruple mutants showed that SDP1L is responsible for virtually all of the residual TAG hydrolysis present in sdp1 seedlings. Oil body membranes purified from sdp1 sdp1L seedlings were deficient in TAG lipase activity but could still hydrolyze di- and monoacylglycerol. SDP1L is expressed less strongly than SDP1 in seedlings. However, SDP1L could partially rescue TAG breakdown in sdp1 seedlings when expressed under the control of the SDP1 or 35S promoters and in vitro assays showed that both SDP1 and SDP1L can hydrolyze TAG, in preference to diacylglycerol or monoacylglycerol. Seed germination was slowed in sdp1 sdp1L and postgerminative seedling growth was severely retarded. The frequency of seedling establishment was also reduced, but sdp1 sdp1L was not seedling lethal under normal laboratory growth conditions. Our data show that together SDP1 and SDP1L account for at least 95% of the rate of TAG hydrolysis in Arabidopsis seeds, and that this hydrolysis is important but not essential for seed germination or seedling establishment.  相似文献   

20.
The T cell receptor (TCR) is a molecular complex formed by at least seven transmembrane proteins: the antigen/major histocompatibility complex recognition unit (Ti alpha-beta heterodimer) and the invariant CD3 chains (gamma, delta, epsilon, zeta, and eta). In addition to targeting partially assembled Ti alpha-beta CD3 gamma delta epsilon TCR complexes to the cell surface, CD3 zeta appears to be essential for interleukin-2 production after TCR stimulation with antigen/major histocompatibility complex. The gamma chain of the high affinity Fc receptor for IgE (Fc epsilon RI gamma) has significant structural homology to CD3 zeta and the related CD3 eta subunit. To identify the functional significance of sequence homologies between CD3 zeta and Fc epsilon RI gamma in T cells, we have transfected a Fc epsilon RI gamma cDNA into a T cell hybridoma lacking CD3 zeta and CD3 eta proteins. Herein we show that a Fc epsilon RI gamma-gamma homodimer associates with TCR components to up-regulate TCR surface expression. A TCR composed of Ti alpha-beta CD3 gamma delta epsilon Fc epsilon RI gamma-gamma is sufficient to restore the coupling of TCR antigen recognition to the interleukin-2 induction pathway, demonstrating the functional significance of structural homology between the above receptor subunits. These results, in conjunction with the recent finding that CD3 zeta, CD3 eta, and Fc epsilon RI gamma are coexpressed in certain T cells as subunits of an unusual TCR isoform, suggest that Fc epsilon RI gamma is likely to play a role in T cell lineage function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号