首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Floral induction in seedlings of Pharbitis nil strain Violet, with one cotyledon removed, was manipulated by applying various ethylene treatments to the remaining cotyledon during a 16 hour inductive dark period. Exposure of cotyledons to ethylene (100 microliters per liter) for 4 hours at different times during the dark period inhibited flowering to some extent, with inhibition being greater towards the end of the dark period. RNA from cotyledons given a 16 hour dark period (induced) or exposed to 100 microliters per liter ethylene throughout the dark period, which completely inhibited flowering, was examined. The poly(A)+RNA was translated in vitro using a wheat germ system, and the resulting translation products were analyzed by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. There were substantial qualitative and quantitative differences between the poly(A)+RNA extracted from induced cotyledons and that from those exposed to ethylene throughout the dark period. Some of these changes are similar to those observed when flowering was inhibited by photoperiodic treatments (M Lay-Yee, RM Sachs, MS Reid 1987 Planta. In press). The significance of these findings to our understanding of the molecular control of flower induction is discussed.  相似文献   

2.
R. Sharma  P. Schopfer 《Planta》1987,171(3):313-320
Phytochrome, activated by continuous red light, increases the amount of total polyadenylated RNA during photomorphogenesis of mustard (Sinapis alba L.) cotyledons. In-vitro translation of total polyadenylated RNA in a reticulocyte translation system has shown that the activity of translatable -amylase mRNA is increased by phytochrome about threefold in the 3-d-old cotyledons, based on equal amounts of polyadenylated RNA, and about eightfold on a per-cotyledon basis. Cordycepin prevents the accumulation of translatable -amylase mRNA. It is concluded that the phytochrome-mediated control of -amylase synthesis is exerted on the level of mRNA synthesis. During seedling development in continuous red light, a phytochrome-dependent increase of -amylase mRNA can be observed at least 6 h before the onset of -amylase synthesis. If, after a period of enzyme synthesis, phytochrome action is interrupted by long-wavelength far-red light followed by darkness, -amylase mRNA as well as -amylase synthesis remain at a high level for 8–10 h and then decline sharply. It is concluded that -amylase mRNA, having an apparent lifetime of the order of 8–10 h, can be formed under the influence of phytochrome during early seedling development but it activates -amylase synthesis only after a lag-phase of about 8 h, when the cotyledons acquire competence to synthesize the enzyme. The consequences of these findings for the signal-transduction chain of phytochrome are discussed.Abbreviations EDTA Na2-ethylenediaminotetraacetic acid - PAGE polyacrylamide gel electrophoresis - poly(A)+RNA polyadenylated mRNA - Pr, Pfr red- and far-red-absorbing forms of phytochrome - SDS sodium dodecyl sulfate - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   

3.
Seedlings of barley were grown either in continuous darkness or under a diurnal 12 h light/12 h dark cycle and the effects on NADPH-protochlorophyllide oxidoreductase were followed at two different levels. Firstly, the relative content of the mRNA encoding the NADPH-protochlorophyllide oxidoreductase was measured by dot-blot hybridization. Secondly, changes in the enzyme polypeptide were monitored either by the method of immunoblotting or by immunogold labelling of ultrathin sections of Lowicryl-embedded leaf tissue. Our results demonstrate that drastic diurnal changes in the level of mRNA sequences and the enzyme protein are unlikely to occur in plants which have been grown under natural light/dark conditions. In the dark, protein and mRNA accumulation occurs at an early developmental stage. These results are difficult to reconcile with the suggestion that the massive accumulation of mRNA and enzyme protein in dark-grown seedlings is primarily the consequence of an artificially extended darkperiod. In addition to the plastid-specific NADPH-protochlorophyllide oxidoreductase a closely related polypeptide has been detected outside the plastid in the surrounding cytoplasm (Dehseh et al. 1986b, Planta 169, 172–183). During the diurnal light/dark treatment of seedlings the concentrations of the two protein populations did not show any variation indicative of an exchange between the two protein populations across the plastid envelope.Abbreviation poly(A)+RNA polyadenylated RNA  相似文献   

4.
Northern blot analysis revealed that a single 4.2 kb phytochrome mRNA species was detectable in cotyledons excised from five-day-old etiolated cucumber seedlings. Intact etiolated five-day-old cucumber seedlings were given a red light or benzyladenine treatment, and cotyledons were harvested at various times following treatment. The abundance of phytochrome mRNA in the cotyledons was quantitated using 32P-labeled RNA probes and slot blot analysis. By 2 h after irradiation the phytochrome mRNA level was reduced to 40% of the initial abundance and reaccumulation began by 3 h after irradiation. Reaccumulation of phytochrome mRNA to the time-zero dark control level was achieved by 10 h after treatment. A decrease in phytochrome mRNA abundance was evident by 2 h after benzyladenine treatment, and a maximal reduction to 45% of the time-zero dark control was attained by 4 h after treatment. No recovery of the phytochrome mRNA level was evident by 8 h after benzyladenine treatment. The abundance of actin mRNA was unaffected by benzyladenine treatment.  相似文献   

5.
Jasmonates Inhibit Flowering in Short-Day Plant Pharbitis nil   总被引:1,自引:0,他引:1  
The role of jasmonates in the photoperiodic flower induction of short-day plant Pharbitis nil was investigated. The plants were grown in a special cycle: 72 h of darkness, 24 h of white light with lowered intensity, 24-h long inductive night, 14 days of continuous light. At 4 h of inductive night the cotyledons of non-induced plants contained about two times the amount of endogenous jasmonates (JA/JA-Me) compared to those induced. A 15-min long pulse of far red light (FR) applied at the end of a 24-h long white light phase inhibited flowering of P. nil. The concentration of jasmonates at 2 and 4 h of inductive night in the cotyledons of the plants treated with FR was similar. Red light (R) could reverse the effect of FR. R light applied after FR light decreased the content of jasmonates by about 50%. Methyl jasmonate (JA-Me) applied to cotyledons, shoot apices and cotyledon petioles of P. nil inhibited the formation of flower buds during the first half of a 24-h long inductive or 14-h long subinductive night. Application of JA-Me to the cotyledons was the most effective. None of the plants treated with JA-Me on the cotyledons in the middle of the inductive night formed terminal flower buds. The aspirin, ibuprofen and phenidone, jasmonates biosynthesis inhibitors partially reversed the effect of FR, stimulating the formation of axillary and terminal flower buds. Thus, the results obtained suggests that phytochrome system control both the photoperiodic flower induction and jasmonates metabolism. Jasmonates inhibit flowering in P. nil.  相似文献   

6.
Arnon Rikin 《Planta》1991,185(3):407-414
The relationship between the degree of chilling resistance and phase shifting caused by low-temperature pulses was examined in two circadian rhythms in cotton (Gossypium hirsutum L. cv. Deltapine 50) seedlings grown under light-dark cycles of 1212 h at 33° C. The seedlings showed a circadian rhythm of chilling resistance and of cotyledon movement. A pulse of 19° C for 12 h during the chilling-sensitive phase (light period) caused a phase delay of 6 h, while a similar temperature pulse during the chilling-resistant phase (dark period) did not cause any phase shift. Exposure to 19° C, 85% RH (relative humidity) for 12 h during the dark period induced chilling resistance in the following otherwise chilling-sensitive light period. In this light period a 12-h 19° C pulse did not cause a phase shift of chilling resistance. Pulses of low temperatures (5–19° C) were more effective in causing phase delays in the rhythm of cotyledon movement when given during the chilling-sensitive phase than when given during the chilling-resistant phase. A 12-h pulse of 5° C, 100% RH during the light period caused a phase delay of cotyledon movement of 12 h. However, when that pulse had been preceded by a chill-acclimating exposure to 19° C, 85% RH for 12 h during the dark period the phase delay was shortened to 6 h. The correlation between higher degree of chilling resistance and the prevention or shortening of the phase delay caused by low temperatures indicates that the mechanism that increases chilling resistance directly or indirectly confers greater ability for prevention of phase shifting by low temperatures in circadian rhythms.Abbreviations CT circadian time - LDC light-dark cycle of 24 h - RH relative humidity  相似文献   

7.
Glyoxysomal citrate synthase (gCS) was purified from crude extracts of watermelon (Citrullus vulgaris Schrad.) cotyledons, yielding a homogenous protein with a subunit MW of 48 kDa. The enzyme was selectively inhibited by 5,5-dithiobis-(2-nitrobenzoic acid), allowing quantification in the presence of the mitochondrial isoenzyme (mCS). Differences were also observed with respect to inhibition by ATP (k i=2.6 mmol · l-1 for gCS, k i=0.33 mmol · l-1 for mCS). The antibodies prepared against gCS did not cross-react with mCS. The immunocytochemical localization of gCS by the indirect protein A-gold procedure was restricted to the glyoxysomal membrane or the peripheral matrix of glyoxysomes. Other compartments, e.g. the endoplasmic reticulum, were not labeled. Xenopus oocytes were used for the translation of watermelon polyadenylated RNA (poly(A)+RNA). A translation product with a MW of 51 kDa was immunoprecipitated by the anti-gCS antibodies. It was absent in controls without poly(A)+RNA or with preimmune serum. A similar translation product was also immunoprecipitated after cell-free synthesis of watermelon poly(A)+RNA in a reticulocyte system, in contrast to the in-vivo labeled gCS (48 kDa). It was concluded that gCS is synthesized as a higher-molecular-weight precursor.Abbreviations DTNB 5,5-dithiobis-(2-nitrobenzoic acid) - gCS glyoxysomal citrate synthase - gMDH glyoxysomal malate dehydrogenase - k i inhibitor constant - mCS mitochondrial citrate synthase - OAA oxaloacetate - poly(A)+RNA polyadenylated RNA - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

8.
The phloem exudate prepared from the cotyledons of Pharbitisseedlings that had been exposed to a single dark period (oflonger than 10 h) induced flowering in cultured apices excisedfrom non-induced seedlings. The flower-inducing activity ofthe exudate increased as the seedlings were exposed to longerperiods of darkness. The highest activity was associated withthe exudate taken from cotyledons exposed to a single 16-h darkperiod. The activity of the exudate taken from cotyledons exposedto an inductive dark period was clearly reduced by interruptionof the dark period. The addition of exudate taken from threecotyledons to 10 ml of medium resulted in the highest flower-inducingactivity. About 50% of cultured apex explants formed floralbuds, even when the concentration of the exudate was reducedto 0.1 cotyledon equivalents per 10 ml of medium. The flower-inducingactivity of the exudate appeared to be heat-stable. (Received December 13, 1991; )  相似文献   

9.
The light requirements for induction of flowering by a long dark period were investigated in dark-grown seedlings of Pharbitis nil Chois, cv. Violet. The cotyledons bcame photoperiodically sensitive to a 24 h dark period by two 1 min red irradiations (6.3 μmol m−2 S−1) separated by a 24 h dark period. The reversibility of the effect of brief red irradiations, and the effectiveness of low energies of red irradiation suggest the involvement of phytochrome in the induction of photoperiodic sensitivity. Partial de-etiolation occurred after these brief periods of red irradiation but the seedlings were not capable of net CO2 uptakeeven 7 h after the start of the main light period that followed the critical dark period. A changing response to the duration of the priod of darkness given between the two short red irradiations showed the the correct phasing of an endogenous photoperiodic rhythm is needed for the attainment of photoperiodic snsitivity.  相似文献   

10.
11.
A. Rikin  E. Chalutz  J. D. Anderson 《Planta》1985,163(2):227-231
Ethylene production by detached cotyledons of cotton (Gossypium hirsutum L.) seedlings grown under cycles of 12 h darkness and 12 h light has been shown to be rhythmic, with a minimum and maximum 4 and 16 h, respectively after the start of the cycle (Rikin, Chalutz and Anderson, 1984, Plant Physiol. 75, 493–495). Treatment with silver ions stimulated the rhythmic ethylene production in both regular and inverted cycles (i.e. dark period changed to light period, and vice versa). The rate of the conversion of [3,4-14C]methionine into ethylene also followed the stimulation of rhythmic ethylene evolution by silver ions in both regular and inverted cycles, while treatment with aminoethoxyvinylglycine (AVG) decreased this stimulation. Conversion of exogenous 1-aminocyclopropane-1-carboxylic acid (ACC) into ethylene was not affected by silver ions, but was dependent upon the immediate light conditions, regardless of the time in the light-dark cycle, light decreasing and darkness increasing this process. It is concluded that silver ions stimulate the normal rhythmic ethylene production, and this stimulation is regulated at a step prior to the conversion of ACC into ethylene. The rhythmicity in other processes (cotyledon movement, phenylalanine ammonia-lyase activity, resistance to the herbicide 3-isopropyl-1H-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide [bentazon]) was not affected by a decrease in the rhythmic changes in ethylene production by AVG or interference in ethylene action by silver ions. Thus, these rhythmic changes were not regulated by the rhythmic changes in ethylene production.Abbreviations ABA abscisic acid - ACC 1-aminocyclopropane-1-carboxylic acid - AVG aminoethyoxyvinylglycine - PAL phenylalanine ammonia-lyase  相似文献   

12.
13.
单个光周期暗期长度短于12h时,牵牛植株营养生长旺盛,开花受到抑制,并且出现了诱导光周期处理(ISD)子叶中没有的二种蛋白质或多肽(pI4.1,MW16.5kD;pI4.2,MW16.5kD)。连续光照处理(ICL)子叶内出现了短日照处理(ISD)子叶内没有的体外翻译蛋白质分子量为17.4kD的Poly(A~ )mRNA。牵牛子叶内的这些变化可能与抑制牵牛花芽分化有一定的关系。  相似文献   

14.
Alpha-ketol linolenic acid [KODA, 9,10-ketol-octadecadienoic acid, that is 9-hydroxy-10-oxo-12(Z),15(Z)-octadecadienoic acid] is a signal compound found in Lemna paucicostata after exposure to stress, such as drought, heat or osmotic stress. KODA reacts with catecholamines to generate products that strongly induce flowering, although KODA itself is inactive [Yokoyama et al. (2000) Plant Cell Physiol. 41: 110; Yamaguchi et al. (2001) Plant Cell Physiol. 42: 1201]. We examined the role of KODA in the flower-induction process of Pharbitis nil (violet). KODA was identified for the first time in seedlings of P. nil grown under a flower-inductive condition (16-h dark exposure), by means of LC-SIM and LC-MS/MS. In addition, the changes in endogenous KODA levels (evaluated after esterification of KODA with 9-anthryldiazomethane) during the flower-inductive phase in short day-induced cotyledons were closely related to flower induction. The KODA concentration sharply increased in seedlings during the last 2 h of a 16-h dark period, while the KODA level showed no significant elevation under continuous light. The increase of KODA level occurred in cotyledonal blades, but not in other parts (petiole, hypocotyls and shoot tip). When the 16-h dark period was interrupted with a 10-min light exposure at the 8th h, flower induction was blocked and KODA level also failed to increase. The degree of elevation of KODA concentration in response to 16-h dark exposure was the highest when the cotyledons had just unfolded, and gradually decreased in seedlings grown under continuous light for longer periods, reaching the basal level at the 3rd day after unfolding. Flower-inducing ability also decreased in a similar manner. These results suggest that KODA may be involved in flower induction in P. nil.  相似文献   

15.
Helga Kasemir  Hans Mohr 《Planta》1981,152(4):369-373
Chlorophyll a (Chl a) accumulation in the cotyledons of Scots pine seedlings (Pinus sylvestris L.) is much higher in the light than in darkness where it ceases 6 days after germination. When these darkgrown seedlings are treated with continuous white light (3,500 lx) a 3 h lag phase appears before Chl a accumulation is resumed. The lag phase can be eliminated by pretreating the seedlings with 7 h of weak red light (0.14 Wm-2) or with 14 red light pulses separated by relatively short dark periods (<100 min). The effect of 15s red light pulses can be fully reversed by 1 min far-red light pulses. This reversibility is lost within 2 min. In addition, the amount of Chl a formed within 27 h of continuous red light is considerably reduced by the simultaneous application of far-red (RG 9) light. It is concluded that phytochrome (Pfr) is required not only for the elimination of the lagphase but also to maintain a high rate of Chl a accumulation in continuous light. Since accumulation of 5-aminolevulinate (ALA) responds in the same manner as Chl a accumulation to a red light pretreatment it is further concluded that ALA formation is the point where phytochrome regulates Chl biosynthesis in continuous light. No correlation has been found between ALA and Chl a formation in darkness. This indicates that in a darkgrown pine seedling ALA formation is not rate limiting for Chl a accumulation.Abbreviations Chl chlorophyll(ide) - PChl protochlorophyll(ide) - ALA 5-aminolevulinate - Pr the red absorbing form of phytochrome - Pfr the far-red absorbing form of phytochrome - Ptot total phytochrome ([Pr]+[Pfr])  相似文献   

16.
The diversity of abundant mRNA sequences in various parts of 4-d etiolated pea seedlings (Pisum sativum L. var. Rondo CB) was compared by a cell-free translation of the mRNAs in the presence of [35S]methionine and by an analysis of the products by two-dimensional electrofocussing/ electrophoresis (2D separation). The various parts of the seedlings were also examined for the pattern of protein synthesis in vivo. Proteins were labeled by injection of [35S]methionine into the cotyledons, followed by 2D separation of the products. Over 95% of the abundant mRNA sequences and newly synthesized abundant polypeptides were shared by all parts of etiolated seedlings, including the cotyledons. However, a few distinct differences were observed when comparing mRNAs of roots and shoots; the most prominent among these were a group of six abundant mRNA sequences found exclusively in shoots. Only about 30% of the polypeptides synthesized on isolated RNA could be traced in equivalent positions on the gels as the polypeptides synthesized in vivo. Analysis of total RNA from light-grown pea seedlings showed the appearance of some twenty-five translation products not found with total RNA from etiolated seedlings, while about nine other translation products disappeared. At least ten of the light-induced RNA sequences were also present after growth in low-intensity red light (>600 nm) and are therefore thought to be controlled by the phytochrome system. Comparison of 11-d light-grown pea plants with 4-d light-grown seedlings did not reveal additional translatable RNA sequences, indicating that the major morphogenetic changes that occur after 4 d are not accompanied by significant changes in the pattern of abundant RNA sequences.  相似文献   

17.
The role of cotyledons in seedling establishment of the euhalophyte Suaeda physophora under non-saline and saline conditions (addition of 1 mM or 400 mM NaCl) was investigated. Survival and fresh and dry weights were greater for seedlings grown in the light (12-h light/12-h dark) than in the dark (24-h dark). The shading of cotyledons tended to decrease shoot height, shoot organic dry weight, number of leaves, and survival of seedlings regardless of NaCl treatment, but the effect of cotyledon shading was greater with 400 mM NaCl. Concentrations of Na+ were higher in cotyledons than in leaves, regardless of NaCl treatment. The K+/Na+ ratio was lower in cotyledons than in leaves for seedlings treated with 1 mM NaCl but not for seedlings treated with 400 mM NaCl. Addition of 400 mM NaCl decreased oxygen production in cotyledons but especially in leaves. These results are consistent with the hypothesis that, by generating oxygen via photosynthesis and by compartmentalizing Na+, cotyledons are crucial for the establishment of S. physophora seedlings in saline environments.  相似文献   

18.
It is known that the level of cGMP is modulated in plant cells in response to a number of stimuli but intracellular events dependent on cGMP metabolism are not clear. Guanylyl cyclases (GCs) are enzymes which are responsible for synthesis of cGMP in eukaryotic and prokaryotic cells. To collect evidence for the participation of cGMP in light signal transduction we isolated enzyme with guanylyl cyclase activity from Pharbitis nil and analysed its level and activity during photoperiodic flower induction. Soluble proteins were isolated from seedlings of a model short-day plant P. nil, partly purified and identified by in vivo and in vitro enzyme assay. In green plants enzyme activity amounted to 484 nmol cGMP/min/mg protein, whereas in etiolated plants it was three times lower (158 nmol cGMP/min/mg protein). Analyse cyclase consists of a single polypeptide of Mr 40 kDa. In order to determine if changes in guanylyl cyclase activity occurred in response to a long, inductive night, we measured enzyme activity in 4-h intervals and observed its increase at 4, 8 and 16 h of darkness. This pattern also fits well with changes in the endogenous cGMP level during a 16 h long flower inductive night. Immunocytochemical analysis confirmed these observations and revealed that changes in the GC level during light/dark conditions appeared. During 16 h long inductive night the strongest signal was observed in cotyledons after 4 and 16 h of the darkness. A high level of fluorescence was generally distributed in mesophyll, however, it was also observed in guard cells. Staining was apparently absent in the veins and cotyledon body. Furthermore, the location inside the cell was analysed. The protein was immunolocalized preferentially in the cytosol, chloroplasts and peroxysomes. Taken together, these data demonstrate in Pharbitis nil the presence of an enzyme which is able to convert GTP to cGMP. Because its level and activity are affected by light we believe that GC/cGMP play a substantial role in light/dark dependent process in plants, such as photoperiodic flower induction.  相似文献   

19.
For dark-grown seedlings of Pharbitis nil capacity to flower in response to a single inductive dark period was established by 24 h white, far-red (FR) or ruby-red (BCJ) light and by a skeleton photoperiod of 10 min red (R)-24 h dark-10 min R. FR alone was ineffective without a brief terminal (R) irradiation, confirming that the form of phytochrome immediately prior to darkness is a crucial factor for flowering in Pharbitis. The magnitude of the flowering response was significantly greater after 24 h FR or white light (WL) (at 18° C and 27° C) than after two brief skeleton R irradiations, but the increased flowering response was not attributable to photosynthetic CO2 uptake because this could not be detected in seedlings exposed to 24 h WL at 18° C. Photophosphorylation could have contributed to the increased flowering response as photosystem I fluorescence was detectable in plants exposed to FR, BCJ, or WL, but there were large differences between flowering response and photosystem I capacity as indicated by fluorescence. We conclude that phytochrome plays a major role in photoresponses regulating flowering. There was no simple correlation between developmental changes, such as cotyledon expansion and chlorophyll formation during the 24-h irradiation period, and the capacity to flower in response to a following inductive dark period. Changes in plastid ultrastructure were considerable in light from fluorescent lamps and there was complete breakdown of the prolamellar body with or without lamellar stacking at 27 or 18° C, respectively, but plastid reorganization was minimal in FR-irradiated seedlings.Abbreviations BCJ irradiation from photographic ruby-red lamps - FR far-red light - Pfr far-red-absorbing from of phytochrome - P total phytochrome content - R red light - WL white light from fluorescent lamps  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号