首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract The periodontal ligament (PDL) that anchors the tooth root to the alveolar bone influences the lifespan of the tooth, and PDL lost through periodontitis is difficult to regenerate. The development of new PDL-regenerative therapies requires the isolation of PDL stem cells. However, their characteristics are unclear due to the absence of somatic PDL stem cell lines and because PDL is composed of heterogeneous cell populations. Recently, we succeeded in immortalizing human PDL fibroblasts that retained the properties of the primary cells. Therefore, we aimed to establish a human PDL-committed stem cell line and investigate the effects of basic fibroblast growth factor (bFGF) on the osteoblastic differentiation of the cells. Here, we report the development of cell line 1–17, a multipotent clonal human PDL cell line that expresses the embryonic stem cell-related pluripotency genes Oct3/4 and Nanog , as well as the PDL-related molecules periostin and scleraxis. Continuous treatment of cell line 1–17 with bFGF in osteoblastic induction medium inhibited its calcification, with down-regulated expression of FGF-Receptor 1 ( FGF-R1 ), whereas later addition of bFGF potentiated its calcification. Furthermore, bFGF induced calcification of cell line 1–17 when it was co-cultured with osteoblastic cells. These results suggest that cell line 1–17 is a PDL-committed stem cell line and that bFGF exerts dualistic (i.e., promoting and inhibitory) effects on the osteoblastic differentiation of cell line 1–17 based on its differentiation stage.  相似文献   

2.
3.
胚胎大鼠脑和脊髓神经干细胞的分离和培养   总被引:11,自引:2,他引:11  
Fu SL  Ma ZW  Yin L  Lu PH  Xu XM 《生理学报》2003,55(3):278-283
研究采用显微解剖、无血清细胞培养和免疫荧光细胞化学染色等实验技术 ,成功地建立了胚胎大鼠脑和脊髓神经干细胞 (NSCs)的分离和培养方法。结果显示 ,( 1)在含成纤维细胞生长因子 2 (FGF 2 )和表皮生长因子(EGF)的无血清培养液中 ,两种来源的NSCs经体外培养 8- 10代后 ,其细胞数呈指数级增加 ,其中脑来源的NSCs数由原代培养时的 1× 10 6 增加至 1× 10 12 ,脊髓来源的NSCs数从 1× 10 6 增加至 1× 10 11。增殖的细胞表达神经上皮干细胞蛋白 (nestin) ;( 2 )在含 1%胎牛血清 (FBS)的培养条件下 ,它们都能被诱导分化为神经元、少突胶质细胞和星型胶质细胞。但其分化比例可随细胞传代次数的增加而改变 ,其中 ,大脑来源的NSCs分化为神经元的比例从第二代 (P2 )的 11 95± 2 5 %下降至第五代 (P5)的 1 97± 1 16% (P <0 0 1) ,而少突胶质细胞的分化比例则基本保持不变 ,这一分化格局同样可在脊髓来源的NSCs中发现。结果表明 ,我们所分离和培养的细胞在体外经多次传代后仍具有很强的增殖能力和多向分化潜能 ,它们都表达nestin ,属于中枢神经系统的干细胞  相似文献   

4.
5.
Marrow stromal cells (MSCs) have the ability to provide growth factors and differentiate into neural-like cells on treating with EGF, bFGF and other factors. We wanted to explore whether growth factors secreted by MSCs itself could induce self-differentiation into neural-like cells. Here, we show that even in the absence of inducing factors, rMSCs spontaneously differentiate into neural-like cells expressing neural markers, such as nestin, beta-tubulin III, Doublecortin (DCX), microtubule-associated protein 2 (MAP2) and neuron-specific enolase (NSE). Furthermore, some cells become neurosphere-like growing in suspension. Compared with control and neural-like rMSCs induced by epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF), we found using real-time PCR that self-differentiating rMSCs (SDrMSCs) expressed significantly higher levels of neurotrophic high-affinity receptors (TrkA and TrkB). Coincident with neural marker expression, nerve growth factor (NGF) mRNA was significantly higher than controls despite lower protein levels in the supernatant. Our study suggests that rMSCs have the potential to differentiate into neural cells spontaneously in culture and may contribute towards the natural function of MSCs for neural system in vivo.  相似文献   

6.
Liu M  Dai J  Lin Y  Yang L  Dong H  Li Y  Ding Y  Duan Y 《Gene》2012,491(2):187-193
Periodontal ligament cells can potentially differentiate into osteoblast-like cells and influence the remodeling of periodontal tissues under mechanical strain conditions. In the present study, Gene chip technology was adopted to investigate the effect of the cyclic stretch on the expression of osteogenic-related genes in human periodontal ligament cells (HPDLCs). Cultured HPDLCs were subjected to 12% elongation cyclic stretch for 24 h using a Flexercell Strain Unit, and then GEArray Q series human osteogenesis gene expression profile chip with 96 spot array numbers was used to conduct parallel analyses on the change of the related gene expression in the osteogenic differentiation of HPDLCs stimulated by cyclic stretch. The results show that after the HPDLCs were stimulated by the cyclic stretch, the expression of 21 osteogenic-related genes was significantly upregulated, including 10 growth factor genes and their associated molecules, 10 extracellular matrix genes and their associated proteins, and 1 cell adhesion molecule. Two genes were significantly downregulated, including one growth factor gene and one cell adhesion molecule. Then the expressions of 10 candidate genes were validated using Real-time RT-PCR. These results indicate that cyclic stretch with 12% deformation can stimulate or inhibit some gene expression which was associated with the process of HPDLCs differentiation.  相似文献   

7.
The periodontal ligament (PDL) is a specialized, mechanically responsive tissue that adapts via cellular responses to equilibrate the effects of mechanical stress on teeth. However, the mechanism of remodelling by which individual cells in periodontal tissue detect and respond to mechanical stress is not well understood. To identify the cellular mechanisms induced by mechanical stress in the periodontal ligament, we examined the effects of cyclic stretching on periodontal ligament fibroblast-like cells (PDL cells). Furthermore, we investigated the effects of 1alpha,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), and interaction with peripheral blood mononuclear cells (PBMCs) on mechanically-simulated PDL cells. PDL cells were cultured on type I collagen-coated silicon membranes with 10% FBS alpha-MEM, and then subjected to cyclic mechanical stimulation (1 s stretching/1 s relaxation, 15% maximum elongation). Alkaline phosphatase activity was monitored by cytochemical and spectrophotometric methods. Morphologically, the cells assumed a spindle shape, and the cytoskeletal components, including microtubules and F-actin filaments, were aligned perpendicular to the strain force vector. Cyclic stretching decreased ALPase activity in PDL cells. The anabolic systemic hormone 1,25(OH)(2)D(3) increased ALPase activity, but this effect was suppressed by cyclic stretching. ALPase activities were reduced by co-culture with PBMCs, including lymphocytes and monocytes. This PBMC-induced ALPase reduction was synergistically reduced by cyclic stretching. ALPase activity was decreased by co-culture with PBMCs, and ALPase activity was reduced synergistically by treatment with PBMCs and cyclic stretching. We conclude that PDL cells changed their shape and alignment in response to cyclic stretching. Furthermore, local factors, such as mechanical stress and PBMCs, showed synergistic suppressive effects on ALPase activity.  相似文献   

8.
The presence of cancer stem cells, in both hematopoietic and solid malignancies, has been recently linked to their pathogenesis. We aimed to identify the characteristics and stem-like properties of sphere-colony forming cells in rat osteosarcoma and malignant fibrous histiocytoma cell lines. The results showed that both cell lines possessed an ability to form spherical, clonally expanding colonies in anchorage-independent, serum-starved conditions in N2/1% methylcellulose medium. The sphere cells showed stem-like properties with the ability to self-renew, and expressed the stem cell-related STAT3 and Bmi1 genes. Interestingly, spheres from both sarcomas remarkably decreased the expression of INK4a/ARF locus genes, p16(INK4a) and p19(ARF), which could be related to the resistance against cell senescence and apoptosis. Spheres showed strong tumorigenicity with metastatic potential in vivo via the inoculation into syngeneic rats, suggesting the presence of these populations might contribute to the tumor development such as metastasis via the resistance to apoptotic stimuli.  相似文献   

9.

Background

Cellular plasticity and complex functional requirements of the periodontal ligament (PDL) assume a local stem cell (SC) niche to maintain tissue homeostasis and repair. Here, pathological alterations caused by inflammatory insults might impact the regenerative capacities of these cells. As bone homeostasis is fundamentally controlled by Wnt-mediated signals, it was the aim of this study to characterize the SC-like capacities of cells derived from PDL and to investigate their involvement in bone pathophysiology especially regarding the canonical Wnt pathway.

Methods

PDLSCs were investigated for their SC characteristics via analysis of cell surface marker expression, colony forming unit efficiency, proliferation, osteogenic differentiation and adipogenic differentiation, and compared to bone marrow derived mesenchymal SCs (BMMSCs). To determine the impact of both inflammation and the canonical Wnt pathway on osteogenic differentiation, cells were challenged with TNF-α, maintained with or without Wnt3a or DKK-1 under osteogenic induction conditions and investigated for p-IκBα, p-NF-κB, p-Akt, β-catenin, p-GSK-3β, ALP and Runx2.

Results

PDLSCs exhibit weaker adipogenic and osteogenic differentiation capacities compared to BMMSCs. TNF-α inhibited osteogenic differentiation of PDLSCs more than BMMSCs mainly through regulating canonical Wnt pathway. Blocking the canonical Wnt pathway by DKK-1 reconstituted osteogenic differentiation of PDLSCs under inflammatory conditions, whereas activation by Wnt3a increased osteogenic differentiation of BMMSCs.

Conclusions

Our results suggest a diverse regulation of the inhibitory effect of TNF-α in BMMSCs and PDLSCs via canonical Wnt pathway modulation.

General significance

These findings provide novel insights on PDLSC SC-like capacities and their involvement in bone pathophysiology under the impact of the canonical Wnt pathway.  相似文献   

10.
Cell therapy has enormous potential to restore neurological function after stroke. The present study investigated effects of conditionally immortalised neural stem cells (ciNSCs), the Maudsley hippocampal murine neural stem cell line clone 36 (MHP36), on sensorimotor and histological outcome in mice subjected to transient middle cerebral artery occlusion (MCAO).Adult male C57BL/6 mice underwent MCAO by intraluminal thread or sham surgery and MHP36 cells or vehicle were implanted into ipsilateral cortex and caudate 2 days later. Functional recovery was assessed for 28 days using cylinder and ladder rung tests and tissue analysed for plasticity, differentiation and infarct size.MHP36-implanted animals showed accelerated and augmented functional recovery and an increase in neurons (MAP-2), synaptic plasticity (synaptophysin) and axonal projections (GAP-43) but no difference in astrocytes (GFAP), oligodendrocytes (CNPase), microglia (IBA-1) or lesion volumes when compared to vehicle group.This is the first study showing a potential functional benefit of the ciNSCs, MHP36, after focal MCAO in mice, which is probably mediated by promoting neuronal differentiation, synaptic plasticity and axonal projections and opens up opportunities for future exploitation of genetically altered mice for dissection of mechanisms of stem cell based therapy.  相似文献   

11.
12.
In a previous study, we found that at low concentrations, safrole oxide (SFO) could induce vascular endothelial cell (VEC) transdifferentiation into neuron-like cells; however, whether SFO could induce bone-marrow mesenchymal stem cell (BMSC) neural differentiation was unknown. Here, we found that SFO could effectively induce BMSC neural differentiation in the presence of serum and fibroblast growth factor 2 and did not affect cell viability at low concentrations. The levels of neuron-specific enolase and neurofilament-L were increased greatly, but that of glial fibrillary acidic protein was absent with SFO treatment for 48 h. Furthermore, SFO could increase the level of heat shock protein 70 (Hsp70), an important factor in neuronal differentiation. Knockdown of Hsp70 by its small interfering RNA blocked SFO-induced BMSC differentiation. Thus, SFO is a novel inducer of BMSC differentiation to neuron-like cells and Hsp70 is implicated in the differentiation process. We provide a new tool for obtaining neuron-like cells from BMSCs and for further investigating the new effect of Hsp70 on BMSC neuronal differentiation.  相似文献   

13.
14.
We show here that autocrine ligand activation of epidermal growth factor (EGF) receptor in combination with interstitial flow is critically involved in the morphogenetic response of endothelial cells to VEGF stimulation. Human umbilical vein endothelial cell (HUVEC) monolayers cultured on a collagen gel and exposed to low interstitial flow in the absence of EGF and VEGF remained viable and mitotic but exhibited little evidence of vascular morphogenesis. Addition of VEGF produced a flow-dependent morphogenetic response within 48 to 72 h, characterized by branched capillary-like structures. The response was substantially abolished by inhibitors related to the autocrine EGF receptor pathway including Galardin, AG1478, PD98059, and an EGF receptor-blocking antibody, indicating that regulation of the morphogenetic process operates via autocrine EGF receptor activation. Moreover, we observed that in our system the EGF receptor was always activated independently of the interstitial flow, and, in addition, the EGF receptor inhibitors used above reduced the phosphorylation state of the receptor, correlating with inhibition of capillary morphogenesis. Finally, 5'bromo-2'-deoxyuridine (BrdU) labeling identified dividing cells at the monolayer but not in the extending capillary-like structures. EGF pathway inhibitors Galardin and AG1478 did not reduce BrdU incorporation in the monolayer, indicating that the EGF-receptor-mediated morphogenetic behavior is mainly due to cell migration rather than proliferation. Based on these results, we propose a two-step model for in vitro capillary morphogenesis in response to VEGF stimulation with interstitial fluid flow: monolayer maintenance by mitotic activity independent of EGF receptors and a migratory response mediated by autocrine EGF receptor activation wherein cells establish capillary-like structures.  相似文献   

15.
16.
Although the differentiation of melanoblasts to melanocytes is known to depend on many distinct factors, it is still poorly understood which factors lead to the induction of melanoblasts. To determine which factors might induce melanoblasts, we examined a set of candidate factors for their ability to induce expression of MITF, a master regulator of melanoblast development, in an ES cell-based melanocyte differentiation system. It appears that BMP4 is capable of inducing MITF expression in stem cells. In contrast, a number of other factors normally implicated in the development of the melanocyte lineage, including WNT1, WNT3a, SCF, EDN3, IGF1, PDGF, and RA, cannot induce MITF expression. Nevertheless, BMP4 alone does not allow MITF-expressing precursors to become differentiated melanocytes, but the addition of EDN3 further promotes differentiation of the precursors into mature melanocytes. Our results support a model in which BMP4 induces MITF expression in pluripotent stem cells and EDN3 subsequently promotes differentiation of these MITF expressing cells along the melanocyte lineage.  相似文献   

17.
A major problem in the treatment of type 1 diabetes mellitus is the limited availability of alternative sources of insulin-producing cells for islet transplantation. In this study, we investigated the effect of bone morphogenetic protein 4 (BMP-4) treatments of gnotobiotic porcine skin-derived stem cells (gSDSCs) on their reprogramming and subsequent differentiation into insulin-producing cells (IPCs). We isolated SDSCs from the ear skin of a gnotobiotic pig. During the proliferation period, the cells expressed stem-cell markers Oct-4, Sox-2, and CD90; nestin expression also increased significantly. The cells could differentiate into IPCs after treatments with activin-A, glucagon-like peptide-1 (GLP-1), and nicotinamide. After 15 days in the differentiation medium, controlled gSDSCs began expressing endocrine progenitor genes and proteins (Ngn3, Neuro-D, PDX-1, NKX2.2, NKX6.1, and insulin). The IPCs showed increased insulin synthesis after glucose stimulation. The results indicate that stem cells derived from the skin of gnotobiotic pigs can differentiate into IPCs under the appropriate conditions in vitro. Our three-stage induction protocol could be applied without genetic modification to source IPCs from stem cells in the skin of patients with diabetes for autologous transplantation.  相似文献   

18.
19.
Genetic studies show that TGFbeta signaling is essential for vascular development, although the mechanism through which this pathway operates is incompletely understood. Here we demonstrate that the TGFbeta auxiliary coreceptor endoglin (eng, CD105) is expressed in a subset of neural crest stem cells (NCSCs) in vivo and is required for their myogenic differentiation. Overexpression of endoglin in the neural crest caused pericardial hemorrhaging, correlating with altered vascular smooth muscle cell investment in the walls of major vessels and upregulation of smooth muscle alpha-actin protein levels. Clonogenic differentiation assay of NCSCs derived from neural tube explants demonstrated that only NCSC expressing high levels of endoglin (NCSC(CD105+)) had myogenic differentiation potential. Furthermore, myogenic potential was deficient in NCSCs obtained from endoglin null embryos. Expression of endoglin in NCSCs declined with age, coinciding with a reduction in both smooth muscle differentiation potential and TGFbeta1 responsiveness. These findings demonstrate a cell autonomous role for endoglin in smooth muscle cell specification contributing to vascular integrity.  相似文献   

20.
Understanding astrocytogenesis is valuable for the treatment of nervous system disorders, as astrocytes provide structural, metabolic and defense support to neurons, and regulate neurons actively. However, there is limited information about the molecular events associated with the differentiation from primate ES cells to astrocytes. We therefore investigated the differentially expressed proteins in early astrocytogenesis, from cynomolgus monkey ES cells (CMK6 cell line) into astrocyte progenitor (AstP) cells via the formation of primitive neural stem spheres (Day 4), mature neural stem spheres (NSS), and neural stem (NS) cells in vitro, using two-dimensional gel electrophoresis (2-DE) and liquid chromatography-tandem mass spectrometry (LC-MS-MS). We identified 66 differentially expressed proteins involved in these five differentiation stages. Together with the results of Western blotting, RT-PCR, and a search of metabolic pathways related to the identified proteins, these results indicated that collapsin response mediator protein 2 (CRMP2), its phosphorylated forms, and cellular retinoic acid binding protein 1 (CRABP1) were upregulated from ES cells to Day 4 and NSS cells, to which differentiation stages apoptosis-associated proteins such as caspases were possibly related; Phosphorylated CRMP2s were further upregulated but CRABP1 was downregulated from NSS cells to NS cells, during which differentiation stage considerable axon guidance proteins for development of growth cones, axon attraction, and repulsion were possibly readied; Nonphosphorylated CRMP2 was downregulated but CRABP1 was re-upregulated from NS cells to AstP cells, in which differentiation stage reorganization of actin cytoskeleton linked to focal adhesion was possibly accompanied. These results provide insight into the molecular basis of early astrocytogenesis in monkey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号