首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TCR signal transduction in antigen-specific memory CD8 T cells   总被引:4,自引:0,他引:4  
Memory T cells are more responsive to Ag than naive cells. To determine whether memory T cells also have more efficient TCR signaling, we compared naive, effector, and memory CD8 T cells of the same antigenic specificity. Surprisingly, initial CD3 signaling events are indistinguishable. However, memory T cells have more extensive lipid rafts with higher phosphoprotein content before TCR engagement. Upon activation in vivo, they more efficiently induce phosphorylation of-LAT (linker for activation of T cells), ERK (extracellular signal-regulated kinase), JNK (c-Jun N-terminal kinase), and p38. Thus, memory CD8 T cells do not increase their TCR sensitivity, but are better poised to augment downstream signals. We propose that this regulatory mechanism might increase signal transduction in memory T cells, while limiting TCR cross-reactivity and autoimmunity.  相似文献   

2.
We present in this study novel findings on TCR-mediated signaling in naive, effector, and memory CD4 T cells that identify critical biochemical markers to distinguish these subsets. We demonstrate that relative to naive CD4 T cells, memory CD4 T cells exhibit a profound decrease in expression of the linker/adapter molecule SLP-76, while effector T cells express normal to elevated levels of SLP-76. The reduced level of SLP-76 is memory CD4 T cells is coincident with reduced phosphorylation overall, yet the residual SLP-76 couples to a subset of TCR-associated linker molecules, leading to downstream mitogen-activated protein (MAP) kinase activation. By contrast, effector CD4 T cells strongly phosphorylate SLP-76, linker for activation of T cells, and additional Grb2-coupled proteins, exhibit increased associations of SLP-76 to phosphorylated linkers, and hyperphosphorylate downstream Erk1/2 MAP kinases. Our results suggest distinct coupling of signaling intermediates to the TCR in naive, effector, and memory CD4 T cells. Whereas effector CD4 T cells amplify existing TCR signaling events accounting for rapid effector responses, memory T cells engage fewer signaling intermediates to efficiently link TCR triggering directly to downstream MAP kinase activation.  相似文献   

3.
Reactive oxygen intermediates (ROI) generated in response to receptor stimulation play an important role in mediating cellular responses. We have examined the importance of reversible cysteine sulfenic acid formation in naive CD8(+) T cell activation and proliferation. We observed that, within minutes of T cell activation, naive CD8(+) T cells increased ROI levels in a manner dependent upon Ag concentration. Increased ROI resulted in elevated levels of cysteine sulfenic acid in the total proteome. Analysis of specific proteins revealed that the protein tyrosine phosphatases SHP-1 and SHP-2, as well as actin, underwent increased sulfenic acid modification following stimulation. To examine the contribution of reversible cysteine sulfenic acid formation to T cell activation, increasing concentrations of 5,5-dimethyl-1,3-cyclohexanedione (dimedone), which covalently binds to cysteine sulfenic acid, were added to cultures. Subsequent experiments demonstrated that the reversible formation of cysteine sulfenic acid was critical for ERK1/2 phosphorylation, calcium flux, cell growth, and proliferation of naive CD8(+) and CD4(+) T cells. We also found that TNF-alpha production by effector and memory CD8(+) T cells was more sensitive to the inhibition of reversible cysteine sulfenic acid formation than IFN-gamma. Together, these results demonstrate that reversible cysteine sulfenic acid formation is an important regulatory mechanism by which CD8(+) T cells are able to modulate signaling, proliferation, and function.  相似文献   

4.
An examination of thymocytes and peripheral T cells from SHP-1-deficient motheaten mice possessing a transgenic MHC class I-restricted TCR has implicated SHP-1 in regulating TCR signaling thresholds at three checkpoints in T cell development and activation. First, in the population of CD4-CD8- double negative thymocytes, SHP-1 appears capable of regulating signals from TCR complexes that control the maturation and proliferation of double negative thymocytes. Second, the loss of SHP-1 increased the number of CD4+CD8+ double positive thymocytes capable of maturing as TCRhigh single positive thymocytes. Third, the loss of SHP-1 altered the basal level of activation of naive lymph node T cells. Accordingly, SHP-1-deficient lymph node T cells bearing the transgenic TCR demonstrated a hyperresponsiveness to stimulation with cognate peptide. However, the loss of SHP-1 did not alter the cytolytic ability of mature effector cytotoxic T lymphocytes. Together these results suggest that SHP-1 contributes to establishing thresholds for TCR signaling in thymocytes and naive peripheral T cells.  相似文献   

5.
To study the mechanism by which protein tyrosine phosphatases (PTPs) regulate CD3-induced tyrosine phosphorylation, we investigated the distribution of PTPs in subdomains of plasma membrane. We report here that the bulk PTP activity associated with T cell membrane is present outside the lipid rafts, as determined by sucrose density gradient sedimentation. In Jurkat T cells, approximately 5--10% of Src homology 2 domain-containing tyrosine phosphatase (SHP-1) is constitutively associated with plasma membrane, and nearly 50% of SHP-2 is translocated to plasma membrane after vanadate treatment. Similar to transmembrane PTP, CD45, the membrane-associated populations of SHP-1 and SHP-2 are essentially excluded from lipid rafts, where other signaling molecules such as Lck, linker for activation of T cells, and CD3 zeta are enriched. We further demonstrated that CD3-induced tyrosine phosphorylation of these substrates is largely restricted to lipid rafts, unless PTPs are inhibited. It suggests that a restricted partition of PTPs among membrane subdomains may regulate protein tyrosine phosphorylation in T cell membrane. To test this hypothesis, we targeted SHP-1 into lipid rafts by using the N-terminal region of Lck (residues 1--14). The results indicate that the expression of Lck/SHP-1 chimera inside lipid rafts profoundly inhibits CD3-induced tyrosine phosphorylation of CD3 zeta/epsilon, IL-2 generation, and nuclear mobilization of NF-AT. Collectively, these results suggest that the exclusion of PTPs from lipid rafts may be a mechanism that potentiates TCR/CD3 activation.  相似文献   

6.
The molecular mechanisms mediating the inhibitory effects of a humanized CD4 mAb YHB.46 on primary human CD4(+) T cells were investigated. Preincubation of T cells with soluble YHB.46 caused a general inhibition of TCR-stimulated protein tyrosine phosphorylation events, including a reduction in phosphorylation of p95(vav), linker for activation of T cells, and Src homology 2 domain-containing leukocyte protein of 76-kDa signaling molecules. A marked reduction in activation of the Ras/mitogen-activated protein kinase pathway was also observed. Examination of the earliest initiation events of TCR signal transduction showed that YHB.46 inhibited TCR-zeta chain phosphorylation together with recruitment and tyrosine phosphorylation of the zeta-associated protein of 70-kDa tyrosine kinase, particularly at Tyr(319), as well as reduced recruitment of p56(lck) to the TCR-zeta and zeta-associated protein of 70-kDa complex. These inhibitory events were associated with inhibition of TCR endocytosis. Our results show that the YHB.46 mAb is a powerful inhibitor of the early initiating events of TCR signal transduction.  相似文献   

7.
8.
Despite the defined function of the β-catenin pathway in thymocytes, its functional role in peripheral T cells is poorly understood. We report that in a mouse model, β-catenin protein is constitutively degraded in peripheral T cells. Introduction of stabilized β-catenin into primary T cells inhibited proliferation and cytokine secretion after TCR stimulation and blunted effector cell differentiation. Functional and biochemical studies revealed that β-catenin selectively inhibited linker for activation of T cells phosphorylation on tyrosine 136, which was associated with defective phospholipase C-γ1 phosphorylation and calcium signaling but normal ERK activation. Our findings indicate that β-catenin negatively regulates T cell activation by a previously undescribed mechanism and suggest that conditions under which β-catenin might be inducibly stabilized in vivo would be inhibitory for T cell-based immunity.  相似文献   

9.
The Src family kinase Lck is essential for T cell Ag receptor-mediated signaling. In this study, we report the effects of acute elimination of Lck in Jurkat TAg and primary T cells using RNA interference mediated by short-interfering RNAs. In cells with Lck knockdown (kd), proximal TCR signaling was strongly suppressed as indicated by reduced zeta-chain phosphorylation and intracellular calcium mobilization. However, we observed sustained and elevated phosphorylation of ERK1/2 in Lck kd cells 30 min to 2 h after stimulation. Downstream effects on immune function as determined by activation of a NFAT-AP-1 reporter, and TCR/CD28-stimulated IL-2 secretion were strongly augmented in Jurkat and primary T cells, respectively. As expected, overexpression of SHP-1 in Jurkat cells inhibited TCR-induced NFAT-AP-1 activation, but this effect could be overcome by simultaneous kd of Lck. Furthermore, acute elimination of Lck also suppressed TCR-mediated activation of SHP-1, suggesting the possible role of SHP-1 in a negative feedback loop originating from Lck. This report underscores Lck as an important mediator of proximal TCR signaling, but also indicates a suppressive role on downstream immune function.  相似文献   

10.
To maintain various T cell responses and immune equilibrium, activation signals triggered by T cell antigen receptor (TCR) must be regulated by inhibitory signals. Gab2, an adaptor protein of the insulin receptor substrate-1 family, has been shown to be involved in the downstream signaling from cytokine receptors. We investigated the functional role of Gab2 in TCR-mediated signal transduction. Gab2 was phosphorylated by ZAP-70 and co-precipitated with phosphoproteins, such as ZAP-70, LAT, and CD3zeta, upon TCR stimulation. Overexpression of Gab2 in Jurkat cells or antigen-specific T cell hybridomas resulted in the inhibition of NF-AT activation, interleukin-2 production, and tyrosine phosphorylation. The structure-function relationship of Gab2 was analyzed by mutants of Gab2. The Gab2 mutants lacking SHP-2-binding sites mostly abrogated the inhibitory activity of Gab2, but its inhibitory function was restored by fusing to active SHP-2 as a chimeric protein. A mutant with defective phosphatidylinositol 3-kinase binding capacity also impaired the inhibitory activity, and the pleckstrin homology domain-deletion mutant revealed a crucial function of the pleckstrin homology domain for localization to the plasma membrane. These results suggest that Gab2 is a substrate of ZAP-70 and functions as a switch molecule toward inhibition of TCR signal transduction by mediating the recruitment of inhibitory molecules to the TCR signaling complex.  相似文献   

11.
Restimulation of Ag receptors on peripheral T lymphocytes induces tyrosine phosphorylation-based signaling cascades that evoke Fas ligand expression and induction of Fas-mediated programmed cell death. In view of the role for the Src homology domain 2-bearing protein tyrosine phosphatase-1 (SHP-1) in modulating TCR signaling, we investigated the influence of SHP-1 on TCR-mediated apoptosis by assaying the sensitivity of peripheral T cells from SHP-1-deficient viable motheaten (mev) mice to cell death following TCR restimulation. The results of these studies revealed mev peripheral T cells to be markedly more sensitive than wild-type cells to induction of cell death following TCR stimulation. By contrast, PMA/ionophore and anti-Fas Ab-induced apoptotic responses were no different in mev compared with wild-type activated cells. Enhanced apoptosis of TCR-restimulated mev lymphocytes was associated with marked increases in Fas ligand expression as compared with wild-type cells, but was almost abrogated in both mev and wild-type cells by Fas-Fc treatment. Thus, the increased sensitivity of mev T cells to apoptosis following TCR restimulation appears to reflect a TCR-driven phenomenon mediated through up-regulation of Fas-Fas ligand interaction and induction of the Fas signaling cascade. These findings, together with the hyperproliferative responses of mev peripheral T cells to initial TCR stimulation, indicate that SHP-1 modulation of TCR signaling translates to the inhibition of both T cell proliferation and activation and, as such, is likely to play a pivotal role in regulating the expansion of Ag-stimulated T cells during an immune response.  相似文献   

12.
One of the potential mechanisms of peripheral tolerance is the unresponsiveness of T cells to secondary antigenic stimulation as a result of the induction of anergy. It has been widely reported that antigenic unresponsiveness may be due to uncoupling of MAPK signal transduction pathways. However, such signaling defects in anergic T cell populations have been mainly identified using immortalized T cell lines or T cell clones, which do not truly represent primary Ag-specific T cells. We have therefore attempted to quantify signaling events in murine primary Ag-specific T cells on an individual cell basis, using laser-scanning cytometry. We show that there are marked differences in the amplitude and cellular localization of phosphorylated ERK p42/p44 (ERK1/2) signals when naive, primed and anergic T cells are challenged with peptide-pulsed dendritic cells. Primed T cells display more rapid kinetics of phosphorylation and activation of ERK than naive T cells, whereas anergic T cells display a reduced ability to activate ERK1/2 upon challenge. In addition, the low levels of pERK found in anergic T cells are distributed diffusely throughout the cell, whereas in primed T cells, pERK appears to be targeted to the same regions of the cell as the TCR. These data suggest that the different consequences of Ag recognition by T cells are associated with distinctive kinetics, amplitude, and localization of MAPK signaling.  相似文献   

13.
Recognition of class I MHC molecules on target cells by killer cell inhibitory receptors (KIRs) blocks natural cytotoxicity and antibody-dependent cell cytotoxicity of NK cells and CD3/TCR dependent cytotoxicity of T cells. The inhibitory effect of KIR ligation requires phosphorylation of the cytoplasmic tail of KIR and subsequent recruitment of an SH2-containing protein tyrosine phosphatase, SHP-1. To better understand the molecular mechanism of the KIR-mediated inhibitory signal transduction, we developed an in vitro assay system using a purified His-tag fusion protein of KIR cytoplasmic tail (His-CytKIR) and Jurkat T cell lysates. We identified a target molecule of SHP-1 by comparing the phosphorylation of major cellular substrates following in vitro phosphorylation of Jurkat cell lysates in the presence and absence of the His-CytKIR in this cell-free model system. The His-CytKIR was tyrosine phosphorylated by Lck in vitro, and the phosphorylated His-CytKIR recruited SHP-1. Interestingly, we observed that among major substrates phosphorylated in vitro, PLC-gamma exhibited a dramatic decrease in phosphorylation when the His-CytKIR was mixed with Jurkat T cell lysates. However, PLC-gamma exhibited no decrease in phosphorylation when SHP-1 or Lck was depleted or deficient in this reaction mixture, suggesting that the SHP-1 recruited by the phosphorylated His-CytKIR directly mediate the dephosphorylation of PLC-gamma. The cell-free model system could be used to reveal the detailed molecular interactions in the KIR-mediated signal transduction.  相似文献   

14.
15.
16.
The TCR-mediated signals required to activate resting T cells have been well characterized; however, it is not known how TCR-coupled signals are transduced in differentiated effector T cells that coordinate ongoing immune responses. Here we demonstrate that human effector CD4 T cells up-regulate the expression of the CD3zeta-related FcRgamma signaling subunit that becomes part of an altered TCR/CD3 signaling complex containing CD3epsilon, but not CD3zeta. The TCR/CD3/FcRgamma complex in effector cells recruits and activates the Syk, but not the ZAP-70, tyrosine kinase. This physiologic switch in TCR signaling occurs exclusively in effector, and not naive or memory T cells, suggesting a potential target for manipulation of effector responses in autoimmune, malignant, and infectious diseases.  相似文献   

17.
The activation of T cells and the initiation of an immune response is tightly controlled through the crosstalk of both positive and negative regulators. Two adaptors that function as negative regulators of T cell activation are adaptor in lymphocytes of unknown function X (ALX) and linker for activation of X cell (LAX). Previously, we showed that T cells from mice deficient in ALX and LAX display similar hyperresponsiveness, with increased IL-2 production and proliferation upon TCR/CD28 stimulation, and that these adaptors physically associate. In this study, we analyze the nature of the association between ALX and LAX. We demonstrate that this association occurs in the absence of TCR/CD28 signaling via a mechanism independent of both tyrosine phosphorylation of LAX and the SH2 domain of ALX. Cotransfection of ALX with LAX resulted in LAX tyrosine phosphorylation in the absence of TCR/CD28 stimulation. ALX-mediated LAX phosphorylation depends upon the ALX SH2 domain, which functions to recruit Lck to LAX. We also show that LAX, like ALX, can inhibit RE/AP reporter activation. However, in contrast to its inhibition of NFAT, the inhibition of RE/AP by LAX is independent of its tyrosine phosphorylation. Therefore, it can be concluded that inhibition of signaling events involved in T cell activation by LAX occurs through mechanisms both dependent on and independent of its tyrosine phosphorylation.  相似文献   

18.
Ligation of the T cell antigen receptor (TCR) activates the Src family tyrosine kinase p56 Lck, which, in turn, phosphorylates a variety of intracellular substrates. The phosphatidylinositol 3-kinase (PI3K) and the tyrosine phosphatase SHP-1 are two Lck substrates that have been implicated in TCR signaling. In this study, we demonstrate that SHP-1 co-immunoprecipitates with the p85 regulatory subunit of PI3K in Jurkat T cells, and that this association is increased by ligation of the TCR complex. Co-expression of SHP-1 and PI3K with a constitutively activated form of Lck in COS7 cells demonstrated the carboxyl-terminal SH2 domain of PI3K to inducibly associate with the full-length SHP-1 protein. By contrast, a truncated SHP-1 mutant lacking the Lck phosphorylation site (Tyr(564)) failed to bind p85. Wild-type but not catalytically inactive SHP-1 induced dephosphorylation of p85. Furthermore, expression of SHP-1 decreased PI3K enzyme activity in anti-phosphotyrosine immunoprecipitates and phosphorylation of serine 473 in Akt, a process dependent on PI3K activity. These results indicate the presence of a functional interaction between PI3K and SHP-1 and suggest that PI3K signaling, which has been implicated in cell proliferation, apoptosis, cytoskeletal reorganization, and many other biological activities, can be regulated by SHP-1 in T lymphocytes.  相似文献   

19.
Src homology region 2 (SH2) domain-containing phosphatase-1 (SHP-1) is a cytosolic protein tyrosine phosphatase containing two SH2 domains in its NH2 terminus. That immunological abnormalities of the motheaten and viable motheaten mice are caused by mutations in the gene encoding SHP-1 indicates that SHP-1 plays important roles in lymphocyte differentiation, proliferation, and activation. To elucidate molecular mechanisms by which SHP-1 regulates BCR-mediated signal transduction, we determined SHP-1 substrates in B cells using the substrate-trapping approach. When the phosphatase activity-deficient form of SHP-1, in which the catalytic center cysteine (C453) was replaced with serine (SHP-1-C/S), was introduced in WEHI-231 cells, tyrosine phosphorylation of a protein of about 70 kDa was strongly enhanced. Immunoprecipitation and Western blot analyses revealed that this protein is the B cell linker protein (BLNK), also named SH2 domain leukocyte protein of 65 kDa, and that upon tyrosine phosphorylation BLNK binds to SHP-1-C/S in vitro. In vitro kinase assays demonstrated that hyperphosphorylation of BLNK in SHP-1-C/S-expressing cells was not due to enhanced activity of Lyn or Syk. Furthermore, BCR-induced activation of c-Jun NH2-terminal kinase was shown to be significantly enhanced in SHP-1-C/S transfectants. Taken collectively, our results suggest that BLNK is a physiological substrate of SHP-1 in B cells and that SHP-1 selectively regulates c-Jun NH2-terminal kinase activation.  相似文献   

20.
To uncover signaling system differences between T cell stimuli and T cell subsets, phosphorylation status of 18 signaling proteins at six different time points following TCR triggering and CD28/CD2 costimulation was examined in human T cell subsets by phospho-epitope-specific flow cytometry of fluorescent cell barcoded samples, thereby providing a high-resolution signaling map. Compared with effector/memory T cells, naive T cells displayed stronger activation of proximal signaling molecules after TCR triggering alone. Conversely, distal phosphorylation events, like pErk and pS6-ribosomal protein, were stronger in effector/memory subsets. CD28 costimulation specifically induced signaling necessary for proper NF-κB activation, whereas CD2 signaled more strongly to S6-ribosomal protein. Analysis of resting regulatory T cells (rTregs; CD4(+)CD45RA(+)FOXP3(+)) and activated regulatory T cells (actTregs; CD4(+)CD45RA(-)FOXP3(++)) revealed that, although rTregs had low basal, but inducible, Erk activity, actTregs displayed high basal Erk phosphorylation and little or no Akt activation. Interestingly, the use of Mek inhibitors to block Erk activation inhibited activation-dependent FOXP3 upregulation in rTregs, their transition to actTregs, and the resulting increase in suppressive capacity. In summary, our systems approach unraveled distinct differences in signaling elicited by CD28 and CD2 costimulation and between rTregs and actTregs. Blocking rTreg transition to highly suppressive actTregs by Mek inhibitors might have future therapeutic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号