首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Theoretical studies have suggested that the evolution of habitat (host) races, regarded as a prelude to sympatric speciation, requires strong trade-offs in adaptation to different habitats: alleles that improve fitness in some habitats and have deleterious effects of similar magnitude in other habitats must be segregating in the population. I argue that such trade-offs are not necessary; the evolution of habitat races can also be driven by genetic variation due to loci that affect fitness in one habitat and are neutral or nearly so in others, that is, when performance in different habitats is genetically independent. One source of such genetic variation are deleterious mutations with habitat-specific fitness effects. I use deterministic two-locus and multilocus models to show that the presence of such mutations in the gene pool results in indirect selection favoring habitat fidelity or habitat preference over acceptance of both suitable habitats. This leads to the evolution of largely genetically isolated populations that use different habitats, from a single panmictic population of individuals accepting both habitats. This study suggests that the conditions favoring habitat race formation, and thus possibly sympatric speciation, are much less stringent than previously thought.  相似文献   

2.
The genetic basis of host plant use by phytophagous insects can provide insight into the evolution of ecological niches, especially phenomena such as specialization and phylogenetic conservatism. We carried out a quantitative genetic analysis of multiple host use traits, estimated on five species of host plants, in the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Mean values of all characters varied among host plants, providing evidence that adaptation to plants may require evolution of both behavioral (preference) and post-ingestive physiological (performance) characteristics. Significant additive genetic variation was detected for several characters on several hosts, but not in the capacity to use the two major hosts, a pattern that might be caused by directional selection. No negative genetic correlations across hosts were detected for any 'performance' traits, i.e. we found no evidence of trade-offs in fitness on different plants. Larval consumption was positively genetically correlated across host plants, suggesting that diet generalization might evolve as a distinct trait, rather than by independent evolution of feeding responses to each plant species, but several other traits did not show this pattern. We explored genetic correlations among traits expressed on a given plant species, in a first effort to shed light on the number of independent traits that may evolve in response to selection for host-plant utilization. Most traits were not correlated with each other, implying that adaptation to a novel potential host could be a complex, multidimensional 'character' that might constrain adaptation and contribute to the pronounced ecological specialization and the phylogenetic niche conservatism that characterize many clades of phytophagous insects.  相似文献   

3.
Parasites can strongly affect the evolution of their hosts, but their effects on host diversification are less clear. In theory, contrasting parasite communities in different foraging habitats could generate divergent selection on hosts and promote ecological speciation. Immune systems are costly to maintain, adaptable, and an important component of individual fitness. As a result, immune system genes, such as those of the Major Histocompatability Complex (MHC), can change rapidly in response to parasite-mediated selection. In threespine stickleback (Gasterosteus aculeatus), as well as in other vertebrates, MHC genes have been linked with female mating preference, suggesting that divergent selection acting on MHC genes might influence speciation. Here, we examined genetic variation at MHC Class II loci of sticklebacks from two lakes with a limnetic and benthic species pair, and two lakes with a single species. In both lakes with species pairs, limnetics and benthics differed in their composition of MHC alleles, and limnetics had fewer MHC alleles per individual than benthics. Similar to the limnetics, the allopatric population with a pelagic phenotype had few MHC alleles per individual, suggesting a correlation between MHC genotype and foraging habitat. Using a simulation model we show that the diversity and composition of MHC alleles in a sympatric species pair depends on the amount of assortative mating and on the strength of parasite-mediated selection in adjacent foraging habitats. Our results indicate parallel divergence in the number of MHC alleles between sympatric stickleback species, possibly resulting from the contrasting parasite communities in littoral and pelagic habitats of lakes.  相似文献   

4.
Studies of spatial variation in the environment have primarily focused on how genetic variation can be maintained. Many one-locus genetic models have addressed this issue, but, for several reasons, these models are not directly applicable to quantitative (polygenic) traits. One reason is that for continuously varying characters, the evolution of the mean phenotype expressed in different environments (the norm of reaction) is also of interest. Our quantitative genetic models describe the evolution of phenotypic response to the environment, also known as phenotypic plasticity (Gause, 1947), and illustrate how the norm of reaction (Schmalhausen, 1949) can be shaped by selection. These models utilize the statistical relationship which exists between genotype-environment interaction and genetic correlation to describe evolution of the mean phenotype under soft and hard selection in coarse-grained environments. Just as genetic correlations among characters within a single environment can constrain the response to simultaneous selection, so can a genetic correlation between states of a character which are expressed in two environments. Unless the genetic correlation across environments is ± 1, polygenic variation is exhausted, or there is a cost to plasticity, panmictic populations under a bivariate fitness function will eventually attain the optimum mean phenotype for a given character in each environment. However, very high positive or negative correlations can substantially slow the rate of evolution and may produce temporary maladaptation in one environment before the optimum joint phenotype is finally attained. Evolutionary trajectories under hard and soft selection can differ: in hard selection, the environments with the highest initial mean fitness contribute most individuals to the mating pool. In both hard and soft selection, evolution toward the optimum in a rare environment is much slower than it is in a common one. A subdivided population model reveals that migration restriction can facilitate local adaptation. However, unless there is no migration or one of the special cases discussed for panmictic populations holds, no geographical variation in the norm of reaction will be maintained at equilibrium. Implications of these results for the interpretation of spatial patterns of phenotypic variation in natural populations are discussed.  相似文献   

5.
If individuals occupy habitats in a way that maximizes their fitness, if they are free to occupy the habitats they choose and if fitness declines with population density, then their abundance across habitats should follow an ideal free distribution. But, if individuals are genetically related, this simple fitness-maximization mechanism breaks down. Habitat occupation should obey Hamilton's rule (natural selection favours traits causing a loss in individual fitness as long as they result in an equal or greater gain in inclusive fitness) and depends more on inclusive fitness than it does on individual fitness. We demonstrate that the resulting inclusive-fitness distribution inflates the population density in habitats of poorer inherent quality, creating pronounced source sink dynamics. We also show that density-dependent habitat selection among relatives reinforces behaviours such as group defence and interspecific territoriality, and that it explains many anomalies in dispersal and foraging.  相似文献   

6.
Ecological speciation hypotheses claim that assortative mating evolves as a consequence of divergent natural selection for ecologically important traits. Reproductive isolation is expected to be particularly likely to evolve by this mechanism in species such as phytophagous insects that mate in the habitats in which they eat. We tested this expectation by monitoring the evolution of reproductive isolation in laboratory populations of an RNA virus that undergoes genetic exchange only when multiple virus genotypes coinfect the same host. We subjected four populations of the RNA bacteriophage phi6 to 150 generations of natural selection on a novel host. Although there was no direct selection acting on host range in our experiment, three of the four populations lost the ability to infect one or more alternative hosts. In the most extreme case, one of the populations evolved a host range that does not contain any of the hosts infectible by the wild-type phi6. Whole genome sequencing confirmed that the resulting reproductive isolation was due to a single nucleotide change, highlighting the ease with which an emerging RNA virus can decouple its evolutionary fate from that of its ancestor. Our results uniquely demonstrate the evolution of reproductive isolation in allopatric experimental populations. Furthermore, our data confirm the biological credibility of simple "no-gene" mechanisms of assortative mating, in which this trait arises as a pleiotropic effect of genes responsible for ecological adaptation.  相似文献   

7.
Trade-offs in larval performance on normal and novel hosts   总被引:3,自引:0,他引:3  
The evolution of host specialization in phytophagous insects is generally thought to involve genetic trade-offs that prevent individuals from maximizing fitness simultaneously on two or more hosts. Several hypotheses, however, have suggested that trade-offs may not be evident in experiments comparing larval performance on normal and novel hosts. Tests on survivorship, growth rate, and pupal mass among families of the swallowtail butterfly Papilio oregonius on its normal host and on a novel host provide support for these hypotheses, although they do not discriminate among them. Families differed in their relative performance on the hosts, but there was no evidence of a negative genetic correlation between hosts for any of the measures of performance. In addition, there were no correlations among the different measures, corroborating an earlier result suggesting that these different components of performance in the P. machaon species group are under at least partially separate genetic control. These results and similar results published for other insects have now produced a body of studies indicating that genetic trade-offs in individual components of larval performance may not be a major factor preventing shifts onto novel host plants. Trade-offs leading to the evolution of host specialization are more likely to involve coordination among the various components of performance together with ecological factors that allow higher fitness on one host than on others.  相似文献   

8.
1. When host quality varies, optimal foraging theory assumes that parasitic wasps select hosts in a manner that increases their individual fitness. In koinobiont parasitoids, where the hosts continue developing for a certain period of time after parasitisation, host selection may not reflect current host quality but may be based on an assessment of future growth rates and resources available for the developing larvae. 2. When presented with hosts of uniform quality, the koinobiont parasitoid Leptomastix dactylopii exhibits a characteristic host‐selection behaviour: some hosts are accepted for oviposition on first encounter, while others are rejected several times before an egg is laid in them, a behaviour that is commonly associated with a changing host acceptance threshold during the course of a foraging bout. 3. The fitness of the offspring that emerged from hosts accepted immediately upon encounter was compared with the fitness of offspring emerged from hosts rejected several times before being accepted for oviposition. 4. The pattern of host acceptance and rejection was not related to any of the measured fitness parameters of the offspring emerging from these hosts (development time, size at emergence, sex ratio at emergence, and female offspring egg load). 5. While complex post facto adaptive explanations can be devised to explain the nature of such a time and energy consuming host selection process, it is suggested that physiological constraints on egg production or oviposition may provide an alternative, purely mechanistic, explanation for the results obtained.  相似文献   

9.
Constraints on the evolution of adaptive phenotypic plasticity in plants   总被引:1,自引:0,他引:1  
The high potential fitness benefit of phenotypic plasticity tempts us to expect phenotypic plasticity as a frequent adaptation to environmental heterogeneity. Examples of proven adaptive plasticity in plants, however, are scarce and most plastic responses actually may be 'passive' rather than adaptive. This suggests that frequently requirements for the evolution of adaptive plasticity are not met or that such evolution is impeded by constraints. Here we outline requirements and potential constraints for the evolution of adaptive phenotypic plasticity, identify open questions, and propose new research approaches. Important open questions concern the genetic background of plasticity, genetic variation in plasticity, selection for plasticity in natural habitats, and the nature and occurrence of costs and limits of plasticity. Especially promising tools to address these questions are selection gradient analysis, meta-analysis of studies on genotype-by-environment interactions, QTL analysis, cDNA-microarray scanning and quantitative PCR to quantify gene expression, and two-dimensional gel electrophoresis to quantify protein expression. Studying plasticity along the pathway from gene expression to the phenotype and its relationship with fitness will help us to better understand why adaptive plasticity is not more universal, and to more realistically predict the evolution of plastic responses to environmental change.  相似文献   

10.
Trade-offs and the evolution of host specialization   总被引:7,自引:1,他引:6  
Summary Trade-offs in performance on different hosts are thought to promote the evolution of host specificity by blocking host shifts. Yet, in contrast, most experiments using phytophagous insects have shown performance on alternative hosts to be uncorrelated or positively correlated. Recent quantitative genetic models based on mutation—selection balance indicate that underlying constraints on the simultaneous maximization of different components of fitness may not always generate negative genetic correlations. We suggest an alternative or additional explanation for the lack of observed negative genetic correlations. If performance is polygenically controlled and some performance loci possess only antagonistically pleiotropic alleles, then the expression of trade-offs in performance will vary over time in populations. Consequently, a trade-off will be seen only in populations that have adapted to two hosts and are at or close to genetic equilibrium. Therefore, studies testing performance on a novel as compared with a normal host will generally yield non-negative genetic correlations between performance on the two hosts. The results of published studies are consistent with the predictions of this hypothesis.  相似文献   

11.
The evolution of phenotypic plasticity is studied in a model with two reproductively isolated “species” in a coarse-grained environment, consisting of two types of habitats. A quantitative genetic model for selection was constructed, in which habitats differ in the optimal value for a focal trait, and with random dispersal among habitats. The main interest was to study the effects of different selection regimes. Three cases were investigated: (1) without any limits to plasticity; (2) without genetic variation for plasticity; and (3) with a fitness cost for phenotypically plastic reactions. In almost all cases a generalist strategy to exploit both habitats emerged. Without any limits to plasticity, optimal adaptive reactions evolved. Without any genetic variation for plasticity, a compromise strategy with an intermediate, fixed phenotype evolved, whereas in the presence of costs a plastic compromise between the demands of the habitats and the costs associated with plasticity was found. Specialization and phenotypic differentiation was only found when selection within habitats was severe and optimal phenotypes for different habitats were widely different. Under soft selection (local regulation of population numbers in each habitat) the specialists coexisted; under hard selection (global regulation of population numbers) one specialist outcompeted the other. The prevalent evolutionary outcome of compromises rather than specialization implies that costs or constraints are not necessarily detectable as local adaptation in transplantation or translocation experiments.  相似文献   

12.
The patterns of interspecific variation identified by comparative studies provide valuable hypotheses about the role of physiological traits in evolutionary adaptation. This review covers tests of these hypotheses for photosynthetic traits that have used a microevolutionary perspective to characterize physiological variation among and within populations. Studies of physiological differentiation among populations show that evolutionary divergence in photosynthetic traits is common within species, and has a pattern that supports many adaptive hypotheses. These among-population studies imply that selection has influenced photosynthetic traits in some way, but they are not designed to identify the traits targeted by selection or the environmental agents that cause selection. Analyses of genetic and phenotypic variation within populations address these questions. Studies that have quantified genetic variation within populations show that levels of heritable variation can be adequate for evolutionary change in photosynthetic traits. Other studies have measured phenotypic selection for these traits by analyzing how the variation within populations is correlated with fitness. This work has shown that selection for photosynthetic traits may often operate indirectly via correlations with other traits, and emphasizes the importance of viewing the phenotype as an integrated function of growth, morphology, life-history and physiology. We also outline some methodological problems that may be encountered for ecophysiological traits by these types of studies, provide some potential solutions, and discuss future directions for the field of plant evolutionary ecophysiology.  相似文献   

13.
The ultimate cause of genome size (GS) evolution in eukaryotes remains a major and unresolved puzzle in evolutionary biology. Large-scale comparative studies have failed to find consistent correlations between GS and organismal properties, resulting in the ‘C-value paradox’. Current hypotheses for the evolution of GS are based either on the balance between mutational events and drift or on natural selection acting upon standing genetic variation in GS. It is, however, currently very difficult to evaluate the role of selection because within-species studies that relate variation in life-history traits to variation in GS are very rare. Here, we report phylogenetic comparative analyses of GS evolution in seed beetles at two distinct taxonomic scales, which combines replicated estimation of GS with experimental assays of life-history traits and reproductive fitness. GS showed rapid and bidirectional evolution across species, but did not show correlated evolution with any of several indices of the relative importance of genetic drift. Within a single species, GS varied by 4–5% across populations and showed positive correlated evolution with independent estimates of male and female reproductive fitness. Collectively, the phylogenetic pattern of GS diversification across and within species in conjunction with the pattern of correlated evolution between GS and fitness provide novel support for the tenet that natural selection plays a key role in shaping GS evolution.  相似文献   

14.
Despite the widespread assumption that the learning abilities of animals are adapted to the particular environments in which they operate, the quantitative effects of learning performance on fitness remain virtually unknown. Here, we evaluate the learning performance of bumble-bees (Bombus terrestris) from multiple colonies in an ecologically relevant associative learning task under laboratory conditions, before testing the foraging performance of the same colonies under the field conditions. We demonstrate that variation in learning speed among bumble-bee colonies is directly correlated with the foraging performance, a robust fitness measure, under natural conditions. Colonies vary in learning speed by a factor of nearly five, with the slowest learning colonies collecting 40% less nectar than the fastest learning colonies. Such a steep fitness function is suggestive of strong selection for higher learning speed. Partial correlation analysis reveals that other factors such as forager body size or colour preference appear to be negligible in our study. Although our study does not directly prove causality of learning on foraging success, our approach of correlating natural within-species variation in these two factors represents a major advance over traditional between-species correlative analyses where comparability can be compromised by the fact that species vary along multiple dimensions.  相似文献   

15.
Cost of host radiation in an RNA virus   总被引:8,自引:0,他引:8  
Turner PE  Elena SF 《Genetics》2000,156(4):1465-1470
Although host radiation allows a parasite to expand its ecological niche, traits governing the infection of multiple host types can decrease fitness in the original or alternate host environments. Reasons for this reduction in fitness include slower replication due to added genetic material or modifications, fitness trade-offs across host environments, and weaker selection resulting from simultaneous adaptation to multiple habitats. We examined the consequences of host radiation using vesicular stomatitis virus (VSV) and mammalian host cells in tissue culture. Replicate populations of VSV were allowed to evolve for 100 generations on the original host (BHK cells), on either of two novel hosts (HeLa and MDCK cells), or in environments where the availability of novel hosts fluctuated in a predictable or random way. As expected, each experimental population showed a substantial fitness gain in its own environment, but those evolved on new hosts (constant or fluctuating) suffered reduced competitiveness on the original host. However, whereas evolution on one novel host negatively correlated with performance on the unselected novel host, adaptation in fluctuating environments led to fitness improvements in both novel habitats.  相似文献   

16.
The changes in species' geographical distribution demanded by climate change are often critically limited by the availability of key interacting species. In such cases, species' persistence will depend on the rapid evolution of biotic interactions. Understanding evolutionary limits to such adaptation is therefore crucial for predicting biological responses to environmental change. The recent poleward range expansion of the UK brown argus butterfly has been associated with a shift in female preference from its main host plant, rockrose (Cistaceae), onto Geraniaceae host plants throughout its new distribution. Using reciprocal transplants onto natural host plants across the UK range, we demonstrate reduced fitness of females from recently colonised Geraniaceae‐dominated habitat when moved to ancestral rockrose habitats. By contrast, individuals from ancestral rockrose habitats show no reduction in fitness on Geraniaceae. Climate‐driven range expansion in this species is therefore associated with the rapid evolution of biotic interactions and a significant loss of adaptive variation.  相似文献   

17.
Costs and benefits of foraging have been studied in predatory animals. In nematodes, ambushing or cruising behaviours represent adaptations that optimize foraging strategies for survival and host finding. A behaviour associated with host finding of ambushing nematode dauer juveniles is a sit-and-wait behaviour, otherwise known as nictation. Here, we test the function of nictation by relating occurrence of nictation in Pristionchus pacificus dauer juveniles to the ability to attach to laboratory host Galleria mellonella. We used populations of recently isolated and mutagenized laboratory strains. We found that nictation can be disrupted using a classical forward genetic approach and characterized two novel nictation-defective mutant strains. We identified two recently isolated strains from la Réunion island, one with a higher proportion of nictating individuals than the laboratory strain P. pacificus PS312. We found a positive correlation between nictation frequencies and host attachment in these strains. Taken together, our combination of genetic analyses with natural variation studies presents a new approach to the investigation of behavioural and ecological functionality. We show that nictation behaviour in P. pacificus nematodes serves as a host-finding behaviour. Our results suggest that nictation plays a role in the evolution of new life-history strategies, such as the evolution of parasitism.  相似文献   

18.
Ragland GJ  Carter PA 《Heredity》2004,92(6):569-578
The size of an organism at any point during ontogeny often has fitness consequences through either direct selection on size or through selection on size-related morphological, performance, or life history traits. However, the evolutionary response to selection on size across ontogeny (a growth trajectory) may be limited by genetic correlations across ages. Here we characterize the phenotypic and genetic covariance structure of length and mass growth trajectories in a natural population of larval Ambystoma macrodactylum using function-valued quantitative genetic analyses and principal component decomposition. Most of the phenotypic and genetic variation in both growth trajectories appears to be confined to a single principal component describing a pattern of positive covariation among sizes across all ages. Higher order principal components with no significant associated genetic variation were identified for both trajectories, suggesting that evolution towards certain patterns of negative covariation between sizes across ages is constrained. The well-characterized positive relationship between size at metamorphosis and fitness in pond-breeding amphibians predicts that the across-age covariance structure will strongly limit evolution only if there is negative selection on size prior to metamorphosis. The pattern of genetic covariation observed in this study is similar to that observed in other vertebrate taxa, indicating that size may often be highly genetically and phenotypically integrated across ontogeny. Additionally, we find that phenotypic and genetic analyses of growth trajectories can yield qualitatively similar patterns of covariance structure.  相似文献   

19.
Following a host shift, repeated co‐passaging of a mutualistic pair is expected to increase fitness over time in one or both species. Without adaptation, a novel association may be evolutionarily short‐lived as it is likely to be outcompeted by native pairings. Here, we test whether experimental evolution can rescue a low‐fitness novel pairing between two sympatric species of Steinernema nematodes and their symbiotic Xenorhabdus bacteria. Despite low mean fitness in the novel association, considerable variation in nematode reproduction was observed across replicate populations. We selected the most productive infections, co‐passaging this novel mutualism nine times to determine whether selection could improve the fitness of either or both partners. We found that neither partner showed increased fitness over time. Our results suggest that the variation in association success was not heritable and that mutational input was insufficient to allow evolution to facilitate this host shift. Thus, post‐association costs of host switching may represent a formidable barrier to novel partnerships among sympatric mutualists.  相似文献   

20.
Trade-offs in host-plant use are thought to promote the evolution of host specificity. However, usually either positive or no genetic correlations have been found. Whereas factors enhancing variation in overall viability have been claimed to mask negative genetic correlations, alternative hypotheses emphasize the sequential changes in genetic correlation in the course of host-range evolution. In this study, the genetic architectures of performances on different hosts were compared in two populations of the herbivorous ladybird beetle, Epilachna pustulosa, using three host plants, one being normal for both, one novel for only one population, and the other novel for both populations. The genetic correlations between larval periods on normal hosts were significantly positive whereas those between normal and novel hosts were not different from zero. There was no evidence for reduced genetic variation on the normal host-plants. These results suggest that the host-range is not restricted by the antagonistic genetic associations among exploitation abilities on different plant species, but rather that selection of different host-plants may improve the coordination between genes responsible for the use of different plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号