首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
To isolate the peripheral adaptations to training, five normal subjects exercised the nondominant (ND) wrist flexors for 41 +/- 11 days, maintaining an exercise intensity below the threshold required for cardiovascular adaptations. Before and after training, intracellular pH and the ratio of inorganic phosphate to phosphocreatine (Pi/PCr) were measured by 31P magnetic resonance spectroscopy. Also maximal O2 consumption (VO2 max), muscle mass, and forearm blood flow were determined by graded systemic exercise, magnetic resonance imaging, and venous occlusion plethysmography, respectively. Blood flow, Pi/PCr, and pH were measured in both forearms at rest and during submaximal wrist flexion at 5, 23, and 46 J/min. Training did not affect VO2 max, exercise blood flow, or muscle mass. Resting pH, Pi/PCr, and blood flow were also unchanged. After training, the ND forearm demonstrated significantly lower Pi/PCr at 23 and 46 J/min. Endurance, measured as the number of contractions to exhaustion, also was increased significantly (63%) after training in the ND forearm. We conclude that 1) forearm training results in a lower Pi/PCr at identical submaximal work loads; 2) this improvement is independent of changes in VO2 max, muscle mass, or limb blood flow; and 3) these differences are associated with improved endurance and may reflect improved oxidative capacity of skeletal muscle.  相似文献   

2.
Forearm metabolic asymmetry detected by 31P-NMR during submaximal exercise   总被引:2,自引:0,他引:2  
This study evaluated the relationship of skeletal muscle energy metabolism to forearm blood flow and muscle mass in the dominant (D) and nondominant (ND) forearms of normal subjects. 31P-Magnetic resonance spectroscopy was used to determine intracellular pH and the ratio of inorganic phosphate to phosphocreatine (Pi/PCr), an index of energy metabolism. Forearm blood flow and muscle mass were measured by venous occlusion plethysmography and magnetic resonance imaging, respectively. Metabolic measurements and flow were determined at rest and during submaximal exercise in both forearms. After a warm-up period, six normal right-handed male subjects performed 7.5 min of wrist flexion exercise in the magnet (1 contraction every 5 s), first with the ND forearm and then with the D forearm, at 23, 46, and 69 J/min. At rest, there were no differences between forearms in Pi/PCr or pH. However, at each work load the D forearm demonstrated significantly lower Pi/PCr and higher pH than the ND forearm. Blood flow was not significantly different between the forearms at rest or during exercise. Because these subjects were not engaged in unilateral arm training, we conclude that 1) Pi/PCr is lower and pH is higher in the D compared with the ND forearm in normal subjects during submaximal exercise, 2) these differences are independent of muscle mass and blood flow, and 3) the cumulative effect of long-term, low-level daily activity provides an adequate training stimulus for muscular metabolic adaptations.  相似文献   

3.
BACKGROUND: It has been thought that intramuscular ADP and phosphocreatine (PCr) concentrations are important regulators of mitochondorial respiration. There is a threshold work rate or metabolic rate for cellular acidosis, and the decrease in muscle PCr is accelerated with drop in pH during incremental exercise. We tested the hypothesis that increase in muscle oxygen consumption (o2mus) is accelerated with rapid decrease in PCr (concomitant increase in ADP) in muscles with drop in pH occurs during incremental plantar flexion exercise. METHODS: Five male subjects performed a repetitive intermittent isometric plantar flexion exercise (6-s contraction/4-s relaxation). Exercise intensity was raised every 1 min by 10% maximal voluntary contraction (MVC), starting at 10% MVC until exhaustion. The measurement site was at the medial head of the gastrocnemius muscle. Changes in muscle PCr, inorganic phosphate (Pi), ADP, and pH were measured by 31P-magnetic resonance spectroscopy. o2mus was determined from the rate of decrease in oxygenated hemoglobin and/or myoglobin using near-infrared continuous wave spectroscopy under transient arterial occlusion. Electromyogram (EMG) was also recorded. Pulmonary oxygen uptake (o2pul ) was measured by the breath-by-breath gas analysis. RESULTS: EMG amplitude increased as exercise intensity progressed. In contrast, muscle PCr, ADP, o2mus, and o2pul did not change appreciably below 40% MVC, whereas above 40% MVC muscle PCr decreased, and ADP, o2mus, and o2pul increased as exercise intensity progressed, and above 70% MVC, changes in muscle PCr, ADP, o2mus, and o2pul accelerated with the decrease in muscle pH (~6.78). The kinetics of muscle PCr, ADP, o2mus, and o2pul were similar, and there was a close correlation between each pair of parameters (r = 0.969~0.983, p < 0.001). CONCLUSION: With decrease in pH muscle oxidative metabolism accelerated and changes in intramuscular PCr and ADP accelerated during incremental intermittent isometric plantar flexion exercise. These results suggest that rapid changes in muscle PCr and/or ADP with mild acidosis stimulate accelerative muscle oxidative metabolism.  相似文献   

4.
Ischemic exercise and the muscle metaboreflex.   总被引:1,自引:0,他引:1  
In exercising muscle, interstitial metabolites accumulate and stimulate muscle afferents. This evokes the muscle metaboreflex and raises arterial blood pressure (BP). In this report, we examined the effects of tension generation on muscle metabolites and BP during ischemic forearm exercise in humans. Heart rate (HR), BP, P(i), H(2)PO(4)(-), and pH ((31)P-NMR spectroscopy) data were collected in 10 normal healthy men (age 23 +/- 1 yr) during rhythmic handgrip exercise. After baseline measurements, the subjects performed rhythmic handgrip for 2 min. At 2 min, a 250-mmHg occlusion cuff was inflated, and ischemic handgrip exercise was continued until near fatigue (Borg 19). Measurements were continued for an additional 30 s of ischemia. This protocol was performed at 15, 30, 45, and 60% of the subjects' maximum voluntary contraction (MVC) in random order. As tension increased, the time to fatigue decreased. In addition, mean arterial pressure and HR were higher at 60% MVC than at any of the other lower tensions. The NMR data showed significantly greater increases in H(2)PO(4)(-), P(i), and H(+) at 60% than at 15 and 30% MVC. Therefore, despite the subjects working to the same perceived effort level, a greater reflex response (represented by BP and HR data) was elicited at 60% MVC than at any of the other ischemic tensions. These data are consistent with the hypothesis that, as tension increases, factors aside from insufficient blood flow contribute to the work effect on muscle metabolites and the magnitude of the reflex response.  相似文献   

5.
Ten normal healthy subjects performed a rhythmic handgrip at 30% MVC (maximal voluntary contraction) with and without arterial occlusion of the same limb. Contralateral forearm and calf venous capacitance were simultaneously measured by venous occlusion plethysmography. During rhythmic handgrip at 30% MVC contralateral venous capacitance decreased by -7.17% in the forearm and by -5.14% in the calf. With arterial occlusion the decreases in venous capacitance were even more pronounced: contralateral forearm -14.4% and calf -13.1%. In a second set of experiments (n = 5) rhythmic handgrip at 30% MVC with arrest of the forearm circulation 5 s prior to the cessation of contraction was applied to examine the influence of chemically sensitive metaboreceptors per se on the evoked limb venoconstriction. During the postexercise arterial occlusion forearm venous volume decreased further to -30.6% whereas calf venous volume increased slightly but remained below the control value. After the cessation of the arterial occlusion both forearm and calf capacitance returned to baseline values. Thus, this study provided evidence that as well as a chemically generated reflex arising from the working muscle, central command was found to be involved in the increase in venomotor tone in the nonexercising limbs during rhythmic handgrip at 30% MVC.  相似文献   

6.
Potential differences were assessed between the dominant (D) and non-dominant (ND) forearms of sedentary subjects during anaerobic exercise. Subjects performed voluntary concentric contractions of D and ND forearm muscle during a series of three high-intensity (60% of the maximal voluntary contraction force (MVC)) exercise bouts. The time-dependent changes in intracellular pH (pH(i)), Pi, and PCr concentrations, and their relation to muscular work were examined using 31P magnetic resonance spectroscopy (MRS) techniques, and revealed that D forearm metabolic kinetics in sedentary individuals are improved during repetitive high-intensity exercise compared to their respective ND forearm muscle. We postulate that the more regular and preferential utilization of the D limb leads to a "trained-like" condition.  相似文献   

7.
Previous studies suggest that the blood pressure response to static contraction is greater than that caused by dynamic exercise. In anesthetized cats, however, pressor responses to electrically induced static and dynamic contraction of the same muscle group are similar during equivalent workloads and peak tension development [i.e., similar tension-time index (TTI)]. To determine if the same relationship exists in humans, where contraction is voluntary and central command is present, dynamic (180 s; 1/s) and static (90 s) contractions at 30% of maximal voluntary contraction (MVC) were performed. Dynamic contraction also was repeated at the same TTI for 90 s at 60% MVC. Mean arterial pressure (MAP), heart rate (HR), cardiac output (CO), MAP during postexercise arterial occlusion (an index of the metaboreceptor-induced activation of the exercise pressor reflex), and relative perceived exertion (RPE) (an index of central command) were assessed. No differences in these variables were found between static and dynamic contraction at a tension of 30% MVC. During dynamic contraction at 60% MVC, changes in MAP (16 +/- 3 vs. 19 +/- 4 mmHg) and absolute HR (92 +/- 6 vs. 69 +/- 5 beats/min), CO (7.9 +/- 0.4 vs. 6.3 +/- 0.3 l/min), RPE (16 +/- 1 vs. 13 +/- 1), and MAP during postexercise arterial occlusion (115 +/- 3 vs. 100 +/- 4 mmHg) were greater than during static contraction (P < 0.05). Thus increases in MAP and HR, activation of central command, and muscle metabolite-induced stimulation of the exercise pressor reflex during static and dynamic contraction in humans seem to be similar when peak tension and TTI are equal. Augmented responses to dynamic contraction at 60% MVC are likely related to greater activation of these two mechanisms.  相似文献   

8.
Ten normal subjects performed a 90-s isometric exercise [20, 30, and 40% of maximal voluntary contraction (MVC) of the flexor muscle of the right index finger or quadriceps muscle of the right leg. Contralateral forearm and calf blood flows (strain gauge plethysmography) and arterial blood pressure (auscultation) were measured simultaneously. Each exercise caused a decrease in forearm vascular resistance and a progressive increase in calf resistance. These changes were greatest with the 40% MVC. With finger exercise at 20 and 40% MVC, the percentage decreases in forearm vascular resistance from control were 12.3 and 22.7%, respectively (P less than 0.01). Similar decreases (9.5 and 24.9%, respectively; P less than 0.01) were noted with exercise of the quadriceps muscle. By contrast, the corresponding increases in calf vascular resistance were greater (P less than 0.01) with quadriceps exercise (13.3 and 55.4%, respectively) than with finger exercise (6.0 and 36.0%). Arrest of the circulation to the exercising muscles just before the exercise ended caused an abrupt increase in forearm vascular resistance and a decrease in calf resistance. These studies provide further evidence of the heterogeneity of responses of forearm and calf resistance vessels to certain cardiovascular stimuli.  相似文献   

9.
Phosphorus nuclear magnetic resonance was used to quantify the relations between metabolic phosphates, intracellular pH, and work rate in forearm muscle of six adult men over a range of work rates from 1.0 to 3.5 W. Three work rates were studied in each of four sessions (either 1.0, 2.0, and 3.0 or 1.5, 2.5, and 3.5 W), with measurements made before and during each bout, thereby permitting the partition of the variance attributable to rest, work-dependent, and time-dependent metabolic functions by regression analysis. There were no time-dependent changes in either [ATP] or intracellular [H+] as assessed during the rest intervals between bouts of exercise. In contrast, the total nuclear magnetic resonance (NMR)-visible phosphorus pool (TVPP) decreased with time, with both phosphocreatine (PCr) and inorganic phosphate (Pi) contributing significantly to TVPP reduction. Muscle [ATP] was unchanged by work at all intensities. Intracellular [H+] increased moderately and proportionately to work rate. [PCr] decreased and [Pi] increased in proportion to work rate, with the work-dependent coefficient for PCr consumption approximately 1.5 times that of Pi production. Neither Pi line width nor motion artifact accounted for the decrease in TVPP, so the reduced Pi accumulation in exercise may represent its sequestering in some NMR-invisible muscle pool and/or loss to the blood. Whatever the process involved, it is proportional to work rate and persists for at least 10-15 min after exercise.  相似文献   

10.
To determine the role of muscle chemoreflex in the cardiac response to static exercise the effect of the forearm muscle ischemia on systolic time intervals (STI), heart rate (HR) and blood pressure (BP) recovery following static handgrip was studied in 7 healthy men. During handgrip maintained for 4 min at 30% maximal voluntary contraction HR and BP increased significantly while duration of the pre-ejection period (PEP) and isovolumic contraction time (ICT) were shortened with a significant lowering in the ratio of PEP to the left ventricle ejection time (LVET). Occlusion of the circulation to the forearm muscles for 2 min after cessation of exercise did not prevent a rapid decline of HR or increment in PEP, ICT and PEP-to-LVET ratio while BP remained elevated for as long as blood flow to muscles was restricted. The study failed to demonstrate an appreciable effect of muscle chemoreflex on HR or myocardial contractility, suggesting that input from muscle afferents activated by metabolic stimuli induces the pressor response mainly by the peripheral vasoconstriction.  相似文献   

11.
The physiological response to continuous and intermittent handgrip exercise was evaluated. Three experiments were performed until exhaustion at 25% of maximal voluntary contraction (MVC): experiment 1, continuous handgrip (CH) (n = 8); experiment 2, intermittent handgrip with 10-s rest pause every 3 min (IH) (n = 8); and experiment 3, as IH but with electrical stimulation (ES) of the forearm extensors in the pauses (IHES) (n = 4). Before, during, and after exercise, recordings were made of heart rate (HR), arterial blood pressure (BP), exercising forearm blood flow, and concentrations of potassium [K+] and lactate [La-] in venous blood from both arms. The electromyogram (EMG) of the exercising forearm extensors and perceived exertion were monitored during exercise. Before and up to 24 h after exercise, observations were made of MVC, of force response to electrical stimulation and of the EMG response to a 10-s test contraction (handgrip) at 25% of the initial MVC. Maximal endurance time (tlim) was significantly longer in IH (23.1 min) than in CH (16.2 min). The ES had no significant effect on tlim. During exercise, no significant differences were seen between CH and IH in blood flow, venous [K+] and [La-], or EMG response. The HR and BP increased at the same rate in CH and IH but, because of the longer duration of IH, the levels at exhaustion were higher in this protocol. The subjects reported less subjective fatigue in IH. During recovery, return to normal MVC was slower after CH (24 h) than after IH (4 h).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
31P-MRS spectra were obtained from human first dorsal interosseous muscle during and after the voluntary static abduction of the index finger. Endurance tasks were performed at randomly assigned contraction levels of 15, 20, 30 and 40% of maximal voluntary contraction (MVC). Muscle pH was calculated according to Taylor et al. (1983) using chemical shift between inorganic phosphate (Pi) and phosphocreatine (PCr) on the 31P-MRS spectra. Mean values of endurance times of static contractions were 7.25, 5.33 and 3.08 minutes for 20, 30 and 40% MVC, respectively. At 15% MVC, all of the four subjects maintained contraction for 30 minutes, and the contractions were terminated at 30 minutes. Muscle pH at the onset of contractions were 7.12, 6.98, 7.01 and 7.08 for 15, 20, 30 and 40% MVC, respectively. At the end of contractions when the subject could not maintain the force level, muscle pH were 6.07, 5.97 and 5.94 for 20, 30 and 40% MVC, respectively. There was no significant difference in muscle pH at the end of contractions between three conditions by one-way ANOVA. In conclusion, there was a critical muscle pH of about 6.0 where static contractions could not be maintained.  相似文献   

13.
In muscle phosphorylase deficiency (McArdle's disease) there is an abnormally rapid fatigue during strenuous exercise. Increasing substrate availability to working muscle can improve exercise tolerance but the effect on muscle energy metabolism has not been studied. Using phosphorus-31 nuclear magnetic resonance (31P-NMR) we examined forearm muscle ATP, phosphocreatine (PCr), inorganic phosphate (Pi) and pH in a McArdle patient (MP) and two healthy subjects (HS) at rest and during intermittent maximal effort handgrip contractions under control conditions (CC) and during intravenous glucose infusion (GI). Under CC, MP gripped to impending forearm muscle contracture in 130 s with a marked decline in muscle PCr and a dramatic elevation in Pi. During GI, MP exercised easily for greater than 420 s at higher tensions and with attenuated PCr depletion and Pi accumulation. In HS, muscle PCr and Pi changed more modestly and were not affected by GI. In MP and HS, ATP changed little or not at all with exercise. The results suggest that alterations in the levels of muscle PCr and Pi but not ATP are involved in the muscle fatigue in McArdle's disease and the improved exercise performance during glucose infusion.  相似文献   

14.
To investigate how the sweating response to a sustained handgrip exercise depends on changes in the exercise intensity, the sweating response to exercise was measured in eight healthy male subjects. Each subject lay in the supine position in a climatic chamber (35 degrees C and 50% relative humidity) for approximately 60 min. This exposure caused sudomotor activation by increasing skin temperature without a marked change in internal temperature. After this period, each subject performed isometric handgrip exercise [15, 30, 45, and 60% maximal voluntary contraction (MVC)] for 60 s. Although esophageal and mean skin temperatures did not change with a rise in exercise intensity and were similar at all exercise intensities, the sweating rate (SR) on the forearm increased significantly (P < 0.05) from baseline (0.094 +/- 0.021 mg. cm(-2). min(-1) at 30% MVC, 0.102 +/- 0.022 mg. cm(-2). min(-1) at 45% MVC, 0.059 +/- 0.009 mg. cm(-2). min(-1) at 60% MVC) in parallel with exercise intensity above exercise intensity at 30% MVC (0.121 +/- 0.023 mg. cm(-2). min(-1) at 30% MVC, 0.242 +/- 0.051 mg. cm(-2). min(-1) at 45% MVC, 0.290 +/- 0.056 mg. cm(-2). min(-1) at 60% MVC). Above 45% MVC, SR on the palm increased significantly from baseline (P < 0.05). Although SR on the forearm and palm tended to increase with a rise in exercise intensity, there was a difference in the time courses of SR between sites. SR on the palm showed a plateau after abrupt increase, whereas SR on the forearm increased progressively during exercise. These results suggest that the increase in SR with the increase in sustained handgrip exercise intensity is due to nonthermal factors and that the magnitude of these factors during the exercise may be responsible for the magnitude of SR.  相似文献   

15.
To better understand the metabolic implications of a higher ATP cost of contraction in chronic obstructive pulmonary disease (COPD), we used (31)P-magnetic resonance spectroscopy ((31)P-MRS) to examine muscle energetics and pH in response to graded exercise. Specifically, in six patients and six well-matched healthy controls, we determined the intracellular threshold for pH (T(pH)) and inorganic phosphate-to-phosphocreatine ratio (T(Pi/PCr)) during progressive dynamic plantar flexion exercise with work rate expressed as both absolute and relative intensity. Patients with COPD displayed a lower peak power output (WRmax) compared with controls (controls 25 ± 4 W, COPD 15 ± 5 W, P = 0.01) while end-exercise pH (controls 6.79 ± 0.15, COPD 6.76 ± 0.21, P = 0.87) and PCr consumption (controls 82 ± 10%, COPD 70 ± 18%, P = 0.26) were similar between groups. Both T(pH) and T(Pi/PCr) occurred at a significantly lower absolute work rate in patients with COPD compared with controls (controls: 14.7 ± 2.4 W for T(pH) and 15.3 ± 2.4 W for T(Pi/PCr); COPD: 9.7 ± 4.5 W for T(pH) and 10.0 ± 4.6 W for T(Pi/PCr), P < 0.05), but these thresholds occurred at the same percentage of WRmax (controls: 63 ± 11% WRmax for T(pH) and 67 ± 18% WRmax for T(Pi/PCr); COPD: 59 ± 9% WRmax for T(pH) and 61 ± 12% WRmax for T(Pi/PCr), P > 0.05). Indexes of mitochondrial function, the PCr recovery time constant (controls 42 ± 7 s, COPD 45 ± 11 s, P = 0.66) and the PCr resynthesis rate (controls 105 ± 21%/min, COPD 91 ± 31%/min, P = 0.43) were similar between groups. In combination, these results reveal that when energy demand is normalized to WRmax, as a consequence of higher ATP cost of contraction, patients with COPD display the same metabolic pattern as healthy subjects, suggesting that skeletal muscle energy production is well preserved in these patients.  相似文献   

16.
The purpose of this study was to examine with (31)P-magnetic resonance spectroscopy energy metabolism during repeated plantar flexion isometric exercise (Ex-1-Ex-4) at 32 +/- 1 and 79 +/- 4% of maximal voluntary contraction (MVC) before and during a creatine (Cr) feeding period of 5 g/day for 11 days. Eight trained male subjects participated in the study. ATP was unchanged with Cr supplementation at rest and during exercise at both intensities. Resting muscle phosphocreatine (PCr) increased (P < 0.05) from 18.3 +/- 0.9 (before) to 19.6 +/- 1.0 mmol/kg wet wt after 9 days. At 79% MVC, PCr used, P(i) accumulated, and pH at the end of Ex-1-Ex-4 were similar after 4 and 11 days of Cr supplementation. In contrast, PCr utilization and P(i) accumulation were lower and pH was higher for exercise at 32% MVC with Cr supplementation, suggesting aerobic resynthesis of PCr was more rapid during exercise. These results suggest that elevating muscle Cr enhances oxidative phosphorylation during mild isometric exercise, where it is expected that oxygen delivery matches demands and predominantly slow-twitch motor units are recruited.  相似文献   

17.
We examined whether spontaneous baroreflex modulation of heart rate and other indexes of cardiac vagal tone could be altered by passive stretch of the human calf muscle during graded concurrent activation of the muscle metaboreflex. Ten healthy subjects performed four trials: a control trial, resting for 1.5 min (0% trial); or 1.5 min of one-legged isometric plantar flexor exercise at 30, 50, and 70% maximal voluntary contraction. The incremental increases in blood pressure (BP) caused were then partially sustained by subsequent local circulatory occlusion (CO). After 3.5 min of CO alone, sustained calf stretch and CO were applied for 3 min. Spontaneous baroreflex sensitivity (SBRS) was progressively decreased with increasing exercise intensity (P < 0.05). During CO, stretch decreased SBRS and increased BP similarly in all trials (P < 0.05). Within 15 s of stretch onset, heart rate (HR) increased by 6 +/- 1, 6 +/- 1, 8 +/- 1, and 6 +/- 2 beats/min in the 0, 30, 50, and 70% trials, respectively (P < 0.05), and root mean square of successive differences was decreased from CO-alone levels (P < 0.05). During the second and third minutes of stretch, HR fell back but remained significantly above CO levels, and common coefficient of variance of R-R interval decreased progressively with increasing prior exercise intensity (P < 0.05; 70% trial). This suggests that passive stretch of the human calf muscles decreases cardiac vagal outflow irrespective of the levels of BP increase caused by muscle metaboreflex activation and implies that central modulation of baroreceptor input, mediated by the actions of stretch-activated mechanoreceptive muscle afferent fibers, continues.  相似文献   

18.
It is well established that severe hypertrophy induces metabolic and structural changes in the heart which result in enhanced susceptibility to ischemic damage during cardioplegic arrest while much less is known about the effect of cardioplegic arrest on moderately hypertrophied hearts. The aim of this study was to elucidate the differences in myocardial high energy phosphate metabolism and in functional recovery after cardioplegic arrest and ischemia in mildly hypertrophied hearts, before any metabolic alterations could be shown under baseline conditions.Cardiac hypertrophy was induced in rats by constriction of the abdominal aorta resulting in 20% increase in heart weight/body weight ratio (hypertrophy group) while sham operated animals served as control. In both groups, isolated hearts were perfused under normoxic conditions for 40 min followed by infusion of St.Thomas' Hospital No. 1 cardioplegia and 90 min ischemia at 25øC with infusions of cardioplegia every 30 min. The changes in ATP, phosphocreatine (PCr) and inorganic phosphate (Pi) were followed by31 P nuclear magnetic resonance (NMR) spectroscopy. Systolic and diastolic function was assessed with an intraventricular balloon before and after ischemia.Baseline concentrations of PCr, ATP and Pi as well as coronary flow and cardiac function were not different between the two groups. However, after cardioplegic arrest PCr concentration increased to 61.8 ± 4.9 mol/g dry wt in the control group and to 46.3 ± 2.8 mol/g in hypertrophied hearts. Subsequently PCr, pH and ATP decreased gradually, concomitant with an accumulation of Pi in both groups. PCr was transiently restored during each infusion of cardioplegic solution while Pi decreased. PCr decreased faster after cardioplegic infusions in hypertrophied hearts. The most significant difference was observed during reperfusion: PCr recovered to its pre-ischemic levels within 2 min following restoration of coronary flow in the control group while similar recovery was observed after 4 min in the hypertrophied hearts. A greater deterioration of diastolic function was observed in hypertrophied hearts.Moderate hypertrophy, despite absence of metabolic changes under baseline conditions could lead to enhanced functional deterioration after cardioplegic arrest and ischemia. Impaired energy metabolism resulting in accelerated high energy phosphate depletion during ischemia and delayed recovery of energy equilibrium after cardioplegic arrest observed in hypertrophied hearts could be one of the underlying mechanisms.  相似文献   

19.
This study evaluated the time courses of intracellular pH and the metabolism of phosphocreatine (PCr) and inorganic phosphate (P) at the onset of four exercise intensities and recoveries. Non-invasive evaluation of continuous changes in phosphorus metabolites has become possible using31P-nuclear magnetic resonance spectroscopy (31P-MRS). After measurements at rest, six healthy male subjects performed 4 min of femoral flexion exercise at intensities of 0 (loadless), 10, 20 and 30 kg · m · min–1 in a 2.1 T superconducting magnet with a 67-cm bore. Measurements were continuously made during 5 min of recovery. During a series of rest-exercise-recovery procedures,31P-MRS were accumulated using 32 scans · spectrum–1 requiring 12.8 s each. At the onset of exercise, PCr decreased exponentially with a time constant of 27–32 s regardless of the exercise intensity. The time constant PCr resynthesis during recovery was about 27–40 s. The PCr kinetics were independent of exercise intensity. There were similar Pi kinetics at the onset of all types of exercise, while those of Pi recovery became significantly longer at the higher exercise intensities (P < 0.05). Furthermore, the intracellular pH indicated temporary alkalosis just at the onset of exercise, probably due to absorption of hydrogen ions by PCr hydrolysis, and then decrease at a point about 40%–50% of the preexercise PCr. The pH recovery time was longer than that for the Pi or PCr kinetics. By using a more efficient resolution system it was possible to obtain the phosphorus kinetics during exercise and to follow PCr resynthesis within the first few minutes of recovery. From our results it was concluded that in general the time course of PCr and Pi metabolism were unaffected by the exercise intensity, both at the onset of exercise and during recovery, with the exception of Pi recovery.  相似文献   

20.
Multiple-frequency bioimpedance analysis (MFBIA) has been used to determine the cellular water composition in the human body. It is noninvasive and has demonstrated good correlations with other invasive measures of tissue water. However, the ability of this method to study transient changes in tissue water in specific muscle groups has not been explored. In this study, MFBIA was used to assess changes in forearm intracellular water (ICW), extracellular water (ECW), and total water (TW) in seven healthy volunteers during and after a progressive wrist flexion exercise protocol. In an identical trial, (31)P magnetic resonance spectroscopy ((31)P-MRS) was used to assess changes in intracellular pH and phosphocreatine (PCr). At the completion of exercise, forearm ICW increased 12.6% (SD 0.07, P = 0.003), TW increased 10.1% (SD 0.06, P = 0.005), and no significant changes were recorded for ECW. A significant correlation was found between the changes in intracellular pH and changes in ICW during exercise (r = -0.84, P = 0.018). With the use of regression analysis, average changes in P(i), PCr, and pH were found to predict changes in ICW (R(2) = 0.98, P = 0.005). In conclusion, MFBIA was sensitive enough to measure transient changes in the exercising forearm muscle. The changes seen were consistent with the hypothesis that intracellular acidification and PCr hydrolysis are important mediators of cellular osmolality and therefore may be responsible for the increased volume of water in the intracellular space that is often recorded after short-term high-intensity exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号