首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ethyl acetate was explored as an acyl acceptor for immobilized lipase-catalyzed preparation of biodiesel from the crude oils of Jatropha curcas (jatropha), Pongamia pinnata (karanj) and Helianthus annuus (sunflower). The optimum reaction conditions for interesterification of the oils with ethyl acetate were 10% of Novozym-435 (immobilized Candida antarctica lipase B) based on oil weight, ethyl acetate to oil molar ratio of 11:1 and the reaction period of 12h at 50 degrees C. The maximum yield of ethyl esters was 91.3%, 90% and 92.7% with crude jatropha, karanj and sunflower oils, respectively under the above optimum conditions. Reusability of the lipase over repeated cycles in interesterification and ethanolysis was also investigated under standard reaction conditions. The relative activity of lipase could be well maintained over twelve repeated cycles with ethyl acetate while it reached to zero by 6th cycle when ethanol was used as an acyl acceptor.  相似文献   

2.
Lipase-catalyzed alcoholysis of triolein dissolved in ethanol or isopropanol for the formation of ethyl and isopropyl esters was investigated. Of 16 lipases screened, Amano lipase from P. fluorescens was selected for investigation of the effects of basic reaction conditions on alcoholysis yields. Ethanolysis yields were only slightly affected by water additions to immobilized lipase preparations. Isopropyl ester yields decreased with water addition. Good operational stability was observed over 17 days. Changes in initial triolein concentration in the range 5–50 mM had very little effect on ester yields. The ionic strength of the phosphate buffer used in lipase immobilization affected ethanolysis and isopropanolysis yields in opposite ways. The highest ethanolysis yields were obtained with lipases immobilized from 250 mM buffer, while isopropyl ester yields were highest with lipases immobilized from water. In addition, the quantities and isomers of monoglyceride intermediates in ethanolysis were affected by the immobilization buffer strength. Larger quantities of 2-monoglycerides were formed in ethanolysis reactions with lipase preparations immobilized from water.  相似文献   

3.
Biodiesel is an alternative diesel fuel made from renewable biological resources. During the process of biodiesel production, lipase-catalyzed transesterification is a crucial step. However, current techniques using methanol as acyl acceptor have lower enzymatic activity; this limits the application of such techniques in large-scale biodiesel production. Furthermore, the lipid feedstock of currently available techniques is limited. In this paper, the technique of lipase-catalyzed transesterification of five different oils for biodiesel production with methyl acetate as acyl acceptor was investigated, and the transesterification reaction conditions were optimized. The operation stability of lipase under the obtained optimal conditions was further examined. The results showed that under optimal transesterification conditions, both plant oils and animal fats led to high yields of methyl ester: cotton-seed oil, 98%; rapeseed oil, 95%; soybean oil, 91%; tea-seed oil, 92%; and lard, 95%. Crude and refined cottonseed oil or lard made no significant difference in yields of methyl ester. No loss of enzymatic activity was detected for lipase after being repeatedly used for 40 cycles (ca. 800 h), which indicates that the operational stability of lipase was fairly good under these conditions. Our results suggest that cotton-seed oil, rape-seed oil and lard might substitute soybean oil as suitable lipid feedstock for biodiesel production. Our results also show that our technique is fit for various lipid feedstocks both from plants and animals, and presents a very promising way for the large-scale biodiesel production.  相似文献   

4.
脂肪酶催化合成生物柴油的研究   总被引:78,自引:0,他引:78  
生物柴油是用动植物油脂或长链脂肪酸与甲醇等低碳醇合成的脂肪酸甲酯,是一种替代能源。这里探讨了生物法制备生物柴油的过程,采用脂肪酶酯化和酯交换两条工艺路线进行催化合成。深入研究制备过程中,不同脂肪酶、酶的用量和纯度、有机溶剂、低碳醇的抑制作用、吸水剂的作用、反应时间和进程、底物的特异性和底物摩尔比等参数对酯化过程的影响。试验结果表明,采用最佳酯化反应参数和分批加入甲醇并用硅胶作脱水剂的工艺过程,酯化率可以达到92%,经分离纯化后的产品GC分析的纯度可达98%以上,固定化酶的使用半衰期可达到360h。同时对酯交换制备生物柴油过程中,甲醇的用量和甲醇的加入方式对脂肪酶催化过程的影响作了初步研究,优化后的酯交换率可达到83%。  相似文献   

5.
Biodiesel consists monoalkyl esters of long chain fatty acids. It is produced from vegetable oils or fats either by chemical transesterification or by lipase-catalyzed transesterification with methanol or ethanol. Biodiesel is a green fuel and can be used as a blend with diesel or alone. Either way, it does not require any modification in engine design or storage facilities. The enzymatic process offers several advantages over the chemical routes. The handicap of increase in process cost because of the cost of the enzyme can be overcome by using efficient production process for enzyme and using reusable derivatives of enzymes, such as immobilized enzyme. Numerous strategies available in the area of non-aqueous enzymology can be exploited during the enzymatic alcoholysis for biodiesel production. Some of the technical challenges and their possible solutions are also discussed.  相似文献   

6.
Simple alkyl ester derivatives of restaurant grease were prepared using a lipase from Pseudomonoas cepacia immobilized within a phyllosilicate sol-gel matrix as biocatalyst. Alcoholysis reactions of grease were carried out in solvent-free media using a one-step addition of alcohol to the reaction mixture. The immobilized lipase was active from 40 to 70 °C. Ester yields (60–97%) were highest when using a ratio of reactants of 2 mmol grease to 8 mmol alcohol and the biocatalyst was 10% (w/w) of grease in the presence of molecular sieves.  相似文献   

7.
This paper studies the synthesis of structured triacylglycerols (STAGs), rich in polyunsaturated fatty acids (PUFAs) by a two-step enzymatic process: (i) alcoholysis of fish oils (cod liver and tuna oils) with ethanol to obtain 2-monoacylglycerols (2-MAGs), catalyzed by 1,3 specific lipases and (ii) esterification of these 2-MAGs with caprylic acid (CA, 8:0), also catalyzed by a 1,3 specific lipase, to produce STAGs of structure CA–PUFA–CA. As regards the alcoholysis reaction, three factors have been studied: the influence of the type of lipase used (lipase D from Rhizopus oryzae, immobilized on Accurel MP1000, and Novozym 435 from Candida antarctica), the operational mode of a stirred tank reactor (STR operating in discontinuous and continuous mode) and the intensity of treatment (IOT = lipase amount × reaction time/oil amount). Although higher 2-MAG yields were obtained with lipase D, Novozym 435 was selected due to its greater stability in the operational conditions. The highest 2-MAG yield (63%) was attained in the STR operating in discontinuous mode at an IOT of 1 g lipase × h g oil?1 (at higher IOT the 2-MAGs were degraded to glycerol). This system was scaled up to 100 times the initial volume, achieving a similar yield (65%) at the same IOT. The 2-MAGs in the final alcoholysis reaction mixture were separated from ethyl esters by solvent extraction using solvents of low toxicity (ethanol and hexane); the 2-MAG recovery yield was over 90% and the purity was approximately 87–90%. Regarding the esterification of the 2-MAGs, the following factors were studied: the influence of the lipase type used, the presence or absence of solvent (hexane) and the reaction time or intensity of treatment (IOT = lipase amount × reaction time/2-MAG amount). Of the five lipases tested, the highest STAG percentages (over 90%) were attained with lipases D and DF, immobilized on Accurel MP1000. These STAGs contain 64% CA, of which 98% is at positions 1 and 3. Position 2 contains 5% CA and 45% PUFAs, which means that all the PUFAs that were located at position 2 in the original oil remain in that position in the final STAGs. The lipase D immobilized on Accurel MP1000 is stable in the operational conditions used in the esterification reaction. Finally the purification of STAGs was carried out by neutralization of free fatty acids with hydroethanolic solution of KOH and extraction of STAGs with hexane. By this method purity was over 95% and separation yields were about 80%.  相似文献   

8.
Lipase (triacylglycerol acylhydrolase) is a unique enzyme which can catalyze various types of reactions such as hydrolysis, esterification, alcoholysis etc. In particular, hydrolysis of vegetable oil with lipase as a catalyst is widely studied. Free lipase, lipase immobilized on suitable support, lipase encapsulated in a reverse micelle and lipase immobilized on a suitable membrane to be used in membrane reactor are the most common ways of employing lipase in oil hydrolysis. Castor oil is a unique vegetable oil as it contains high amounts (90%) of a hydroxy monounsaturated fatty acid named ricinoleic acid. This industrially important acid can be obtained by hydrolysis of castor oil. Different conventional hydrolysis processes have certain disadvantages which can be avoided by a lipase-catalyzed process. The degree of hydrolysis varies widely for different lipases depending on the operating range of process variables such as temperature, pH and enzyme loading. Immobilization of lipase on a suitable support can enhance hydrolysis by suppressing thermal inactivation and estolide formation. The presence of metal ions also affects lipase-catalyzed hydrolysis of castor oil. Even a particular ion has different effects on the activity of different lipases. Hydrophobic organic solvents perform better than hydrophilic solvents during the reaction. Sonication considerably increases hydrolysis in case of lipolase. The effects of additives on the same lipase vary with their types. Nonionic surfactants enhance hydrolysis whereas cationic and anionic surfactants decrease it. A single variable optimization method is used to obtain optimum conditions. In order to eliminate its disadvantages, a statistical optimization method is used in recent studies. Statistical optimization shows that interactions between any two of the following pH, enzyme concentration and buffer concentration become significant in presence of a nonionic surfactant named Span 80.  相似文献   

9.
Biodiesel production with immobilized lipase: A review   总被引:1,自引:0,他引:1  
Fatty acid alkyl esters, also called biodiesel, are environmentally friendly and show great potential as an alternative liquid fuel. Biodiesel is produced by transesterification of oils or fats with chemical catalysts or lipase. Immobilized lipase as the biocatalyst draws high attention because that process is “greener”. This article reviews the current status of biodiesel production with immobilized lipase, including various lipases, immobilization methods, various feedstocks, lipase inactivation caused by short chain alcohols and large scale industrialization. Adsorption is still the most widely employed method for lipase immobilization. There are two kinds of lipase used most frequently especially for large scale industrialization. One is Candida antartica lipase immobilized on acrylic resin, and the other is Candida sp. 99–125 lipase immobilized on inexpensive textile membranes. However, to further reduce the cost of biodiesel production, new immobilization techniques with higher activity and stability still need to be explored.  相似文献   

10.
Lipase-catalyzed diacylation of 1,3-butanediol   总被引:1,自引:0,他引:1  
Summary A kinetic resolution of 1,3-butanediol was accomplished by lipase-catalyzed enantioselective diacylations in organic solvent. Diacylation of 1,3-butanediol was carried out using immobilized lipase SP382 (from Candida sp.) to produce (R) -1,3-diacetoxybutane with 85.8% e.e.. And then, this optically active product was chemically hydrolyzed to diol, and re-acylated with lipase SP382 to (R) -1,3-diacetoxybutane with over 98% e.e..  相似文献   

11.
A lipase from Candida sp., suitable for transesterification of fats and oils to produce fatty acid methyl ester (FAME), was immobilized on a cheap cotton membrane, in this paper. The conversion ratio of salad oil to biodiesel could reach up to 96% with the optimal reaction conditions. Continuous reaction in a fixed bed reactor was also investigated. A three-step transesterification with methanol (methanolysis) of oil was conducted by using a series of nine columns packed with immobilized Candida sp. 99–125 lipase. As substrate of the first reaction step, plant or waste oil was used together with 1/3 molar equivalent of methanol against total fatty acids in the oil. Mixtures of the first- and second-step eluates and 1/3 molar equivalent of methanol were used for the second- and third-reaction steps. A hydrocyclone was used in order to on-line separate the by-product glycerol after every 1/3 molar equivalent of methanol was added. Petroleum ether was used as solvent (3/2, v/v of oil) and the pump was operated with a flow rate of 15 L/h giving an annual throughput of 100 t. The final conversion ratio of the FAME from plant oil and waste oil under the optimal condition was 90% and 92%, respectively. The life of the immobilized lipase was more than 10 days. This new technique has many strongpoints such as low pollution, environmentally friendly, and low energy costs.  相似文献   

12.
This study aims at carrying out lipase-catalyzed synthesis of fatty acid methyl esters (biodiesel) from various vegetable oils using lipase immobilized onto a novel microporous polymeric matrix (MPPM) as a low-cost biocatalyst. The research is focused on three aspects of the process: (a) MPPM synthesis (monolithic, bead, and powder forms), (b) microporous polymeric biocatalyst (MPPB) preparation by immobilization of lipase onto MPPM, and (c) biodiesel production by MPPB. Experimental planning of each step of the study was separately carried out in accordance with design of experiment (DoE) based on Taguchi methodology.Microporous polymeric matrix (MPPM) containing aldehyde functional group was synthesized by polyHIPE technique using styrene, divinylbenzene, and polyglutaraldehyde. Thermomyces lanuginosus lipase was covalently attached onto MPPM with 80%, 85%, and 89% immobilization efficiencies using bead, powder, and monolithic forms, respectively. Immobilized enzymes were successfully used for the production of biodiesel using sunflower, soybean, and waste cooking oils. It was shown that immobilized enzymes retain their activities during 10 repeated batch reactions at 25 °C, each lasting 24 h. Since the developed novel method is simple yet effective, it could have a potential to be used industrially for the production of chemicals requiring immobilized lipases.  相似文献   

13.
Propan-2-ol was used as an acyl acceptor for immobilized lipase-catalyzed preparation of biodiesel. The optimum conditions for transesterification of crude jatropha (Jatropha curcas), karanj (Pongamia pinnata) and sunflower (Helianthus annuus) oils were 10% Novozym-435 (immobilized Candida antarctica lipase B) based on oil weight, alcohol to oil molar ratio of 4:1 at 50 °C for 8 h. The maximum conversions achieved using propan-2-ol were 92.8, 91.7 and 93.4% from crude jatropha, karanj and sunflower oils, respectively. Reusability of the lipase was maintained over 12 repeated cycles with propan-2-ol while it reached to zero by 7th cycle when methanol was used as an acyl acceptor, under standard reaction conditions. Revisions requested 22 December 2005; Revisions received 26 January 2006  相似文献   

14.
Lipase-catalyzed enantioselective acylation of (±)-2,3-epoxy-8-methyl-1-nonanol with acetic anhydride in diisopropyl ether yielded (2S, 3R)-1-acetoxy-2,3-epoxy-8-methylnonane with 79% enantiomeric excess (ee). The optical purity of the epoxy ester was improved up to 95% ee by a second step of lipase-catalyzed enantioselective alcoholysis in diisopropyl ether.  相似文献   

15.
The enzymatic acylation of a flavonoid (naringin) was investigated in this work. This atypic substrate for a lipase was esterified very selectively by the immobilized Candida antarctica lipase: a single product was synthesized and was assumed to be the 6-O-palmitate naringin ester acylated on the glucose moiety. As lipase-catalyzed esterification reactions in organic media are greatly influenced by the water content, the effect of the initial hydration level of the reaction medium components was pointed out for naringin palmitate synthesis. 2-Methyl 2-butanol (solvent) and naringin (acyl acceptor) provided high amounts of water and when dried increased the conversion yield by 63% and the specific activity by 60%. On the contrary, the enzyme must not be dried because water is essential for the three-dimensional structure of the protein and, if absent, results in a 67% loss of activity. As water was produced in parallel to ester synthesis, the equilibrium of the reaction might be shifted by its removal. When the reaction was carried out with 100 g l(-1) molecular sieves 4A added after 24 h of reaction, a conversion yield of 43% was reached after 55 h reaction.  相似文献   

16.
The lipase-catalyzed synthesis of 6-O-glucose palmitate in a mainly solid-phase system was investigated. Lipase from Candida antarctica B was immobilized on various carriers by physical absorption or covalent binding. Highest conversion (84%, 24 h) and productivity (0.69 mmol product per gram lipase and hour) were achieved with lipase immobilized on polypropylene (EP 100), whereas other carriers gave at maximum 46% conversion. A good agreement between aquaphilicity of the carrier and conversion was found. The lipase was reused six times and conversion decreased by only approximately 25%. The influence of temperature, organic solvent and fatty acid chain length on lipase stability was also investigated. For the latter, a correlation between the log P of the fatty acid (determined from hydrophobic fragment constants) and lipase stability was observed. Palmitic acid and the corresponding vinyl ester gave highest conversion in the acylation of β-d(+)-glucose, whereas tripalmitin, palmitic acid anhydride and the methyl ester allowed only low conversion. Beside β-d(+)-glucose, also other monosaccharides and trehalose were acylated.  相似文献   

17.
Immobilized Pseudomonas fluorescens lipase enzyme was used to enrich the important polyunsaturated fatty acid (PUFA), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) from tuna oil. Hydrolysis, esterification, and transesterification reactions were studied in detail to find out the fractionation pattern of DHA and EPA during these processes due to preferential selectivity for or against these PUFA. Hydrolysis with P. fluorescens biotype I lipase with stoichiometric amount of water content gave more than 80% of DHA and EPA in the free fatty acid (FFA) form after around 60% of hydrolysis. After some preferential specificity during the early stages of hydrolysis, P. fluorescens lipase exhibits nonselective characteristics on extended hydrolysis. Esterification of FFA extracted from the completely hydrolyzed mixture of tuna oil was found to be better with long chain fatty alcohol like octanol which lead to good enrichment (44.5% for DHA and 11.3% for EPA) and yields of the PUFA in the FFA form. Transesterification (ethanolysis) with immobilized P. fluorescens lipase enzyme resulted in good enrichment and recovery of DHA and EPA in the glyceride mixture. After around 60% of ester synthesis, 74% of (DHA + EPA) enrichment was achieved with yields of more than 90% in the glyceride mixture.  相似文献   

18.
To perform the lipase-catalyzed synthesis of L-ascorbic acid derivatives from plant-based compounds such as cinnamic and ferulic acid under mild reaction conditions, the activities of immobilized Candida ntarctica lipase with different cinnamic acid esters and substituted cinnamic acids were compared. As a result, immobilized C. ntarctica lipase was found to prefer vinyl cinnamic acid to other esters such as allyl-, ethyl-, and isobutyl cinnamic acids as well as substituted cinnamic acids such as p-coumaric acid, caffeic acid, ferulic acid, and sinapic acid. Based on these results, large-scale synthesis of 6-O-cinnamyl-L-ascorbic acid ester was performed using immobilized C. ntarctica lipase in dry organic solvent, resulting in 68% yield (493 mg) as confirmed by 13C-NMR.  相似文献   

19.
Applications of lipase-catalyzed reactions, such as hydrolysis of fats for the production of fatty acids and esterification or interesterification of fats and other lipids for the preparation of diverse products in food and non-food industries, are reviewed. At present, the application of lipases in biotechnological processes seems to be economically feasible and appropriate mainly for the preparation of specific products of high commercial value, which cannot be prepared conveniently by chemical synthesis. For example, polyunsaturated fatty acids that can be used in dietetic products are prepared under mild conditions by hydrolysis of marine oils and certain plant oils with non-specific triacylglycerol lipases. Very long chain monounsaturated fatty acids (gadoleic, erucic and nervonic) that are of value in oleochemical industry can be prepared by partial hydrolysis of cruciferous oils with sn-1,3-specific lipases. Lipase-catalyzed esterification yields a variety of products, such as monoacylglycerols that are used as emulsifiers, and wax esters resembling jojoba oil which is used in cosmetics industry. Interesterification of fats with sn-1,3-specinc lipases affords specialty products, such as cocoa butter substitutes which are used in confectionary products and medium chain triacylglycerols that can be used in dietetic products. Phospholipase-catalyzed exchange of acyl moieties or bases of glycerophos-pholipids yields several products of biomedical interest.  相似文献   

20.
A lipase-catalyzed procedure is described for the one-pot conversion of carboxylic acids into substituted amides via in-situ formation of the ethyl ester and subsequent aminolysis. The procedure was optimized for the preparation of tetrahydro-N-[3-(methylamino)-propyl]-2-furancarboxamide, an intermediate in the synthesis of Alfuzosin, a reducing agent of symptoms associated with benign prostatic hypertrophy. This methodology proved to be general and can be applied to open-chain, cyclic, hydroxy-, amino-, dicarboxylic, various chain lengths, and unsaturated acids. Moreover, the enzyme shows a regioselective behavior in relation to primary and secondary amino groups. The procedure involved the treatment of the corresponding carboxylic acid with ethyl alcohol in presence of immobilized Candida antarctica lipase followed by addition of amine. The amide is obtained in good yields and regioselective way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号