首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cytosolic prostaglandin (PG) E synthase (cPGES) is constitutively expressed in various cells and regulates cyclooxygenase (COX)-1-dependent immediate PGE(2) generation. Its primary structure is identical to co-chaperone p23, a heat shock protein 90 (Hsp90)-binding protein. We have revealed that Hsp90 regulated both cPGES/p23 and its client protein kinase CK2. In this study, in order to examine the role of cPGES/p23 in vivo, we generated mice deficient in cPGES/p23 by a targeted disruption of exons 2 and 3, containing Tyr9, which is essential for catalytic activity. Heterozygotes are viable, fertile, and appear normal, despite a decrease in cPGES/p23 protein level. A generation of offsprings derived from intercrosses of cPGES/p23 homozygous mice revealed that 109, 247, and 10 pups were wild type, heterozygous, and homozygous, respectively; however, all homozygotes died at birth. The absence of viable null mutants, with heterozygotes and wild-type offspring obtained at a ratio of approximately 2:1, indicated that homozygosity for the cPGES/p23 null mutant leads to peri-natal lethality. Embryos homozygous for cPGES/p23-null had lower body weights than wild-type embryos, and abnormal morphology of skin and lungs. Moreover, the PGE(2) content in the lungs of cPGES/p23-null embryos was lower than that of the wild type. These results indicate that cPGES-derived PGES is involved in the normal development of mouse embryonic lung.  相似文献   

2.
Microsomal prostaglandin E synthase-1 (mPGES-1) is the terminal enzyme regulating the synthesis of prostaglandin E2 (PGE2) in inflammatory conditions. In this study we investigated the regulation of mPGES-1 in gingival fibroblasts stimulated with the inflammatory mediators interleukin-1 beta (IL-1beta) and tumour necrosis factor alpha (TNFalpha). The results showed that IL-1beta and TNFalpha induce the expression of mPGES-1 without inducing the expression of early growth response factor-1 (Egr-1). Treatment of the cells with the PLA2 inhibitor 4-bromophenacyl bromide (BPB) decreased the cytokine-induced mPGES-1 expression accompanied by decreased PGE2 production whereas the addition of arachidonic acid (AA) upregulated mPGES-1 expression and PGE2 production. The protein kinase C (PKC) activator PMA did not upregulate the expression of mPGES-1 in contrast to COX-2 expression and PGE2 production. In addition, inhibitors of PKC, tyrosine and p38 MAP kinase markedly decreased the cytokine-induced PGE2 production but not mPGES-1 expression. Moreover, the prostaglandin metabolites PGE2 and PGF2alpha induced mPGES-1 expression as well as upregulated the cytokine-induced mPGES-1 expression indicating positive feedback regulation of mPGES-1 by prostaglandin metabolites. The peroxisome proliferator-activated receptor-gamma (PPARgamma) ligand, 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2), decreased mPGES-1 expression but not COX-2 expression or PGE2 production. The results indicate that the inflammatory-induced mPGES-1 expression is regulated by PLA2 and 15d-PGJ2 but not by PKC, tyrosine kinase or p38 MAP kinase providing new insights into the regulation of mPGES-1.  相似文献   

3.
He YP  Zhao LY  Zheng QS  Liu SW  Zhao XY  Lu XL  Niu XL 《生理学报》2008,60(3):333-340
精氨酸升压素(arginine vasopressin, AVP)是高血压和心力衰竭时激活的神经体液和血流动力学因子,同时,它还具有直接的生长刺激作用.我们以往的研究显示AVP可诱导新生大鼠心肌成纤维细胞(cardiac fibroblasts, CFs)增殖.本研究旨在进一步观察AVP是否对成年大鼠CFs具有促增殖作用,并探计其机制.采用组织块法培养成年大鼠CFs,用[3H]-TdR掺入法和流式细胞仪方法观察AVP作用下CFs的DNA合成和细胞周期分布.根据特异性底物髓磷脂基质蛋白(myelin basic protein, MBP)的磷酸化水平测定细胞外信号调节激酶1/2 (extracellular signal-regulated kinase 1/2, ERK1/2)的活性.用Western blot检测ERK1/2的磷酸化和p27Kip1、细胞周期蛋白D1、 A、 E的表达.结果显示,AVP(0.1μmol/L)可促进成年大鼠CFs的DNA合成,该作用可被V1受体拮抗剂d(CH2)5[Tyr2(Me),Arg8]-vasopressin (0.1μmol/L)阻断,而不受V2受体拮抗剂desglycinamide [d(CH2)5, D-Ile2, Ile4, Arg8]-vasopressin (0.1μmol/L)的影响.AVP可激活ERK1/2,用蛋白激酶C(protein kinase C, PKC)激动剂佛波酯(phorbol 12-myristate 13-acetate, PMA, 30nmol/L, 5min)急性刺激可模拟该作用,而PMA持续慢性作用(2.5μmol/L,24h)耗竭PKC后则抑制AVP对ERK1/2的激活.AVP可抑制p27Kip1的蛋白表达,升高细胞周期蛋白D1、 A和E的表达,同时促进细胞周期由G0/G1期进入S期.ERK1/2抑制剂PD98059 (30μmol/L)阻断AVP对DNA合成、p27Kip1、细胞周期蛋白D1、A和E蛋白表达的作用,并抑制细胞周期进程.以上结果表明,AVP可促进成年大鼠CFs增殖,该作用由V1受体和PKC-ERK1/2通路介导.AVP可通过ERK1/2调控p27Kip1、细胞周期蛋白D1、A和E的表达,从而促进成年大鼠CFs的细胞周期进程.  相似文献   

4.
Understanding the mechanisms of sphingosine 1-phosphate (S1P)-induced cyclooxygenase (COX)-2 expression and prostaglandin E2 (PGE2) formation in renal mesangial cells may provide potential therapeutic targets to treat inflammatory glomerular diseases. Thus, we evaluated the S1P-dependent signaling mechanisms which are responsible for enhanced COX-2 expression and PGE2 formation in rat mesangial cells under basal conditions. Furthermore, we investigated whether these mechanisms are operative in the presence of angiotensin II (Ang II) and of the pro-inflammatory cytokine interleukin-1β (IL-1β).  相似文献   

5.
Summary Long-term (48-hr) incubations of either the fibroblast strain WI-48 or its SV40-transformed counterpart, WI-38-VA13-2RA, in growth medium containing 1 μm prostaglandin E1 (PGE1) resulted in a sustained production and release of cyclic AMP from the cells into the medium. Despite the steady production, intracellular levels of the nucleotide decreased, reaching steady-state values within 4 hr of the initial exposure to PGE1. These values were maintained for the remainder of the 48-hr experimental period. The steadystate levels of intracellular cyclic AMP were higher than those observed in unstimulated cells, and cyclic AMP-dependent protein phosphokinase was in a highly activated state as compared to controls. Under these conditions little change in the growth or morphology of either the normal or transformed cells was observed. In contrast, inhibition of growth, apparent cell death, and unusual morphological changes were observed in both normal and transformed cells when high concentrations of either PGE1 (10 μm) or the phosphodiesterase inhibitor 1-methyl, 3-isobutylxanthine (0.5mm to 2mm) were used, which was indicative of toxic effects of the drugs. It was concluded that cyclic AMP-mediated activation of protein phosphokinase does not completely inhibit growth in WI-38 cells or restore normal growth and morphology to the SV40-transformed cells. This work was supported by Grants AM 13904 and CA 21612 from the National Institutes of Health, Department of Health, Education and Welfare.  相似文献   

6.
Previous studies demonstrated that melittin, the main peptide in bee venom, could cause persistent spontaneous pain, primary heat and mechanical hyperalgesia, and enhance the excitability of spinal nociceptive neurons. However, the underlying mechanism of melittin-induced cutaneous hypersensitivity is unknown. Effects of melittin applied topically to acutely dissociated rat dorsal root ganglion neurons were studied using whole-cell patch clamp and calcium imaging techniques. Melittin induced intracellular calcium increases in 60% of small (<25 μm) and medium (<40 μm) diameter sensory neurons. In current clamp, topical application of melittin evoked long-lasting firing in 55% of small and medium-sized neurons tested. In voltage clamp, melittin evoked inward currents in sensory neurons in a concentration-dependent manner. Repeated application of melittin caused increased amplitude of the inward currents. Most melittin-sensitive neurons were capsaicin-sensitive, and 65% were isolectin B4 positive. Capsazepine, the TRPV1 receptor inhibitor, completely abolished the melittin-induced inward currents and intracellular calcium transients. Inhibitions of signaling pathways showed that phospholipase A2, but not phospholipase C, was involved in producing the melittin-induced inward currents. Inhibitors of cyclooxygenases (COX) and lipoxygenases (LOX), two key components of the arachidonic acid metabolism pathway, each partially suppressed the inward current evoked by melittin. Inhibitors of protein kinase A (PKA), but not of PKC, also abolished the melittin-induced inward currents. These results indicate that melittin can directly excite small and medium-sized sensory neurons at least in part by activating TRPV1 receptors via PLA2-COXs/LOXs cascade pathways.  相似文献   

7.
Ceramide is a well-characterized sphingolipid metabolite and second messenger that participates in numerous biological processes. In addition to serving as a precursor to complex sphingolipids, ceramide is a potent signaling molecule capable of regulating vital cellular functions. Perhaps its major role in signal transduction is to induce cell cycle arrest, and promote apoptosis. In contrast, little is known about the metabolic or signaling pathways that are regulated by the phosphorylated form of ceramide. It was first demonstrated that ceramide-1-phosphate (C1P) had mitogenic properties, and more recently it has been described as potent inhibitor of apoptosis and inducer of cell survival. C1P and ceramide are antagonistic molecules that can be interconverted in cells by kinase and phosphatase activities. An appropriate balance between the levels of these two metabolites seems to be crucial for cell and tissue homeostasis. Switching this balance towards accumulation of one or the other may result in metabolic dysfunction, or disease. Therefore, the activity of the enzymes that are involved in C1P and ceramide metabolism must be efficiently coordinated to ensure normal cell functioning.  相似文献   

8.
We found that prostaglandin (PG) D(2), the most abundant PG in the central nervous system, stimulates food intake after intracerebroventricular administration in mice. The orexigenic effect of PGD(2) was mimicked by a selective agonist for the DP(1) receptor among two receptor subtypes for PGD(2), and abolished by its antagonist. Central administration of an antagonist or antisense oligodeoxynucleotide for the DP(1) receptor remarkably decreased food intake, body weight and fat mass. Hypothalamic mRNA levels of lipocalin-type PGD synthase were up-regulated after fasting. The orexigenic activity of PGD(2) was also abolished by an antagonist for neuropeptide Y (NPY) Y(1) receptor. Taken together, PGD(2) may stimulate food intake through central DP(1) receptor coupled to the NPY system.  相似文献   

9.
We reported recently that sphingosine-1-phosphate (S1P) is a novel regulator of aldosterone secretion in zona glomerulosa cells of adrenal glands and that phospholipase D (PLD) is implicated in this process. We now show that S1P causes the phosphorylation of protein kinase B (PKB) and extracellularly regulated kinases 1/2 (ERK 1/2), which is an indication of their activation, in these cells. These effects are probably mediated through the interaction of S1P with the Gi protein-coupled receptors S1P1/3, as pretreatment with pertussis toxin or with the S1P1/3 antagonist VPC 23019 completely abolished the phosphorylation of these kinases. Inhibitors of phosphatidylinositol 3-kinase (PI3K) or mitogen-activated protein kinase kinase (MEK) blocked S1P-stimulated aldosterone secretion. This inhibition was only partial when the cells were incubated independently with inhibitors of each pathway. However, aldosterone output was completely blocked when the cells were pretreated with LY 294002 and PD 98059 simultaneously. These inhibitors also blocked PLD activation, which indicates that this enzyme is downstream of PI3K and MEK in this system. We propose a working model for S1P in which stimulation of the PI3K/PKB and MEK/ERK pathways leads to the stimulation of PLD and aldosterone secretion.  相似文献   

10.
Platelet-derived growth factor (PDGF) is a biological mediator for connective tissue cells and plays a critical role in a wide variety of physiological and pathological processes. We here investigated the effect of PDGF on arachidonic acid release and prostaglandin E(2) (PGE(2)) synthesis in human gingival fibroblasts (HGF). PDGF induced arachidonic acid release in a time- and dose-dependent manner, and simultaneously induced a transient increase in intracellular Ca(2+) concentration ([Ca(2+)](i)), but less provoked PGE(2) release and cyclooxygenase-2 (COX-2) mRNA expression. When [Ca(2+)](i) was increased by Ca(2+)-mobilizing reagents, arachidonic acid release was increased. The PDGF-induced arachidonic acid release and increase in [Ca(2+)](i) were prevented by a tyrosine kinase inhibitor. On the other hand, in the HGF pre-stimulated with interleukin-1beta (IL-1beta), PDGF clearly increased PGE(2) release. The PDGF-induced PGE(2) release was inhibited by a tyrosine kinase inhibitor. In the HGF pretreated with IL-1beta, arachidonic acid strongly enhanced PGE(2) release and COX-2 mRNA expression. These results suggest that PDGF stimulates arachidonic acid release by the increase in [Ca(2+)](i) via tyrosine kinase activation, and which contributes to PGE(2) production via COX-2 expression in HGF primed with IL-1beta.  相似文献   

11.
12.
Inhibition of the lipid phosphatase SH2-domain containing inositol phosphatase 2 (SHIP2) in L6-C10 muscle cells, in 3T3-L1 adipocytes and in the liver of db/db mice has been shown to ameliorate insulin signal transduction and established SHIP2 as a negative regulator of insulin action. Here we show that SHIP2 inhibition in INS1E insulinoma cells increased Akt, glycogen synthase kinase 3 and extracellular signal-regulated kinases 1 and 2 phosphorylation. SHIP2 inhibition did not prevent palmitate-induced apoptosis, but increased cell proliferation. Our data raise the interesting possibility that SHIP2 inhibition exerts proliferative effects in beta-cells and further support the attractiveness of a specific inhibition of SHIP2 for the treatment of type 2 diabetes.  相似文献   

13.
14.
1alpha,25(OH)(2)D(3) activates protein kinase C (PKC) in rat growth plate chondrocytes via mechanisms involving phosphatidylinositol-specific phospholipase C (PI-PLC) and phospholipase A(2) (PLA(2)). The purpose of this study was to determine if 1alpha,25(OH)(2)D(3) activates PI-PLC directly or through a PLA(2)-dependent mechanism. We determined which PLC isoforms are present in the growth plate chondrocytes, and determined which isoform(s) of PLC is(are) regulated by 1alpha,25(OH)(2)D(3). Inhibitors and activators of PLA(2) were used to assess the inter-relationship between these two phospholipid-signaling pathways. PI-PLC activity in lysates of prehypertrophic and upper hypertrophic zone (growth zone) cells that were incubated with 1alpha,25(OH)(2)D(3), was increased within 30s with peak activity at 1-3 min. PI-PLC activity in resting zone cells was unaffected by 1alpha,25(OH)(2)D(3). 1beta,25(OH)(2)D(3), 24R,25(OH)(2)D(3), actinomycin D and cycloheximide had no effect on PLC in lysates of growth zone cells. Thus, 1alpha,25(OH)(2)D(3) regulation of PI-PLC enzyme activity is stereospecific, cell maturation-dependent, and nongenomic. PLA(2)-activation (mastoparan or melittin) increased PI-PLC activity to the same extent as 1alpha,25(OH)(2)D(3); PLA(2)-inhibition (quinacrine, oleyloxyethylphosphorylcholine (OEPC), or AACOCF(3)) reduced the effect of 1alpha,25(OH)(2)D(3). Neither arachidonic acid (AA) nor its metabolites affected PI-PLC. In contrast, lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE) activated PI-PLC (LPE>LPC). 1alpha,25(OH)(2)D(3) stimulated PI-PLC and PKC activities via Gq; GDPbetaS inhibited activity, but pertussis toxin did not. RT-PCR showed that the cells express PLC-beta1a, PLC-beta1b, PLC-beta3 and PLC-gamma1 mRNA. Antibodies to PLC-beta1 and PLC-beta3 blocked the 1alpha,25(OH)(2)D(3) effect; antibodies to PLC-delta and PLC-gamma did not. Thus, 1alpha,25(OH)(2)D(3) regulates PLC-beta through PLA(2)-dependent production of lysophospholipid.  相似文献   

15.
Cyclooxygenase 2 and release of prostaglandin E2 are involved in many responses including inflammation and are upregulated during cellular senescence. However, little is known about the role of lipid inflammatory mediators in senescence. Here, we investigated the mechanism by which the COX-2/PGE2 axis induces senescence. Using the NS398 specific inhibitor of COX-2, we provide evidence that reactive oxygen species by-produced by the COX-2 enzymatic activity are negligible in front of the total senescence-associated oxidative stress. We therefore investigated the role of PGE2 by invalidating the PGE2 synthases downstream of COX-2, or the specific PGE2 receptors, or by applying PGE2 or specific agonists or antagonists. We evaluated the effect on senescence by evaluating the senescence-associated proliferation arrest, the percentage of senescence-associated β-galactosidase-positive cells, and the expression of senescent molecular markers such as IL-6 and MCP1. We show that PGE2 acting on its EP specific receptors is able to induce both the onset of senescence and the maintenance of the phenotype. It did so only when the PGE2/lactate transporter activity was enhanced, indicating that PGE2 acts on senescence more via the pool of intracellular EP receptors than via those localized at the cell surface. Treatment with agonists, antagonists and silencing of the EP receptors by siRNA revealed that EP3 was the most involved in transducing the intracrine effects of PGE2. Immunofluorescence experiments confirmed that EP3 was more localized in the cytoplasm than at the cell surface. Taken together, these results suggest that COX-2 contributes to the establishment and maintenance of senescence of normal human fibroblasts via an independent-ROS and a dependent-PGE2/EPs intracrine pathway.  相似文献   

16.
17.
Chen WY  Ni Y  Pan YM  Shi QX  Yuan YY  Chen AJ  Mao LZ  Yu SQ  Roldan ER 《FEBS letters》2005,579(21):4692-4700
We investigated whether GABA activates phospholipase A2 (PLA2) during acrosomal exocytosis, and if the MEK-ERK1/2 pathway modulates PLA2 activation initiated by GABA, progesterone or zona pellucida (ZP). In guinea pig spermatozoa prelabelled with [14C]arachidonic acid or [14C]choline chloride, GABA stimulated a decrease in phosphatidylcholine (PC), and release of arachidonic acid and lysoPC, during exocytosis. These lipid changes are indicative of PLA2 activation and appear essential for exocytosis since inclusion of aristolochic acid (a PLA2 inhibitor) abrogated them, along with exocytosis. GABA activation of PLA2 seems to be mediated, at least in part, by diacylglycerol (DAG) and protein kinase C since inclusion of the DAG kinase inhibitor R59022 enhanced PLA2 activity and exocytosis stimulated by GABA, whereas exposure to staurosporine decreased both. GABA-, progesterone- and ZP-induced release of arachidonic acid and exocytosis were prevented by U0126 and PD98059 (MEK inhibitors). Taken together, our results suggest that PLA2 plays a fundamental role in agonist-stimulated exocytosis and that MEK-ERK1/2 are involved in PLA2 regulation during this process.  相似文献   

18.
Proteinase-activated receptor-1 (PAR1), upon activation, exerts prostanoid-dependent gastroprotection, and increases prostaglandin E(2) (PGE(2)) release through cyclooxygenase-2 (COX-2) upregulation in rat gastric mucosal epithelial RGM1 cells. However, there is a big time lag between the PAR1-triggered PGE(2) release and COX-2 upregulation in RGM1 cells; that is, the former event takes 18 h to occur, while the latter rapidly develops and reaches a plateau in 6 h. The present study thus aimed at clarifying mechanisms for the delay of PGE(2) release after PAR1 activation in RGM1 cells. Although a PAR1-activating peptide, TFLLR-NH(2), alone caused PGE(2) release at 18 h, but not 6 h, TFLLR-NH(2) in combination with arachidonic acid dramatically enhanced PGE(2) release even for 1-6 h. TFLLR-NH(2) plus linoleic acid caused a similar rapid response. CP-24879, a Δ(5)/Δ(6)-desaturase inhibitor, abolished the PGE(2) release induced by TFLLR-NH(2) plus linoleic acid, but not by TFLLR-NH(2) alone. The TFLLR-NH(2)-induced PGE(2) release was not affected by inhibitors of cytosolic phospholipase A(2) (cPLA(2)), Ca(2+)-independent PLA(2) (cPLA(2)) or secretory PLA(2) (sPLA(2)), but was abolished by their mixture or a pan-PLA(2) inhibitor. Among PLA(2) isozymes, mRNA of group IIA sPLA(2) (sPLA(2)-IIA) was upregulated following PAR1 stimulation for 6-18 h, whereas protein levels of PGE synthases were unchanged. These data suggest that the delay of PGE(2) release after COX-2 upregulation triggered by PAR1 is due to the poor supply of free arachidonic acid at the early stage in RGM1 cells, and that plural isozymes of PLA(2) including sPLA(2)-IIA may complementarily contribute to the liberation of free arachidonic acid.  相似文献   

19.
20.
1α,25-dihydroxyvitamin D3 [1,25-(OH)2D3] phosphorylates the extracellular signal-regulated kinase (ERK), a member of the mitogen-activated protein kinase (MAPK) family, within 30 sec in primary cultured chick skeletal muscle cells. MAPK of HeLa cell lines, which had been stably transfected with a cDNA library derived from mRNA of chick skeletal muscle cells, was also rapidly phosphorylated by 1,25-(OH)2D3. These cell lines have the potential to be a good tool for further investigation of rapid non-genomic mechanism activated by 1,25-(OH)2D3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号