首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
The nucleotide sequence (1579 bp) of tetracycline-resistance determinant and flanking regions of the cloned 5.1 kb DNA fragment from Bacillus subtilis GSY908 chromosome (Sakaguchi, R. and Shishido, K. (1988) Biochim. Biophys. Acta 949, 49-57) were determined and compared with those of the B. subtilis tetracycline-resistance plasmid pNS1981. The tetracycline-resistance structural (tet) genes of the B. subtilis GSY908 chromosome (tetBS908) and pNS1981 (tetpNS1981) were found to be highly homologous (80% identical). Both tet genes were composed of 1374 bp and 458 amino-acid residues initiating from a GTG codon preceded by a ribosome-binding site (RBS-2). Upstream from tetBS908 there exists a short open reading frame (20 amino acids) initiating from a ATG codon preceded by its own RBS (RBS-1). This leader sequence was also highly homologous to that of tetpNS1981 except for a deletion of one bp between the RBS-1 and the ATG codon.  相似文献   

7.
8.
通过PCR的方法从Bacillus subtilis基因组中克隆了中性植酸酶基因nphy,DNA全序列分析表明其结构基因全长1152个核苷酸(编码383个氨基酸),5′端有一编码26个氨基酸的信号肽序列。去除信号肽编码序列的nphy克隆到大肠杆菌IPTG诱导表达载体pTYB40上,在大肠杆菌中得到了高效表达,表达量达到大肠杆菌可溶性蛋白的40%以上,表达产物具有生物学活性,证实了克隆到的中性植酸酶的基因有正常的生物学功能。  相似文献   

9.
10.
11.
12.
Abstract We have selected a Bacillus subtilis 168-borne xylR Ser to Leu mutation at position 41 of the encoded amino acid sequence showing a constitutive expression phenotype for the xyl operon. When cloned on a multi-copy plasmid in a B. megaterium strain harbouring a single-copy xylA-lacZ fusion it leads to derepressor of β-galactosidase expression. Thus, it is trans dominant over the endogenous xylR , indicating that Xyl repressor functions as a multimer. This result also supports the assumption that the mutation is in a putative α-helix-turn-α-helix operator binding motif of Xyl repressor.  相似文献   

13.
14.
During translation of the Bacillus subtilis cdd gene, encoding cytidine deaminase (CDA), a ribosomal -1 frameshift occurs near the stop codon, resulting in a CDA subunit extended by 13 amino acids. The frequency of the frameshift is approximately 16%, and it occurs both when the cdd gene is expressed from a multicopy plasmid in Escherichia coli and when it is expressed from the chromosomal copy in B. subtilis. As a result, heterotetrameric forms of the enzyme are formed in vivo along with the dominant homotetrameric species. The different forms have approximately the same specific activity. The cdd gene was cloned in pUC19 such that the lacZ' gene of the vector followed the cdd gene in the -1 reading frame immediately after the cdd stop codon. By using site-directed mutagenesis of the cdd-lacZ' fusion, it was shown that frameshifting occurred at the sequence CGA AAG, 9 bp upstream of the in-frame cdd stop codon, and that it was stimulated by a Shine-Dalgarno-like sequence located 14 bp upstream of the shift site. The possible function of this frameshift in gene expression is discussed.  相似文献   

15.
16.
17.
18.
The deoR gene, which encodes the deor repressor protein in Escherichia coli, was fused to the strong Ptrc promoter in plasmid pKK233-2. The Ptrc promoter is kept repressed by lacI repressor to prevent cell killing. Induction of the Ptrc--deoR fusion plasmid resulted in the accumulation of 4% of the soluble protein as deoR protein. The deoR repressor protein was purified to 80% purity using conventional techniques; it has a mass of 28.5 kd and appears to exist as an octamer in solution. The deoR repressor is shown by DNase I footprinting to bind to the 16 bp palindromic sequence in the Pribnow box region of the deoP1 promoter. Also, the deoR repressor binds cooperatively in vitro to a DNA template with two deoR binding sites separated by 224 bp in keeping with the conclusion from genetic experiments that more than one operator is required for efficient repression of the deo operon.  相似文献   

19.
We isolated the gene amyE(TV1) from Thermoactinomyces vulgaris 94-2A encoding a nonglucogenic alpha-amylase (AmyTV1). A chromosomal DNA fragment of 2,247 bp contained an open reading frame of 483 codons, which was expressed in Escherichia coli and Bacillus subtilis. The deduced amino acid sequence of the AmyTV1 protein was confirmed by sequencing of several peptides derived from the enzyme isolated from a T. vulgaris 94-2A culture. The amino acid sequence was aligned with several known alpha-amylase sequences. We found 83% homology with the 48-kDa alpha-amylase part of the Bacillus polymyxa beta-alpha-amylase polyprotein and 50% homology with Taka amylase A of Aspergillus oryzae but only 45% homology with another T. vulgaris amylase (neopullulanase, TVA II) recently cloned from strain R-47. The putative promoter region was characterized with primer extension and deletion experiments and by expression studies with B. subtilis. Multiple promoter sites (P3, P2, and P1) were found; P1 alone drives about 1/10 of the AmyTV1 expression directed by the native tandem configuration P3P2P1. The expression levels in B. subtilis could be enhanced by fusion of the amyE(TV1) coding region to the promoter of the Bacillus amyloliquefaciens alpha-amylase gene.  相似文献   

20.
We have developed a xylose-dependent expression system for tight and modulated expression of cloned genes in Bacillus subtilis. The expression system is contained on plasmid pSWEET for integration at the amyE locus of B. subtilis and incorporates components of the well-characterized, divergently transcribed xylose utilization operon. The system contains the xylose repressor encoded by xylR, the promoter and 5' portion of xylA containing an optimized catabolite-responsive element, and intergenic xyl operator sequences. We have rigorously compared this expression system to the isopropyl-beta-D-thiogalactopyranoside-induced spac system using a thermostable beta-galactosidase reporter (BgaB) and found the xyl promoter-operator to have a greater capacity for modulated expression, a higher induction/repression ratio (279-fold for the xyl system versus 24-fold with the spac promoter), and lower levels of expression in the absence of an inducer. We have used this system to probe an essential function in wall teichoic acid biosynthesis in B. subtilis. Expression of the teichoic acid biosynthesis gene tagD, encoding glycerol-3-phosphate cytidylyltransferase, from the xylose-based expression system integrated at amyE exhibited xylose-dependent complementation of the temperature-sensitive mutant tag-12 when grown at the nonpermissive temperature. Plasmid pSWEET thus provides a robust new expression system for conditional complementation in B. subtilis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号