首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The polyphosphatase PPN1 of Saccharomyces cerevisiae shows an exopolyphosphatase activity splitting phosphate from chain end and an endopolyphosphatase activity fragmenting high molecular inorganic polyphosphates into shorter polymers. We revealed the compounds switching these activities of PPN1. Phosphate release and fragmentation of high molecular polyphosphate prevailed in the presence of Co2+ and Mg2+, respectively. Phosphate release and polyphosphate chain shortening in the presence of Co2+ were inhibited by ADP but not affected by ATP and argininе. The polyphosphate chain shortening in the presence of Mg2+ was activated by ADP and arginine but inhibited by ATP.  相似文献   

3.
EstA was purified from the supernatant by A. lwoffii 16C-1. Its molecular mass was determined to be 45 kDa, and the optimal activity occurred when the pH level was 8.0 at a temperature of 37°C. The activation energies for the hydrolysis of p-nitrophenyl butyrate was determined to be 11.25 kcal/mol in the temperature range of 10–37°C. The enzyme was unstable at temperatures higher than 50°C. The Michaelis constant (K m ) and V max for p-nitrophenyl butyrate were 11 μM and 131.6 μM min−1 mg of protein-1, respectively. The enzyme was strongly inhibited by Hg2−, Ca2+, Mg2+, Fe2+, Cu2+, Zn2+, Mn2+, Co2+, ethylemediaminetetraacetic acid (EDTA), phenylmethylsulfonyl fluoride (PMSF), and diisopropyl fluorophosphate (DFP). Received: 20 August 2001 / Accepted: 20 September 2001  相似文献   

4.
An extracellular endoxylanase was isolated from the xylanolytic complex of Aspergillus niger B03. The enzyme was purified to a homogenous form using consecutive ultrafiltration and anion exchange chromatography. The endoxylanase was a monomer protein with a molecular weight of 33,000 Da determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and 34,000 Da determined by gel filtration. The optimal pH and temperature values for the enzyme action were 6.0 and 60°C, respectively. Endoxylanase was stable at 40°C, pH 7.0 for 210 min. The thermal stability of the enzyme was significantly increased in the presence of glycerol and sorbitol. The enzyme activity was inhibited by Cu2+, Fe2+, Fe3+, and Ag1+, and it was activated by Mn2+. The substrate specificity and kinetic parameters of the enzyme were determined with different types of xylans. Endoxylanase displayed maximum activity in the case of oat spelt xylan, with an apparent K m value of 8.19 mg/ml. The substrate specificity and the product profile of the enzyme suggested it to be an endoxylanase.  相似文献   

5.
Increased production, secretion, and activity of β-glucosidase in the filamentous fungus Termitomyces clypeatus was achieved in presence of the glycosylation inhibitor 2-deoxy-d-glucose (0.05%, w/v) during submerged fermentation. Enzyme activity increased to 163 U/mL by adding mannose (2 mg/mL) to the medium. Such a high enzyme activity has not been achieved without mutation or genetic manipulation. The Km and Vmax of the enzyme in culture medium were determined to be 0.092 mM and 35.54 U/mg, respectively, with p-nitrophenyl β-d-glucopyranoside as substrate, confirming its high catalytic activity. The enzyme displayed optimum activity at pH 5.4 and 45°C. The enzyme was fairly stable between acidic to alkaline pH and retained about 75 ∼ 65% residual activities between pH 4 and 10.6 and demonstrated full activity at 45°C for 3 days. The enzyme was also stable in the presence of Zn2+ and Mg2+ and 80% of the residual activity was observed in the presence of Mn2+, Ca2+, K+, Cu2+, EDTA, and sodium azide. Around 70% of the activity was retained in the presence of 2 M guanidium HCl and 3 M urea, whereas the activity was 5 and 2 times higher in the presence of 4 mM beta-mercaptoethanol and 50 mM DTT, respectively. The enzyme obtained from the culture filtrate showed potential cellulose saccharifying ability which increased further when supplemented with commercial cellulase. Thus, this enzyme could be used without any additional downstream processing for commercial cellulase preparation and production of bioethanol or for other biotechnological applications.  相似文献   

6.
An alkaline protease from marine Engyodontium album was characterized for its physicochemical properties towards evaluation of its suitability for potential industrial applications. Molecular mass of the enzyme by matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) analysis was calculated as 28.6 kDa. Isoelectric focusing yielded pI of 3–4. Enzyme inhibition by phenylmethylsulfonyl fluoride (PMSF) and aprotinin confirmed the serine protease nature of the enzyme. K m, V max, and K cat of the enzyme were 4.727 × 10−2 mg/ml, 394.68 U, and 4.2175 × 10−2 s−1, respectively. Enzyme was noted to be active over a broad range of pH (6–12) and temperature (15–65°C), with maximum activity at pH 11 and 60°C. CaCl2 (1 mM), starch (1%), and sucrose (1%) imparted thermal stability at 65°C. Hg2+, Cu2+, Fe3+, Zn2+, Cd+, and Al3+ inhibited enzyme activity, while 1 mM Co2+ enhanced enzyme activity. Reducing agents enhanced enzyme activity at lower concentrations. The enzyme showed considerable storage stability, and retained its activity in the presence of hydrocarbons, natural oils, surfactants, and most of the organic solvents tested. Results indicate that the marine protease holds potential for use in the detergent industry and for varied applications.  相似文献   

7.
The extracellular inulinase of the marine yeast Pichia guilliermondii strain 1 was purified to homogeneity resulting in a 7.2-fold increase in specific inulinase activity. The molecular mass of the purified enzyme was estimated to be 50.0 kDa. The optimal pH and temperature for the purified enzyme were 6.0 and 60°C, respectively. The enzyme was activated by Mn2+, Ca2+, K+, Li+, Na+, Fe3+, Fe2+, Cu2+, and Co2+, but Mg2+, Hg2+, and Ag+ inhibited activity. The enzyme was strongly inhibited by phenylmethanesulphonyl fluoride (PMSF), iodoacetic acid, EDTA, and 1, 10-phenanthroline. The K m and V max values of the purified inulinase for inulin were 21.1 mg/mL and 0.08 mg/min, respectively. A large number of monosaccharides were detected after the hydrolysis of inulin. The deduced protein sequence from the cloned P. guilliermondii strain 1 inulinase gene contained the consensus motifs R-D-P-K-V-F-W-H and W-M-N-D-P-N-G, which are conserved among the inulinases from other microorganisms.  相似文献   

8.
The discovery of stable and active polyphosphate glucokinase (PPGK, EC 2.7.1.63) would be vital to cascade enzyme biocatalysis that does not require a costly ATP input. An open reading frame Tfu_1811 from Thermobifida fusca YX encoding a putative PPGK was cloned and the recombinant protein fused with a family 3 cellulose-binding module (CBM-PPGK) was overexpressed in Escherichia coli. Mg2+ was an indispensible activator. This enzyme exhibited the highest activity in the presence of 4 mM Mg2+ at 55°C and pH 9.0. Under its suboptimal conditions (pH 7.5), the k cat and K m values of CBM-PPGK on glucose were 96.9 and 39.7 s−1 as well as 0.77 and 0.45 mM at 37°C and 50°C respectively. The thermoinactivation of CBM-PPGK was independent of its mass concentration. Through one-step enzyme purification and immobilization on a high-capacity regenerated amorphous cellulose, immobilized CBM-PPGK had an approximately eightfold half lifetime enhancement (i.e., t 1/2 = 120 min) as compared to free enzyme at 50°C. To our limited knowledge, this enzyme was the first thermostable PPGK reported. Free PPGK and immobilized CBM-PPGK had total turnover number values of 126,000 and 961,000 mol product per mol enzyme, respectively, suggesting their great potential in glucose-6-phosphate generation based on low-cost polyphosphate.  相似文献   

9.
l-arabinose isomerase (EC5.3.1.4. AI) mediates the isomerization of d-galactose into d-tagatose as well as the conversion of l-arabinose into l-ribulose. The AI from Lactobacillus plantarum SK-2 was purified to an apparent homogeneity giving a single band on SDS–PAGE with a molecular mass of 59.6 kDa. Optimum activity was observed at 50°C and pH 7.0. The enzyme was stable at 50°C for 2 h and held between pH 4.5 and 8.5 for 1 h. AI activity was stimulated by Mn2+, Fe3+, Fe2+, Ca2+ and inhibited by Cu2+, Ag+, Hg2+, Pb2+. d-galactose and l-arabinose as substrates were isomerized with high activity. l-arabitol was the strongest competitive inhibitor of AI. The apparent Michaelis–Menten constant (K m), for galactose, was 119 mM. The first ten N-terminal amino acids of the enzyme were determined as MLSVPDYEFW, which is identical to L. plantarum (Q88S84). Using the purified AI, 390 mg tagatose could be converted from 1,000 mg galactose in 96 h, and this production corresponds to a 39% equilibrium.  相似文献   

10.
The extracellular phytase in the supernatant of cell culture of the marine yeast Kodamaea ohmeri BG3 was purified to homogeneity with a 7.2-fold increase in specific phytase activity as compared to that in the supernatant by ammonium sulfate fractionation, gel filtration chromatography (Sephadex™ G-75), and anion-exchange chromatography (DEAE Sepharose Fast Flow Anion-Exchange). According to the data from sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the molecular mass of the purified enzyme was estimated to be 98.2 kDa while the molecular mass of the purified enzyme was estimated to be 92.9 kDa and the enzyme was shown to be a monomer according to the results of gel filtration chromatography. The optimal pH and temperature of the purified enzyme were 5.0 and 65°C, respectively. The enzyme was stimulated by Mn2+, Ca2+, K+, Li+, Na+, Ba2+, Mg2+ and Co2+ (at a concentrations of 5.0 mM), but it was inhibited by Cu2+, Hg2+, Fe2+, Fe3+, Ag+, and Zn2+ (at a concentration of 5.0 mM). The enzyme was also inhibited by phenylmethylsulfonyl fluoride (PMSF), iodoacetic acid (at a concentration of 1.0 mM), and phenylgloxal hydrate (at a concentration of 5.0 mM), and not inhibited by EDTA and 1,10-phenanthroline (at concentrations of 1.0 mM and 5.0 mM). The K m, V max, and K cat values of the purified enzyme for phytate were 1.45 mM, 0.083 μmol/ml · min, and 0.93 s-1, respectively.  相似文献   

11.
Glutathione S-transferases (GSTs) are an important enzyme family which play a critical role in detoxification system. In our study, GST was purified from muscle tissue of Chalcalburnus tarichii Pallas with 301.5-fold purification and 19.07% recovery by glutathione agarose affinity chromatography. The purity of enzyme was checked by sodium dodecyl sulfate–polyacrylamide gel electrophoresis, showing a two band, because of having heterodimer structure. KM values were 1.59 and 0.53?mM for 1-chloro-2,4-dinitrobenzene (CDNB) and glutathione (GSH), respectively. Vmax values for CDNB and GSH were also determined as 5.58 and 1.88?EU/mL, respectively. In addition, inhibition effects of Ag+, Cu2+, Cd2+, Fe3+, Pb2+, Cr2+, Co2+ and Zn2+ metal ions were investigated on the enzyme activity and IC50, Ki values were calculated for these metal ions.  相似文献   

12.
A phytase (EC 3.1.3.8) from Pseudomonas syringae MOK1 was purified to apparent homogeneity in two steps employing cation and an anion exchange chromatography. The molecular weight of the purified enzyme was estimated to be 45 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. The optimal activity occurred at pH 5.5 and 40°C. The Michaelis constant (K m ) and maximum reaction rate (Vmax) for sodium phytate were 0.38 mM and 769 U/mg of protein, respectively. The enzyme was strongly inhibited by Cu2+, Cd2+, Mn2+, and ethylenediaminetetraacetic acid (EDTA). It showed a high substrate specificity for sodium phytate with little or no activity on other phosphate conjugates. The enzyme efficiently released orthophosphate from wheat bran and soybean meal.Received: 9 September 2002 / Accepted: 6 December 2002  相似文献   

13.
A malate dehydrogenase (MDH) from Streptomyces avermitilis MA-4680 (SaMDH) has been expressed and purified as a fusion protein. The molecular mass of SaMDH is about 35 kDa determined by SDS-PAGE. The recombinant SaMDH has a maximum activity at pH 8.0. The enzyme shows the optimal temperature around 42°C and displays a half-life (t 1/2) of 160 min at 50°C which is more thermostable than reported MDHs from most bacteria and fungi. The k cat value of SaMDH is about 240-fold of that for malate oxidation. In addition, the k cat/K m ratio shows that SaMDH has about 1,246-fold preference for oxaloacetate (OAA) reduction over l-malate oxidation. The recombinant SaMDH may also use NADPH as a cofactor although it is a highly NAD(H)-specific enzyme. There was no activity detected when malate and NADP+ were used as substrates. Substrate inhibition studies show that SaMDH activity is strongly inhibited by excess OAA with NADH, but is not sensitive to excess l-malate. Enzymatic activity is enhanced by the addition of Na+, NH4 +, Ca2+, Cu2+ and Mg2+ and inhibited by addition of Hg2+ and Zn2+. MDH is widely used in coenzyme regeneration, antigen immunoassays and bioreactors. The enzymatic analysis could provide the important basic knowledge for its utilizations.  相似文献   

14.
The degradation of fluoroacetate by microorganisms has been established for some time, although only a handful of dehalogenases capable of hydrolyzing the stable C–F bond have been studied. Pseudomonas fluorescens DSM 8341 was originally isolated from soil and readily degrades fluoroacetate, thus it was thought that its dehalogenase might have some desirable properties. The enzyme was purified from cell-free extracts and characterised: it is a monomer of 32,500 Da, with a pH optimum of 8 and is stable between pH 4 and 10; its activity is stimulated by some metal ions (Mg2+, Mn2+ and Fe3+), but inhibited by others (Hg2+, Ag2+). The enzyme is specific for fluoroacetate, and the K m for this substrate (0.68 mM) is the lowest determined for enzymes of this type that have been investigated to date.  相似文献   

15.
There have been studied the activity and properties of fructose bisphosphatase (FBPase) of Bothriocephalus scorpii parasitizing in pyloric appendages of the goby Myoxocephalus brandti. All subcellular fractions of B. scorpii (12 g/cytosol, 105 g/cytosol, mitochondria, and microsomes) have the FBPase activity. The enzyme has a high affinity to substrate and needs the presence of bivalent cations (Mg2+ or Mn2+). AMP inhibits the enzyme significantly. Action of various effectors has been studied. The monovalent (Na+, K+, Li+, NH4 +) and bivalent cations (Zn2+ and Cu2+) inhibit the enzyme activity.  相似文献   

16.
Polyphosphatase, an enzyme which hydrolyses highly polymeric polyphosphates to Pi, was purified 77-fold fromAcinetobacter johnsonii 210A by Q-Sepharose, hydroxylapatite and Mono-Q column chromatography. The native molecular mass estimated by gel filtration and native gel electrophoresis was 55 kDa. SDS-polyacrylamide gel electrophoresis indicated that polyphosphatase ofAcinetobacter johnsonii 210A is a monomer. The enzyme was specific for highly polymeric polyphosphates and showed no activity towards pyrophosphate and organic phosphate esters. The enzyme was inhibited by iodoacetamide and in the presence of 10 mM Mg2+ by pyro- and triphosphate. The apparent Km-value for polyphosphate with an average chain length of 64 residues was 5.9 µM and for tetraphosphate 1.2 mM. Polyphosphate chains were degraded to short chain polymers by a processive mechanism. Polyphosphatase activity was maximal in the presence of Mg2+ and K+.  相似文献   

17.
Four strains of Aspergillus niger were screened for lipase production. Each was cultivated on four different media differing in their contents of mineral components and sources of carbon and nitrogen. Aspergillus niger NRRL3 produced maximal activity (325U/ml) when grown in 3% peptone, 0.05% MgSO4.7H2O, 0.05% KCl, 0.2% K2HPO4 and 1% olive oil:glucose (0.5:0.5). A. niger NRRL3 lipase was partially purified by ammonium sulphate precipitation. The majority of lipase activity (48%) was located in fraction IV precipitated at 50–60% of saturation with a 18-fold enzyme purification. The optimal pH of the partial purified lipase preparation for the hydrolysis of emulsified olive oil was 7.2 and the optimum temperature was 60°C. At 70°C, the enzyme retained more than 90% of its activity. Enzyme activity was inhibited by Hg2+ and K+, whereas Ca2+ and Mn2+ greatly stimulated its activity. Additionally, the formed lipase was stored for one month without any loss in the activity.  相似文献   

18.
A phytase gene was cloned from Neosartorya spinosa BCC 41923. The gene was 1,455 bp in size, and the mature protein contained a polypeptide of 439 amino acids. The deduced amino acid sequence contains the consensus motif (RHGXRXP) which is conserved among phytases and acid phosphatases. Five possible disulfide bonds and seven potential N-glycosylation sites have been predicted. The gene was expressed in Pichia pastoris KM71 as an extracellular enzyme. The purified enzyme had specific activity of 30.95 U/mg at 37°C and 38.62 U/mg at 42°C. Molecular weight of the deglycosylated recombinant phytase, determined by SDS-PAGE, was approximately 52 kDa. The optimum pH and temperature for activity were pH 5.5 and 50°C. The residual phytase activity remained over 80% of initial activity after the enzyme was stored in pH 3.0 to 7.0 for 1 h, and at 60% of initial activity after heating at 90°C for 20 min. The enzyme exhibited broad substrate specificity, with phytic acid as the most preferred substrate. Its K m and V max for sodium phytate were 1.39 mM and 434.78 U/mg, respectively. The enzyme was highly resistant to most metal ions tested, including Fe2+, Fe3+, and Al3+. When incubated with pepsin at a pepsin/phytase ratio of 0.02 (U/U) at 37°C for 2 h, 92% of its initial activity was retained. However, the enzyme was very sensitive to trypsin, as 5% of its initial activity was recovered after treating with trypsin at a trypsin/phytase ratio of 0.01 (U/U).  相似文献   

19.
Paraoxonase (PON) is an organophosphate hydrolyser enzyme which also has antioxidant properties in metabolism. Due to its crucial functions, the inhibition of the enzyme is undesirable and very dangerous. PON enzyme activity should not be altered in any case. Inhibitory investigations of this enzyme are therefore important and useful. Metal toxicology of enzymes has become popular in the recent years. Here, we report the in vitro inhibitory effects of some metal ions, including Ni2+, Cd2+, Cu2+ and Hg2+, on the activity of shark serum PON (SPON). For this purpose, we first purified the enzyme from shark Scyliorhinus canicula (LINNAEUS, 1758) serum and analysed the alterations in the enzyme activity in the presence of metal ions. The KM and Vmax is 0.227?mM and 454.545?U/mL, respectively. The results show that metal ions exhibit inhibitory effects on SPON1 at low concentrations with IC50 values ranging from 0.29 to 2.00?mM. Copper was determined to be the most effective inhibitor with IC50 of 0.29?mM.  相似文献   

20.
Dihydroorotase (DHO; EC 3.5.2.3) is an essential metalloenzyme in the biosynthesis of pyrimidine nucleotides. Here, we identified and characterized DHO from the pathogenic bacterium Klebsiella pneumoniae (Kp). The activity of KpDHO toward l-dihydroorotate was observed with K m = 0.04 mM and V max = 8.87 μmol/(mg min). Supplementing the standard growth medium with Co2+, Mn2+, Mg2+, or Ni2+ increased enzyme activity. The catalytic activity of KpDHO was inhibited with Co2+, Zn2+, Mn2+, Cd2+, Ni2+, and phosphate ions. Substituting the putative metal binding residues His17, His19, Lys103, His140, His178, and Asp251 with Ala completely abolished KpDHO activity. However, the activity of the mutant D251E was fourfold higher than that of the wild-type protein. On the basis of these biochemical and mutational analyses, KpDHO (KPN01074) was identified as type II DHO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号