首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The uptake and processing of 125I-59Fe labelled diferric transferrin was studied with the single bolus technique using the isolated guinea-pig placenta. Following preperfusion of the placenta with the SH-alkylating agent N-ethylmaleimide preferential iron uptake was inhibited and a total blockade of transplacental iron transfer was obtained. It can be shown by means of subcellular fractionation studies that neither transferrin binding nor endocytosis of the transferrin receptor complex were affected by N-ethylmaleimide. Additional experiments performed with microvillous membrane vesicles isolated from control placentas or from placentas preperfused with N-ethylmaleimide demonstrated that N-ethylmaleimide does not affect the affinity of the transferrin receptor for its ligand. The number of receptors per mg membrane protein remains unchanged as well. Ka = 1.4 x 10(8) M-1, n = 3.6 x 10(12). The results show that the blockade is located at the level of endosomal iron release. Since it is known that N-ethylmaleimide inhibits the endosomal proton pump, our results strongly suggest that the endocytotic pathway is a necessary route in transferrin mediated transplacental iron transfer.  相似文献   

2.
A variant of human transferrin with abnormal properties.   总被引:5,自引:0,他引:5       下载免费PDF全文
Normal human skin fibroblasts cultured in vitro exhibit specific binding sites for 125I-labelled transferrin. Kinetic studies revealed a rate constant for association (Kon) at 37 degrees C of 1.03 X 10(7) M-1 X min-1. The rate constant for dissociation (Koff) at 37 degrees C was 7.9 X 10(-2) X min-1. The dissociation constant (KD) was 5.1 X 10(-9) M as determined by Scatchard analysis of binding and analysis of rate constants. Fibroblasts were capable of binding 3.9 X 10(5) molecules of transferrin per cell. Binding of 125I-labelled diferric transferrin to cells was inhibited equally by either apo-transferrin or diferric transferrin, but no inhibition was evident with apo-lactoferrin, iron-saturated lactoferrin, or albumin. Preincubation of cells with saturating levels of diferric transferrin or apo-transferrin produced no significant change in receptor number or affinity. Preincubation of cells with ferric ammonium citrate caused a time- and dose-dependent decrease in transferrin binding. After preincubation with ferric ammonium citrate for 72 h, diferric transferrin binding was 37.7% of control, but no change in receptor affinity was apparent by Scatchard analysis. These results suggest that fibroblast transferrin receptor number is modulated by intracellular iron content and not by ligand-receptor binding.  相似文献   

3.
Kinetic analysis of transferrin receptor properties in 6-8 day rat reticulocytes showed the existence of a single class of high-affinity receptors (Kd 3-10 nM), of which 20-25% were located at the cell surface and the remainder within an intracellular pool. Total transferrin receptor cycling time was 3.9 min. These studies examined the effects of various inhibitors on receptor-mediated transferrin iron delivery in order to define critical steps and events necessary to maintain the functional integrity of the pathway. Dansylcadaverine inhibited iron uptake by blocking exocytic release of transferrin and return of receptors to the cell surface, but did not affect transferrin endocytosis; this action served to deplete the surface pool of transferrin receptors, leading to shutdown of iron uptake. Calmidazolium and other putative calmodulin antagonists exerted an identical action on iron uptake and receptor recycling. The inhibitory effects of these agents on receptor recycling were overcome by the timely addition of Ca2+/ionomycin. From correlative analyses of the effects of these and other inhibitors, it was concluded that: (1) dansylcadaverine and calmodulin antagonists inhibit iron uptake by suppression of receptor recycling and exocytic transferrin release, (2) protein kinase C, transglutaminase, protein synthesis and release of transferrin-bound iron are not necessary for the functional integrity of the iron delivery pathway, (3) exocytic transferrin release and concomitant receptor recycling in rat reticulocytes is dependent upon Ca2+/calmodulin, (4) dansylcadaverine, dimethyldansylcadaverine and calmidazolium act on iron uptake by interfering with calmodulin function, and (5) the endocytotic and exocytotic arms of the iron delivery pathway are under separate regulatory control.  相似文献   

4.
Placental binding and uptake of diferric transferrin as well as transplacental iron transfer has been studied in isolated, perfused guinea pig placenta. The process of binding and uptake of transferrin was saturable only on the maternal side. On the fetal side no specific binding occurred. This indicates an asymmetric distribution of transferrin receptors. No receptors are present for albumin, neither on maternal, nor fetal side. Most of the 125I-59Fe transferrin, administered with a single bolus, enters the trophoblast. A small part remains attached to the plasma membranes, as shown by cell fractionation and in transferrin exchange experiments. The majority transferrin, which was internalized, is unlikely to be bound to plasma membranes and may be bound to receptors dissociated from plasma membranes. Based on kinetics of 59Fe appearance and washout at the fetal side of the perfused placenta as a model for trans-placental iron transfer has been postulated. A central feature is the role played by a small compartment (0.14 mumol) to which iron is supplied by a very rapid process at the trophoblast receptor, without internalisation of transferrin. A second un-identified pathway is supposed to regulate the magnitude of the iron transfer pool.  相似文献   

5.
Insulin stimulates the accumulation of iron by isolated fat cells by increasing the uptake of diferric transferrin. Analysis of the cell-surface binding of diferric 125I-transferrin indicated that insulin caused a 3-fold increase in the cell surface number of transferrin receptors. This result was confirmed by the demonstration that insulin increases the binding of an anti-rat transferrin receptor monoclonal antibody (OX-26) to the surface of fat cells. The basis of this effect of insulin was examined by investigating the number of transferrin receptors in membrane fractions isolated from disrupted fat cells. Two methods were employed. First the binding isotherm of diferric 125I-transferrin to the isolated membranes was studied. Second, the membranes were solubilized with detergent, and the number of transferrin receptors was measured by immunoblotting using the monoclonal antibody OX-26. It was observed that insulin treatment of intact fat cells resulted in an increase in the number of transferrin receptors located in the isolated plasma membrane fraction of the disrupted fat cells. Furthermore, the increase in the number of plasma membrane transferrin receptors was associated with a concomitant decrease in the transferrin receptor number in a low density microsome fraction previously shown to consist of intracellular membranes. This redistribution of transferrin receptors between cellular membrane fractions in response to insulin is remarkably similar to the regulation by insulin of glucose transporters and type II insulin-like growth factor receptors. We conclude that insulin stimulates fat cell iron uptake by a mechanism that may involve the redistribution of transferrin receptors from an internal membrane compartment (low density microsomes) to the cell surface (plasma membrane).  相似文献   

6.
Methods were developed for obtaining highly viable mouse hepatocytes in single cell suspension and for maintaining the hepatocytes in adherent static culture. The characteristics of transferrin binding and iron uptake into these hepatocytes was investigated. (1) After attachment to culture dishes for 18–24 h hepatocytes displayed an accelerating rate of iron uptake with time. Immediately after isolation mouse hepatocytes in suspension exhibited a linear iron uptake rate of 1.14·105molecules/cell per min in 5 μM transferrin. Iron uptake also increased with increasing transferrin concentration both in suspension and adherent culture. Pinocytosis measured in isolated hepatocytes could account only for 10–20% of the total iron uptake. Iron uptake was completely inhibited at 4°C. (2) A transferrin binding component which saturated at 0.5 μM diferric transferrin was detected. The number of specific, saturable diferric transferrin binding sites on mouse hepatocytes was 4.4·104±1.9·104 for cells in suspension and 6.6·104±2.3·104 for adherent cultured cells. The apparent association constants were 1.23·107 1·mol?1 and 3.4·106 1·mol?1 for suspension and cultured cells respectively. (3) Mouse hepatocytes also displayed a large component of non-saturable transferrin binding sites. This binding increased linearly with transferrin concentration and appeared to contribute to iron uptake in mouse hepatocytes. Assuming that only saturable transferrin binding sites donate iron, the rate of iron uptake is about 2.5 molecules iron/receptor per min at 5 μM transferrin in both suspension and adherent cells and increases to 4 molecules iron/receptor per min at 10 μM transferrin in adherent cultured cells. These rates are considerably greater than the 0.5 molcules/receptor per min observed at 0.5 μM transferrin, the concentration at which the specific transferrin binding sites are fully occupied. The data suggest that either the non-saturable binding component donates some iron or that this component stimulates the saturable component to increase the rate of iron uptake. (4) During incubations at 4°C the majority of the transferrin bound to both saturable and nonsaturable binding sites lost one or more iron atoms. Incubations including 2 mM α,α′-dipyridyl (an Fe11 chelator) decreased the cell associated 59Fe at both 4 and 37°C while completely inhibiting iron uptake within 2–3 min of exposure at 37°C. These observations suggest that most if not all iron is loosened from transferrin upon interaction of transferrin with the hepatocyte membrane. There is also greater sensitivity of 59Fe uptake compared to transferrin binding to pronase digestion, suggesting that an iron acceptor moiety on the cell surface is available to proteolysis.  相似文献   

7.
This study systematically examined the characteristics of specific binding of adult diferric transferrin to its receptor using a Triton X-100 solubilized preparation from human placentas as the receptor source. The following information was obtained. The ionic strength for maximal binding is in the range of 0.1-0.3 M NaCl. The pH optimum for specific binding extends over the range, from pH 6.0-10.0. Specific binding of diferric transferrin is not affected by 2.5 approximately 50 mM CaCl2 or by 10 mM EDTA. Triton X-100 in the concentration range of 0.02-3.0% does not affect specific binding. Specific binding is saturated within 10 min at 25 or 37 degrees C in the presence of excess amounts of diferric transferrin. The binding is reversible and the dissociation of diferric transferrin from the transferrin receptor is complete within 40 min at 25 degrees C. Apotransferrin, both adult and fetal, showed less binding than the holotransferrin species by competitive binding assay in the presence of 10 mM EDTA independent of up to 20 mM CaCl2. A 1500-fold molar excess of adult and fetal apotransferrin is required to give 40% inhibition for 125I-labeled diferric transferrin binding. Since calcium ion is not a factor, and since apotransferrin has such high binding affinity for iron (Ka = 1 X 10(24], this experiment suggests that the EDTA was necessary to prevent conversion of apotransferrin to holotransferrin from available iron in the reaction system. The specificity of the transferrin receptor for transferrin was examined by competitive binding studies in which 125I-diferric transferrin binding was measured in the presence of a series of other proteins. The proteins tested in the competitive binding studies were classified into three groups; in the first group were human serum albumin and ovalbumin; in the second group were proteins containing iron ions, such as hemoglobin, hemoglobin-haptoglobin complex, heme-hemopexin complex, ferritin, and diferric lactoferrin; in the third group were the metal-binding serum proteins, ceruloplasmin and metallothionein. None of these proteins except ferritin showed inhibition of diferric transferrin binding to the receptor. The effect of ferritin was small since a 700- to 1500-fold molar excess of ferritin is required for 50% inhibition of binding of diferric transferrin to the receptor.  相似文献   

8.
The effect of pH on the binding of apotransferrin and diferric transferrin to reticulocyte membrane receptors was investigated using rabbit transferrin and rabbit reticulocyte ghosts, intact cells and a detergent-solubilized extract of reticulocyte membranes. The studies were performed within the pH range 4.5–8.0. The binding of apotransferrin to ghosts and membrane extracts and its uptake by intact reticulocytes was high at pH levels below 6.5 but decreased to very low values as the pH was raised above 6.5. By contrast, diferric transferrin showed a high level of binding and uptake between pH 7.0 and 8.0 in addition to binding only slightly less than did apotransferrin at pH values below 6.5. It is proposed that the high affinity of apotransferrin for its receptor at lower pH values and low affinity at pH 7.0 or above allow transferrin to remain bound to the receptor when it is within acidic intracellular vesicles, even after loss of its iron, but also allow ready release from the cell membrane when it is exteriorized by exocytosis after iron uptake. The binding of transferrin to the receptor throughout the endocytosis-exocytosis cycle may protect it from proteolytic breakdown and aid in its recycling to the outer cell membrane  相似文献   

9.
Reduction of iron in diferric transferrin is inhibited by monoclonal antibodies to the transferrin receptor which bind at sites other than the high affinity transferrin binding site. These antibodies include B3/25, GB16 and GB22. Two antibodies which bind at the high affinity site for transferrin, 42/6 and GB18, do not inhibit iron reduction by transplasma membrane electron transport. The results are consistent with the proposal that differric transferrin reduction or stimulation of transmembrane NADH oxidase activity involves a site different from the high affinity diferric transferrin binding site. A synergistic action of antibodies with epitopes at the tight binding site involved in iron uptake and the antibodies which inhibit electron transport, B3/25 and GB16, can explain the increased inhibition of growth observed when both 42/6 and B3/25 are added to proliferating cells.  相似文献   

10.
Regulation of HeLa cell transferrin receptors   总被引:27,自引:0,他引:27  
HeLa cells were found to have a single class of non-interacting receptors specific for transferrin. Both apotransferrin and diferric transferrin competed equally with 125I-diferric transferrin for receptor binding. Transferrin binding was temperature-dependent and reversible. Binding of transferrin to cells exhibited a KD of 27 nM with a maximum binding capacity of 1.8-3.7 x 10(6) molecules/cell. Cells grown in the presence of diferric transferrin or in the presence of ferric ammonium citrate exhibited a concentration- and time-dependent decrease in 125I-diferric transferrin binding. The decrease in binding activity reflected a reduction in receptor number rather than an alteration in ligand receptor affinity. Growth of cells in saturating concentrations of apotransferrin did not cause a decrease in receptor number. When iron-treated cells were removed to media free of ferric ammonium citrate, the receptor number returned to control values by 40 h. When receptors were removed with trypsin, cells grown and maintained in ferric ammonium citrate-supplemented media demonstrated a rate of receptor reappearance 47% that of control cells grown in ferric ammonium citrate-free media. Cells grown in media supplemented with diferric transferrin or ferric ammonium citrate exhibited an increase in cytosolic iron content. The transferrin receptor number returned to normal after cells were removed to unsupplemented media, despite persistent elevation of cytosolic iron content. Increased iron content did not appear to be the sole factor determining receptor number.  相似文献   

11.
Addition of platelet-derived growth factor (PDGF), recombinant insulin-like growth factor I (rIGF-I) or epidermal growth factor (EGF) to BALB/c 3T3 fibroblasts causes a marked increase in the binding of [125I]diferric transferrin to cell surface receptors. This effect is very rapid and is complete within 5 min. The effect of EGF is transient, with [125I]diferric transferrin binding returning to control values within 25 min. In contrast, PDGF and rIGF-I cause a prolonged stimulation of [125I]diferric transferrin binding that could be observed for up to 2 h. The increase in the binding of [125I]diferric transferrin caused by growth factors was investigated by analysis of the binding isotherm. Epidermal growth factor, PDGF and rIGF-I were found to increase the cell surface expression of transferrin receptors rather than to alter the affinity of the transferrin receptors. This result was confirmed in human fibroblasts by the demonstration that EGF, PDGF and rIGF-I could stimulate the binding of a monoclonal antibody directed against the transferrin receptor (OKT9) to the cell surface. Furthermore, PDGF and rIGF-I stimulated the sustained uptake of [59Fe]diferric transferrin by BALB/c 3T3 fibroblasts, while EGF transiently increased uptake. Thus the effect of these growth factors to increase the cell surface expression of the transferrin receptor appears to have an important physiological consequence.  相似文献   

12.
Polyacrylamide-gel electrophoresis in urea was used to prepare the four molecular species of transferrin:diferric transferrin, apotransferrin and the two monoferric transferrins with either the C-terminal or the N-terminal metal-binding site occupied. The interaction of these 125I-labelled proteins with rabbit reticulocytes was investigated. At 4 degrees C the average value for the association constant for the binding of transferrin to reticulocytes was found to increase with increasing iron content of the protein. The association constant for apotransferrin binding was 4.6 X 10(6)M-1, for monoferric (C-terminal iron) 2.5 X 10(7)M-1, for monoferric (N-terminal iron) 2.8 X 10(7)M-1 and for diferric transferrin, 1.1 X 10(8)M-1. These differences in the association constants did not affect the processing of the transferrin species by the cells at 37 degrees C. Accessibility of the proteins to extracellular proteinase indicated that the transferrin was internalized by the cells regardless of the iron content of the protein, since in each case 70% was inaccessible. Cycling of the cellular receptors may also occur in the absence of bound transferrin.  相似文献   

13.
Summary The uptake and pathway of different markers and ligands for fluid-phase, adsorptive and receptor mediated endocytosis were analyzed in the epithelial cells lining the rete testis after their infusion into the lumen of these anastomotic channels. At 2 min after injection, diferric transferrin bound to colloidal gold was seen attached to the apical plasma membrane and to the membrane of endocytic coated and uncoated pits and vesicles. The injection of transferrin-gold in the presence of a 100-fold excess of unconjugated diferric transferrin revealed no binding or internalization of transferrin-gold. Similarly, apotransferrin-gold was neither bound to the apical plasma membrane nor internalized by these cells. These results thus indicate the presence of specific binding sites for diferric transferrin. At 5 min, internalized diferric transferrin-gold reached endosomes. At 15 and 30 min, the endosomes were still labeled but at these time intervals the transferrin-gold also appeared in tubular elements connected to or associated with these bodies or seen in close proximity to the apical plasma membrane. At 60 and 90 min, most of the transferrin-gold was no longer present in these organelles and was seen only exceptionally in secondary lysosomes. These results thus suggest that the tubular elements may be involved in the recycling of transferrin back to the lumen of the rete testis. The coinjection of transferrin-gold and the fluid-phase marker native ferritin revealed that both proteins were often internalized in the same endocytic pit and vesicle and shared the same endosome. However, unlike transferrin, native ferritin at the late time intervals appeared in dense multivesicular bodies and secondary lysosomes. When the adsorptive marker cationic ferritin and the fluid-phase marker albumin-gold were coinjected, again both proteins often shared the same endocytic pit and vesicle, endosome, pale and dense multivesicular body and secondary lysosomes. However, several endocytic vesicles labeled only with cationic ferritin appeared to bypass the endosomal and lysosomal compartments and to reach the lateral intercellular space and areas of the basement membrane. The rete epithelial cells, therefore, appear to be internalizing proteins and ligands by receptor-mediated and non-specific endocytosis which, after having shared the same endocytic vesicle and endosome, appear to be capable of being segregated and routed to different destinations.  相似文献   

14.
The expression of transferrin receptors by blood monocytes, human alveolar macrophages, and in vitro matured macrophages was evaluated by immunofluorescence, radioligand binding, and Northern analysis, using the monoclonal anti-human transferrin receptor antibody OKT9, [125I]-labeled human transferrin and a [32P]-labeled human transferrin receptor cDNA probe, respectively. By immunofluorescence, the majority of alveolar macrophages expressed transferrin receptors (86 +/- 3%). The radioligand binding assay demonstrated the affinity constant (Ka) of the alveolar macrophage transferrin receptor was 4.4 +/- 0.7 X 10(8) M-1, and the number of receptors per cell was 4.4 +/- 1.2 X 10(4). In marked contrast, transferrin receptors were not present on the surface or in the cytoplasm of blood monocytes, the precursors of the alveolar macrophages. However, when monocytes were cultured in vitro and allowed to mature, greater than 80% expressed transferrin receptors by day 6, and the receptors could be detected by day 3. Consistent with these observations, a transferrin receptor mRNA with a molecular size of 4.9 kb was demonstrated in alveolar macrophages and in vitro matured macrophages but not in blood monocytes. Thus, although blood monocytes do not express the transferrin receptor gene, it is expressed by mature macrophages, an event that probably occurs relatively early in the process of monocyte differentiation to macrophages.  相似文献   

15.
NADH diferric transferrin reductase in liver plasma membrane   总被引:6,自引:0,他引:6  
Evidence is presented that rat liver plasma membranes contain a distinct NADH diferric transferrin reductase. Three different assay procedures for demonstration of the activity are described. The enzyme activity is highest in isolated plasma membrane, and activity in other internal membranes is one-eighth or less than in plasma membrane. The activity is inhibited by apotransferrin and antitransferrin antibodies. Trypsin treatment of the membranes leads to rapid loss of the transferrin reductase activity as compared with NADH ferricyanide reductase activity. Erythrocyte plasma membranes, which lack transferrin receptors, show no diferric transferrin reductase activity, although NADH ferricyanide reductase is present. The transferrin reductase is inhibited by agents that inhibit diferric transferrin reduction by intact cells and is activated by CHAPS (3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfate) detergent. Inhibitors of mitochondrial electron transport have no effect on the activity. We propose that the NADH diferric transferrin reductase in plasma membranes measures the activity of the enzyme that causes the reduction of diferric transferrin by intact cells. This transmembrane electron transport system requires the transferrin receptor for diferric transferrin reduction. Because the transmembrane electron transport has been shown to stimulate cell growth, the reduction of diferric transferrin at the cell surface may be an important function for diferric transferrin in stimulation of cell growth, in addition to its role in iron transport.  相似文献   

16.
Hepatocellular carcinoma cells of the PLC/PRF/5 cell line had 1.9 x 10(5) transferrin receptors per tumor cell with a Kd of 1.5 x 10(-8) M. At high concentrations of transferrin the binding was not saturable. Transferrin internalization by hepatoma cells was shown by time and temperature-dependent binding studies and by pronase experiments. Transferrin recycling was confirmed by the demonstration of a progressive increase in the cellular molar ratios of iron to transferrin and by chase experiments. Ammonium chloride interfered with iron unloading. The vinca alkaloid vincristine inhibited iron and transferrin uptake. The hepatocarcinoma cells appeared to lack asialoglycoprotein receptors and therefore internalized partially desialated transferrin by the regular route. Iron uptake from transferrin was markedly inhibited by the hydrophobic ferrous chelator 2,2' bipyridine but was relatively unaffected by the hydrophilic ferric chelator desferroxamine. The implication that ferrous iron was involved in postendocytic transvesicular membrane iron transport was supported by a study in which hepatoma cells were shown to take up large amounts of ferrous iron suspended in 270 mM sucrose at pH 5.5. The interaction at this pH between surface labeled hepatoma cell extracts and ferrous iron on a Sephacryl S-300 column suggested that the postendocytic transvesicular transport of iron through the membrane was in part protein mediated. The endocytosed iron in hepatoma cells was found in association with ferritin (33%), transferrin (31%) and a low molecular weight fraction (21%).  相似文献   

17.
The transferrin receptor cycles rapidly between cell surface and endosomal membrane compartments. Treatment of cultured cells with epidermal growth factor (EGF) or insulin-like growth factor I (IGF-I) at 37 degrees C causes a rapid redistribution of transferrin receptors from an intracellular compartment to the cell surface. The effects of EGF and IGF-I on the kinetics of the cycling of the transferrin receptor in A431 human epidermoid carcinoma cells were compared. The primary site of EGF action was found to be an increase in the rate of transferrin receptor exocytosis. The exocytotic rate constant was measured to be 0.11 min-1 in control cells and 0.33 min-1 in EGF-treated cells. In contrast, IGF-I was found to increase the cell surface expression of transferrin receptors by causing a small increase in the rate of exocytosis (from 0.11 to 0.17 min-1) and a decrease in the rate of endocytosis (from 0.33 to 0.24 min-1). It is concluded that the mechanisms for EGF and IGF-I action to increase the cell surface expression of the transferrin receptor are distinct. A kinetic model of the cycling of the transferrin receptor based on experimentally determined rate constants is presented. The model predicts that a consequence of IGF-I action on transferrin receptor cycling is to decrease the apparent Km for the uptake of diferric transferrin by cells. This prediction is confirmed by direct measurement of the accumulation of 59Fe-labeled diferric transferrin by A431 cells. These data demonstrate that the accumulation of iron by cultured cells is a complex function of the rate of cycling of the transferrin receptor and that this process is under acute regulation by growth factors.  相似文献   

18.
Several aspects of iron metabolism were studied in cultured Friend erythroleukemia cells before and after induction of hemoglobin synthesis by dimethyl sulfoxide. The maximal rate of iron uptake from 59Fe-labeled transferrin, 1.5 X 10(6) atoms of Fe/cell per 30 min in uninduced cells, increased to 3 X 10(6) atoms/cell after 5 days of induction. The increase in iron uptake was not accompanied by a proportional increase in the number of transferrin receptors detected by 125I-labeled transferrin binding, suggesting a more efficient iron uptake by transferrin receptors in induced cells, with the rate of about 26 iron atoms per receptor per hour, compared to 15 atoms in uninduced cells. In agreement with this conclusion are results of the study of cellular 125I or 59Fe labeled transferrin kinetics. In the induced cells transferrin endocytosis and release proceeded with identical rates and all the endocytosed iron was retained inside the cell. On the other hand, transferrin release by uninduced cells was significantly slower and a substantial part of internalized 59Fe was released. On the basis of these results, different efficiency of iron release from internalized transferrin, accompanied by changes in cellular transferrin kinetics, is proposed as one of the factors determining the rate of iron uptake by developing erythroid cells.  相似文献   

19.
P K Bali  O Zak  P Aisen 《Biochemistry》1991,30(2):324-328
Iron removal by pyrophosphate from human serum diferric transferrin and the complex of transferrin with its receptor was studied in 0.05 M HEPES or MES buffers containing 0.1 M NaCl and 0.01 M CHAPS at 25 degrees C at pH 7.4, 6.4, and 5.6. At each pH, the concentration of pyrophosphate was adjusted to achieve rates of release amenable to study over a reasonable time course. Released iron was separated from protein-bound iron by poly(ethylene glycol) precipitation of aliquots drawn from the reaction mixture at various times during the course of a kinetic run. The amount of 59Fe label associated with the protein and pyrophosphate was determined from the radioactivity of precipitate and supernatant, respectively, in each aliquot. Iron removal of 0.05 M pyrophosphate at pH 7.4 from diferric transferrin bound to the receptor is considerably slower than that from free diferric transferrin, with observed pseudo-first-order rate constants of 0.020 and 0.191 min-1, respectively. For iron removal by 0.01 M pyrophosphate at pH 6.4, corresponding rate constants are 0.031 and 0.644 min-1. However, at pH 5.6, iron removal by 0.001 M pyrophosphate is faster from diferric transferrin bound to its receptor than from free transferrin (observed rate constants of 0.819 and 0.160 min-1, respectively). Thus, the transferrin receptor not only facilitates the removal of iron from diferric transferrin at the low pH that prevails in endocytic vesicles but may also reduce its accessibility to iron acceptors at extracellular pH, thereby minimizing the likelihood of nonspecific release of iron from transferrin at the cell surface.  相似文献   

20.
With the discovery that transferrin serves as the iron source for hemoglobin-synthesizing immature red blood cells came the demonstration that a cell surface receptor, now known as transferrin receptor 1, is required for iron delivery from transferrin to cells. (A recently described second transferrin receptor, with as yet poorly understood function, will not be discussed in this brief review.) In succeeding years transferrin receptor 1 was established as a gatekeeper for regulating iron uptake by most cells, and the transferrin-to-cell endocytic pathway characterized in detail. HFE, the protein incriminated in the pathogenesis of hereditary hemochromatosis, a disorder of progressive and toxic iron overload, competes with transferrin for binding to receptor, thereby impeding the uptake of iron from transferrin. Mutation of HFE destroys this competition, thus facilitating access of transferrin and its iron to cells. Availability of the crystal structure of transferrin receptor 1, along with those of transferrin and HFE, opened research on molecular mapping of the transferrin-HFE- transferrin receptor interfaces by correlated synchrotron-generated hydroxyl radical footprinting and cryo-electron microscopy. The emerging challenge is to relate structure to the functional effects of receptor binding on the iron-binding and iron-releasing properties of transferrin within the iron-dependent cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号