首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vacuum UV CD spectra of GpC, CpG, GpG, poly[r(A)], poly[r(C)], poly[r(U)], poly[r(A-U)], poly[r(G).r(C)], poly[r(A).r(U)], and poly[r(A-U).r(A-U)] were measured down to at least 174 nm. These spectra, together with the published spectra of poly[r(G-C).r(G-C)], CMP, and GMP, were sufficient to estimate the CD changes upon base pairing for four double-stranded RNAs. The vacuum UV CD bands of poly[r(A)], poly[r(C)], and the dinucleotides GpC and CpG were temperature dependent, suggesting that they were due to intrastrand base stacking. The dinucleotide sequence isomers GpC and CpG had very different vacuum UV CD bands, indicating that the sequence can play a role in the vacuum UV CD of single-stranded RNA. The vacuum UV CD bands of the double-stranded (G.C)-containing RNAs, poly[r(G).r(C)] and poly[r(G-C).r(G-C)], were larger than the measured or estimated vacuum UV CD bands of their constituent single-stranded RNAs and were similar in having an exceptionally large positive band at about 185 nm and negative bands near 176 and 209 nm. These similarities were enhanced in difference-CD spectra, obtained by subtracting the CD spectra of the single strands from the CD spectra of the corresponding double strands. The (A.U)-containing double-stranded RNAs poly[r(A).r(U)] and poly[r(A-U).r(A-U)] were similar only in that their vacuum UV CD spectra had a large positive band at 177 nm. The spectrum of poly[r(A).r(U)] had a shoulder at 188 nm and a negative band at 206 nm, whereas the spectrum of poly[r(A-U).r(A-U)] had a positive band at 201 nm. On the other hand, difference spectra of both of the (A.U)-containing polymers had positive bands at about 177 and 201 nm. Thus, the difference-CD spectra revealed CD bands characteristic of A.U and G.C base pairing. (ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Vacuum UV circular dichroism (CD) spectra were measured down to 174 nm for five homopolymers, five duplexes, and four triplexes containing adenine, uracil, and thymine. Near 190 nm, the CD bands of poly[d(A)] and poly[r(A)] were larger than the CD bands of the polypyrimidines, poly[d(T)], poly[d(U)], and poly[r(U)]. Little change was observed in the 190 nm region upon formation of the duplexes (poly[d(A).d(T)], poly[d(A).d(U)], poly[r(A).d(T)], poly[r(A).d(U)], and poly[r(A).r(U)]) or upon formation of two of the triplexes (poly[d(T).d(A).d(T)] and poly[d(U).d(A).d(U)]). This showed that the purine strand had the same or a similar structure in these duplexes and triplexes as when free in solution. Both A.U and A.T base pairing induced positive bands at 177 and 202 nm. For three triplexes containing poly[d(A)], the formation of a triplex from a duplex and a free pyrimidine strand induced a negative band centered between 210 and 215 nm. The induction of a band between 210 and 215 nm indicated that these triplexes had aspects of the A conformation.  相似文献   

3.
We have targeted the d[G(AG)5] · d[C(TC)5] duplex for triplex formation at neutral pH with either d[G(AG)5] or d[G(TG)5]. Using a combination of gel electrophoresis, uv and CD spectra, mixing and melting curves, along with DNase I digestion studies, we have investigated the stability of the 2:1 pur*pur · pyr triplex, d[G(AG)5] * d[G(AG)5] · d[C(TC)5], in the presence of MgCl2. This triplex melts in a monophasic fashion at the same temperature as the underlying duplex. Although the uv spectrum changes little upon binding of the second purine strand, the CD spectrum shows significant changes in the wavelength range 200–230 nm and about a 7 nm shift in the positive band near 270 nm. In contrast, the 1:1:1 pur/pyr*pur · pyr triplex, d[G(TG)5] * d[G(AG)5] · d[C(TC)5], is considerably less stable thermally, melting at a much lower temperature than the underlying duplex, and possesses a CD spectrum that is entirely negative from 200 to 300 nm. Ethidium bromide undergoes a strong fluorescence enhancement upon binding to each of these triplexes, and significantly stabilizes the pur/pyr*pur · pyr triplex. The uv melting and differential scanning calorimetry analysis of the alternating sequence duplex and pur*pur · pyr triplex shows that they are lower in thermodynamic stability than the corresponding 10-mer d(G3A4G3) · d(C3T4C3) duplex and its pur*pur · pyr triplex under identical solution conditions. © 1997 John Wiley & Sons, Inc.  相似文献   

4.
The interaction of ethidium bromide (EB), a DNA intercalator, with two intramolecular triplexes 5'd(G4A4G4-[T4]-C4T4C4-[T4]-G4T4G4), 5'd(G4T4G4-[T4]-G4A4G4-[T4]-C4T4C4) ([T4] represents a stretch of 4 thymine residues) and their precursor duplexes has been investigated by circular dichroism, fluorescence and UV absorption spectroscopy. Binding of EB induces a circular dichroism band in the region around 310 nm which is positive for the duplex forms but negative for the triplex forms. We observed that the binding of EB to the duplex form does not induce the formation of the triplex structures. Thermal denaturation experiments demonstrate that EB stabilizes more the parallel triple helix than the antiparallel one. Analysis of the binding process from fluorescence measurements shows that binding constants to the triple helical forms and to the hairpin reference duplex [T4]-G4A4G4-[T4]-C4T4C4) are close. However the binding site size is larger for the triplexes (4-6 base triplets) than for the duplex (2 base pairs).  相似文献   

5.
We report on spectral features for two and three diphenylacetylene chromophores aligned in close proximity in aqueous solution by self assembly of attached oligonucleotide arms. Two duplex systems were examined in detail. One was formed by hybridization (Watson-Crick base pairing) of two oligonucleotide 10-mers, each containing the diphenylacetylene insert. The other was generated by self-folding of a 36-mer oligonucleotide containing two diphenylacetylene inserts. The triplex system was obtained by hybridization (Hoogsteen base pairing) of a 16-mer oligonucleotide diphenylacetylene conjugate to the folded 36-mer hairpin. Formation of duplex and triplex entities from these conjugates was demonstrated experimentally by thermal dissociation and spectroscopic studies. The UV and CD spectra for the duplex systems exhibit bands in the 300-350 nm region attributable to exciton coupling between the two chromophores, and the emission spectra show a strong band centered at 410 nm assigned to excimer fluorescence. Addition of the third strand to the hairpin duplex has little effect on the CD spectrum in the 300-350 nm region, but leads to a negative band at short wavelengths characteristic of a triplex and to a strongly enhanced band at 410 nm in the fluorescence spectrum. The third strand alone shows a broad fluorescence band at approximately 345-365 nm, but this band is virtually absent in the triplex system. A model for the triplex system is proposed in which two of the three aligned diphenylacetylenes function as a ground state dimer that on excitation gives rise to the exciton coupling observed in the UV and CD spectra and to the excimer emission observed in the fluorescence spectrum. Excitation of the third chromophore results in enhanced excimer fluorescence, as a consequence of energy transfer from the locally excited singlet of one chromophore to the ground state dimer formed by the other two chromophores.  相似文献   

6.
The contribution of divalent cations and cytosine protonation to conformation and stability of duplex and triplex formation were intensively investigated and characterized by ultraviolet (UV), circular dichroism (CD), differential scanning calorimetry (DSC), and electrophoresis mobility shift assay (EMSA). CD spectra showed that the divalent cations investigated would not significantly distort nucleotide geometry, while UV and DSC melting experiments revealed that the cation binding abilities to duplexes and triplexes were clearly dependent on the types of cations under near physiological conditions. The calorimetric enthalpies were generally underestimated relative to the corresponding van't Hoff enthalpies for Hoogsteen and Watson-Crick transitions, but free energy changes derived from the DSC measurements were in good agreement with those derived from the UV measurements. The adjacent placing of the C(+) x G.C triplets in triplexes lowered the stabilities of not only Hoogsteen base-pairing but also Watson-Crick base-pairing. The protonation contribution of the given cytosine residues might depend on the local and global structure of the protonated cytosine complex. A rigid structural targeted-strand would favor the protonation of cytosine residues. The apparent pK(a) values for parallel duplex and triplex investigated were determined to be 6.4 and 7.6, respectively, which are considerably heightened by 2.1 and 3.3 pH unit as compared to the intrinsic pK(a) value of the free cytosine residues.  相似文献   

7.
C Y Huang  G Bi    P S Miller 《Nucleic acids research》1996,24(13):2606-2613
Homopurine sequences of duplex DNA are binding sites for triplex-forming oligodeoxyribopyrimidines. The interactions of synthetic duplex DNA targets with an oligodeoxyribopyrimidine containing N4-(6-amino-2-pyridinyl)deoxycytidine (1), a nucleoside designed to interact with a single C-G base pair interruption of the purine target tract, was studied by UV melting, circular dichroism spectroscopy and dimethylsulfate alkylation experiments. Nucleoside 1 supports stable triplex formation at pH 7.0 with formation of a 1-Y-Z triad, where Y-Z is a base pair in the homopurine tract of the target. Selective interaction was observed when Y-Z was C-G, although A-T and, to a lesser extent, T-A and G-C base pairs were also recognized. The circular dichroism spectra of the triplex having a 1-C-G triad were similar to those of a triplex having a C(+)-G-C triad, suggesting that the overall structures of the two triplexes are quite similar. Removal of the 6-amino group from 1 essentially eliminated triplex formation. Reaction of a triplex having the 1-C-G triad with dimethylsulfate resulted in a 50% reduction of methylation of the G residue of this triad. In contrast, the G of a similar triplex containing a U-C-G triad was not protected from methylation by dimethylsulfate. These results are consistent with a binding mode in which the 6-amino-2-pyridinyl group of 1 spans the major groove of the target duplex at the 1-C-G binding site and forms a hydrogen bond with the O6 of G. An additional stabilizing hydrogen bond could form between the N4 of the imino tautomer of 1 and the N4 amino group of C.  相似文献   

8.
Sugimoto N  Wu P  Hara H  Kawamoto Y 《Biochemistry》2001,40(31):9396-9405
The effects of cytosine protonation and various cations on the properties of parallel pyrimidine motif DNA triplexes were intensively investigated and characterized by several different techniques, such as circular dichroism (CD) conformation, ultraviolet (UV) melting, differential scanning calorimetry (DSC) thermal denaturation, and surface plasmon resonance (SPR) real-time dynamics. The comparative CD spectra of the triplex and the corresponding homoduplexes showed that the negative peak at approximately 218 nm would be the eigenpeak of the Hoogsteen paired strand, and moreover, the formation pathway of a triplex was significantly pH-dependent and fell into three groups: under acidic conditions, the triplex is formed by a one-step docking, under near physiological conditions, the Watson-Crick duplex is first structured and then accepts the Hoogsteen third strand into its major groove, and under basic conditions, the triplex is not formed. The pH-dependent thermodynamics of the global triplex, the Watson-Crick antiparallel duplex, and the Crick-Hoogsteen parallel duplex were comparatively discussed for the first time. These data revealed that the thermodynamic stabilities of the Watson-Crick-Hoogsteen triplex and the Crick-Hoogsteen duplex would be strongly dependent on cytosine protonation, but a low-pH environment somewhat destabilized the Watson-Crick duplex. The binding energy of triplex formation would be different from the unfolding energy of triplex melting under acidic conditions due to the disparity in the pathway between the formation and unfolding of a triplex. Real-time dynamic measurements showed that the association and dissociation rate constants of a duplex-to-triplex formation are (1.98 +/- 0.24) x 10(3) M(-1) s(-1) and (4.09 +/- 0.96) x 10(-4) s(-1) at 20 degrees C and pH 6.0, respectively. The formation energy of the duplex-to-triplex transition derived from SPR measurements was in agreement with the unfolding energy of the free Hoogsteen paired duplex derived from UV measurements. The calorimetric enthalpies of the triplex-to-duplex-to-single transition were 39.3 and 75.3 kcal/mol under near physiological conditions (pH 7.0), respectively, which were underestimated relative to the van't Hoff enthalpies. In addition, the effects of various cations, ionic strength, mixed-valent cations, and the position of the C(+)xG.C triplets on the thermodynamics of the triplexes were addressed under near physiological conditions. The interaction of metal ions with the triplexes clearly depended on the type and ionic strength of the cations, and the efficiency with which the cations stabilized the global triplex was in the order Mg(2+) > Mn(2+) > Ca(2+) > Ba(2+) > Na(+). These observations would be useful for the design of triplex-forming oligonucleotides for antigene drugs and therapeutic purposes.  相似文献   

9.
Intramolecular triplex formation of the purine.purine.pyrimidine type   总被引:4,自引:0,他引:4  
F M Chen 《Biochemistry》1991,30(18):4472-4479
Six octadecamers with hairpin motifs have been synthesized and investigated for possible intramolecular triplex formation. Electrophoretic, hypochromic, and CD evidence suggest that d(CCCCTTTGGGGTTTGGGG) and d(GGGGTTTGGGGTTTCCCC) can form G.G.C intramolecular triplexes via double hairpin formation in neutral solutions, presumably with the terminal G tract folding back along the groove of the hairpin duplex. In contrast, d(GGGGTTTCCCCTTTGGGG) and the three corresponding 18-mers containing one G and two C tracts each forms a single hairpin duplex with a dangling single strand. The design of the sequences has led to the conclusion that the two G tracts are antiparallel to each other in such a triplex. Magnesium chloride titrations indicate that Mg2+ is not essential for such an intramolecular triplex formation. The main advantage of our constructs when compared to the intermolecular triplex formation is that the shorter triplex stem can be formed in a much lower DNA concentration. The merit of G.G.C triplex, in contrast to that of C+.G.C, lies in the fact that acidic condition is not required in its formation and will, thus, greatly expand our repertoire in the triplex strategy for the recognition and cleavage of duplex DNA. Spectral binding studies with actinomycin D (ACTD) and chromomycin A3 (CHR) as well as fluorescence lifetime measurements with ethidium bromide (EB) suggest that although hairpin duplexes bind these drugs quite well, the intramolecular triplexes bind poorly. Interestingly, the binding densities for the strong-binding hairpins obtained from Scatchard plots are about one ACTD molecule per oligomeric strand, whereas more than two drug molecules are found in the case of CHR, in agreement with the recent NMR studies indicating that CHR binds to DNA in the form of a dimer.  相似文献   

10.
Abstract

Six different nucleic acid structures including duplex, triplex and quadruplex are formed by oligonucleotides. Their structural properties are studied in detail by four spectroscopic techniques, i.e. CD, UV, NMR and fluorescence. Results are: CD Spectra: The common characteristics is a negative band at 240 nm, and the spectra are different from each other in the range 260–300 nm. Many factors such as chain direction, sugar puckering, orientation of the glycosyl bond, base stacking and sequence can effect their conformation and then show diversity and complexity in the spectra. UV Spectra: The UV spectra of all forms are quite similar, all of them exhibit a sharp positive peak around 210 nm and a broad positive band in the region of 240–280 nm. Although the bands are different in absorbance, the spectra are not characteristic enough to distinguish these forms. In addition, their thermal denaturation is also observed by UV spectrum, different melting curves and points are shown and some thermodynamic information is provided. NMR Spectra: Since the G residues in the six samples all participate in hydrogen bond, the imino proton can not exchange with the solvent freely so as to allow an observable resonance to arise. The resonance number and chemical shift will vary with the change in base-pairing number and mode as well as the whole geometry of its molecule. Fluorescence Spectra: The interaction mechanisms between EB and these structures are different. B type duplex and triplex adopt an intercalative mode in which the efficiency of energy transfer is relatively high and the fluorescence of EB can not be quenched easily. While for the parallel duplex, outside binding is predominant in which energy transfer can hardly happen and most of its fluorescence can be quenched. As for the quadruplex, groove binding is possible, so the efficiency of energy transfer is higher than that in outside binding, but lower than that in intercalative binding, and fluorescence is quenched partly.  相似文献   

11.
A comparative study on the interaction of sanguinarine and berberine with DNA and RNA triplexes and their parent duplexes was performed, by using a combination of spectrophotometric, UV thermal melting, circular dichroic and thermodynamic techniques. Formation of the DNA and RNA triplexes was confirmed from UV-melting and circular dichroic measurements. The interaction process was characterized by increase of thermal melting temperature, perturbation in circular dichroic spectrum and the typical hypochromic and bathochromic effects in the absorption spectrum. Scatchard analysis indicated that both the alkaloids bound to the triplex and duplex structures in a non-cooperative manner and the binding was stronger to triplexes than to parent duplexes. Thermal melting studies further indicated that sanguinarine stabilized the Hoogsteen base paired third strand of both DNA and RNA triplexes more tightly compared to their Watson-Crick strands, while berberine stabilized the third strand only without affecting the Watson-Crick strand. However, sanguinarine stabilized the parent duplexes while no stabilization was observed with berberine under identical conditions. Circular dichroic studies were also consistent with the observation that perturbations of DNA and RNA triplexes were more compared to their parent duplexes in presence of the alkaloids. Thermodynamic data revealed that binding of sanguinarine and berberine to triplexes (T.AxT and U.AxU) and duplexes (A.T and A.U) showed negative enthalpy changes and positive entropy changes but that of sanguinarine to C.GxC(+) triplex and G.C duplex exhibited negative enthalpy and negative entropy changes. Taken together, these results suggest that both sanguinarine and berberine can bind and stabilize the DNA and RNA triplexes more strongly than their respective parent duplexes.  相似文献   

12.
Two oligodeoxyribonucleotides, d-CTTCTTTTTTATTTT, I(A), and d-ATTATTTTTTATTTT, II(A), where C is 5-methylcytosine and A is 8-oxoadenine, were prepared and their interactions with the duplex d-GAAGAAAAAAYAAAA/d-TTTTZTTTTTTCTTC, III.IV(Y.Z), were studied. Oligomers I(A) and II(A) each form triplexes with III.IV(G.C) at temperatures below 20 degrees C as shown by continuous variation experiments, melting experiments, and circular dichroism (CD) spectroscopy. The CD spectra of these triplexes are almost identical to those formed by I(C) and II(C), oligomers which contain cytosine in place of 8-oxoadenine. This suggests that the 8-oxoadenine-containing triplexes have conformations which are very similar to those of the cytosine-containing triplexes. The melting temperature (Tm) for dissociation of the third strand of triplex II.III.IV(A.G.C) is 22 degrees C at pH 7.0 and 8.0, whereas the Tm of the corresponding transition in triplex II.III.IV(C.G.C) decreases from 28 degrees C at pH 7.0 to 17 degrees C at pH 8.0. The pH dependence of the Tm in the latter triplex reflects the necessity of protonating the N-3 of cytosine in order for it to form two hydrogen bonds with G of the G.C base pair. It appears that the keto form of 8-oxoadenine can potentially form two hydrogen bonds with the N-7 and O-6 atoms of G of the G.C base pair, when the 8-oxoadenine is in the syn conformation and in contrast to cytosine does not require protonation of the base. Oligomer I(A) does not form triplexes with III.IV(Y.Z) when Y.Z is A.T or T.A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Oligodeoxynucleotide (ODN) directed triplex formation has therapeutic importance and depends on Hoogsteen hydrogen bonds between a duplex DNA and a third DNA strand. T*A:T triplets are formed at neutral pH and C+*G:C are favoured at acidic pH. It is demonstrated that spermine conjugation at N4 of 5-Me-dC in ODNs 1-5 (sp-ODNs) imparts zwitterionic character, thus reducing the net negative charge of ODNs 1-5. sp-ODNs form triplexes with complementary 24mer duplex 8:9 show foremost stability at neutral pH 7.3 and decrease in stability towards lower pH, unlike the normal ODNs where optimal stability is found at an acidic pH 5.5. At pH 7.3, control ODNs 6 and 7 carrying dC or 5-Me-dC, respectively, do not show any triple helix formation. The stability order of triplex containing 5-Me-dC-N4-(spermine) with normal and mismatched duplex was found to be X*G:C approximately X*A:T > X*C:G > X*T:A. The hysteresis curve of sp-ODN triplex 3*8:9 indicated a better association with complementary duplex 8:9 as compared to unmodified ODN 6 in triplex 6*8:9. pH-dependent UV difference spectra suggest that N3 protonation is not a requirement for triplex formation by sp-ODN and interstrand interaction of conjugated spermine more than compensates for loss in stability due to absence of a single Hoogsteen hydrogen bond. These results may have importance in designing oligonucleotides for antigene applications.  相似文献   

14.
Photofootprinting of DNA triplexes.   总被引:11,自引:10,他引:1       下载免费PDF全文
We have used a photofootprinting assay to study intermolecular and intramolecular DNA triplexes. The assay is based on the fact that the DNA duplex is protected against photodamage (specifically, against the formation of the (6-4) pyrimidine photoproducts) within a triplex structure. We have shown that this is the case for PyPuPu (YRR) as well as PyPuPy (YRY) triplexes. Using the photofootprinting assay, we have studied the triplex formation under a variety of experimentally defined conditions. At acid pH, d(C)n.d(G)n.d(C)n and d(CT)n.d(GA)n.d(CT)n triplexes are detected by this method. The d(CT)n.d(GA)n.d(CT)n triplexes are additionally stabilized by divalent cations and spermidine. PyPuPu triplexes are pH-independent and are stabilized by divalent cations, such as Mg++ and Zn++. The effect depends on the type of cation and on the DNA sequence. The d(CT)n.d(GA)n.d(GA)n triplex is stabilized by Zn++, but not by Mg++, whereas the d(C)n.d(G)n.d(G)n triplex is stabilized by Mg++. In H-DNA, virtually the entire pyrimidine chain is protected against photodimerization, whereas only half of the pyrimidine chain participating in a triplex is protected in the CGG intramolecular triplex.  相似文献   

15.
H T Steely  Jr  D M Gray    R L Ratliff 《Nucleic acids research》1986,14(24):10071-10090
CD spectra and difference-CD spectra of (a) two DNA X RNA hybrid duplexes (poly[r(A) X d(U)] and poly[r(A) X d(T)]) and (b) three hybrid triplexes (poly-[d(T) X r(A) X d(T)], poly[r(U) X d(A) X r(U)], and poly[r(T) X d(A) X r(T)]) were obtained and compared with CD spectra of six A X U- and A X T-containing duplex and triplex RNAs and DNAs. We found that the CD spectra of the homopolymer duplexes above 260 nm were correlated with the type of base pair present (A-U or A-T) and could be interpreted as the sum of the CD contributions of the single strands plus a contribution due to base pairing. The spectra of the duplexes below 235 nm were related to the polypurine strands present (poly-[r(A)] or poly[d(A)]). We interpret the CD intensity in the intermediate 255-235 nm region of these spectra to be mainly due to stacking of the constituent polypurine strands. Three of the five hybrids (poly[r(A) X d(U)], poly[r(A) X d(T)], and poly[d(T) X r(A) X d(T)]) were found to have heteronomous conformations, while poly[r(U) X d(A) X r(U)] was found to be the most A-like and poly[r(T) X d(A) X r(T)], the least A-like.  相似文献   

16.
D S Pilch  C Levenson  R H Shafer 《Biochemistry》1991,30(25):6081-6088
We have investigated the structure and physical chemistry of the d(C3T4C3).2[d(G3A4G3)] triple helix by polyacrylamide gel electrophoresis (PAGE), 1H NMR, and ultraviolet (UV) absorption spectroscopy. The triplex was stabilized with MgCl2 at neutral pH. PAGE studies verify the stoichiometry of the strands comprising the triplex and indicate that the orientation of the third strand in purine-purine-pyrimidine (pur-pur-pyr) triplexes is antiparallel with respect to the purine strand of the underlying duplex. Imino proton NMR spectra provide evidence for the existence of new purine-purine (pur.pur) hydrogen bonds, in addition to those of the Watson-Crick (W-C) base pairs, in the triplex structure. These new hydrogen bonds are likely to correspond to the interaction between third-strand guanine NH1 imino protons and the N7 atoms of guanine residues on the purine strand of the underlying duplex. Thermal denaturation of the triplex proceeds to single strands in one step, under the conditions used in this study. Binding of the third strand appears to enhance the thermal stability of the duplex by 1-3 degrees C, depending on the DNA concentration. The free energy of triplex formation (-26.0 +/- 0.5 kcal/mol) is approximately twice that of duplex formation (-12.6 +/- 0.7 kcal/mol), suggesting that the overall stability of the pur.pur base pairs is similar to that of the W-C base pairs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Triple helices with G*G.C and A*A.T base triplets with third GA strands either parallel or antiparallel with respect to the homologous duplex strand have been formed in presence of Na (+) or Mg(2+) counterions. Antiparallel triplexes are more stable and can be obtained even in presence of only monovalent Na(+) counterions. A biphasic melting has been observed, reflecting third strand separation around 20 degrees C followed by the duplex -> coil transition around 63 degrees C. Parallel triplexes are far less stable than the antiparallel ones. Their formation requires divalent ions and is observed at low temperature and in high concentration conditions. Different FTIR signatures of G*G.C triplets in parallel and antiparallel triple helices with GA rich third strands have been obtained allowing the identification of such base triplets in triplexes formed by nucleic acids with heterogeneous compositions. Only S-type sugars are found in the antiparallel triplex while some N-type sugar conformation is detected in the parallel triplex.  相似文献   

18.
We have studied the effect of intermolecular triplexes formation on the yield of cyclobutane photodimers in DNA. DNA duplex within the pyrimidine-purine-pyrimidine triplex d(TC)nd(GA)nd(CT)n is protected from the formation of cyclobutane photodimers in the case of the stabilization of this triplex by acid pH, and in the case of supplementary stabilization by Mg2+ or Zn2+. We have studied pH-independent pyrimidine-purine-purine triplexes stabilized by bivalent cations. In such triplexes, the protection from the formation of [6-4] photodimers is observed, whereas the protection from cyclobutane dimer formation does not take place. The formation of the d(TC)nd(GA)nd(GA)n triplex leads to an inversion of the intensities of cyclobutane CT and TC photodimers. We observed a sharp decrease in photoreactivity with respect to cyclobutane dimers in the duplex tract d(C)18d(G)18 in the presence of Ba2+, Cd2+, Co2+, Mn2+, Zn2+ and Ni2+. The formation of the d(C)nd(G)nd(G)n triplex leads to 'antifootprinting', i.e. an increase in the yield of cyclobutane photodimers.  相似文献   

19.
Protonated pyrimidine-purine-purine triplex.   总被引:1,自引:0,他引:1       下载免费PDF全文
We have studied a protonated pyrimidine-purine-purine (Py-Pu-Pu) triplex, which is formed between the d(C)nd(G)n duplex and the d(AG)m oligonucleotide as the third strand and carries the CG*A+ protonated base-triads. We have observed such an intermolecular complex between a plasmid carrying the d(C)18 d(G)18 insert and the d(AG)5 oligonucleotide without bivalent cations in 200 mM of Na+ at pH4.0. Bivalent cations additionally stabilize the complex. We propose the structures for nearly isomorphous base-triads TA*A, CG*G and CG*A+. To identify the H-DNA-like structure, which includes the triplex between d(C)n d(G)n duplex and the AG-strand, we have cloned in a superhelical plasmid the insert: G10TTAA(AG)5. The data on photofootprinting and chemical modification with diethyl pyrocarbonate, potassium permanganate and dimethyl sulfate demonstrate that the H-like structure with triplex carrying CG*G and CG*A+ base triads is actually formed under acid conditions. In the course of this study we have come across unexpected results on probing of Py-Pu-Pu triplexes by dimethyl sulfate (DMS): the protection effect is observed not only for guanines entering the duplex but also for guanines in the third strand lying in the major groove. We have demonstrated this effect not only for the case the novel protonated Py-Pu-Pu triplex but also for the traditional non-protonated Py-Pu-Pu intramolecular triplex (H*-DNA) formed by the d(C)37 d(G)37 insert in supercoiled plasmid in the presence of Mg2+ ions.  相似文献   

20.
We have stabilized the d(A)10.2d(T)10 and d(C+LT4C+3).d(G3A4G3).d(C3T4C3) triple helices with either NaCl or MgCl2 at pH 5.5. UV mixing curves demonstrate a 1:2 stoichiometry of purine to pyrimidine strands under the appropriate conditions of pH and ionic strength. Circular dichroic titrations suggest a possible sequence-independent spectral signature for triplex formation. Thermal denaturation profiles indicate the initial loss of the third strand followed by dissociation of the underlying duplex with increasing temperature. Depending on the base sequence and ionic conditions, the binding affinity of the third strand for the duplex at 25 degrees C is two to five orders of magnitude lower than that of the two strands forming the duplex. Thermodynamic parameters for triplex formation were determined for both sequences in the presence of 50 mM MgCl2 and/or 2.0 M NaCl. Hoogsteen base pairs are 0.22-0.64 kcal/mole less stable than Watson-Crick base pairs, depending on ionic conditions and base composition. C+.G and T.A Hoogsteen base pairs appear to have similar stability in the presence of Mg2+ ions at low pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号