首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adenosine triphosphate (ATP)-binding cassette (ABC) transporters play a key role in the development of multidrug resistance (MDR) in cancer cells. P-glycoprotein (P-gp) and multidrug resistance-associated protein 1 (MRP1) are important proteins in this superfamily which are widely expressed on the membranes of multidrug resistance (MDR) cancer cells. Besides, upregulation of cellular autophagic responses is considered a contributing factor for MDR in cancer cells. We designed a liposome system co-encapsulating a chemotherapeutic drug (doxorubicin hydrochloride, DOX) and a typical autophagy inhibitior (chloroquine phosphate, CQ) at a weight ratio of 1:2 and investigated its drug resistance reversal mechanism. MTT assay showed that the IC50 of DOX/CQ co-encapsulated liposome in DOX-resistant human breast cancer cells (MCF7/ADR) was 4.7?±?0.2?μM, 5.7-fold less than that of free DOX (26.9?±?1.9 μM), whereas it was 19.5-fold in doxorubicin-resistant human acute myelocytic leukemia cancer cells (HL60/ADR) (DOX/CQ co-encapsulated liposome 1.2?±?0.1?μM, free DOX 23.4?±?2.8?μM). The cellular uptake of DOX increased upon addition of free CQ, indicating that CQ may interact with P-gp and MRP1; however, the expressions of P-gp and MRP1 remained unchanged. In contrast, the expression of the autophagy-related protein LC3-II increased remarkably. Therefore, the mechanism of MDR reversal may be closely related to autophagic inhibition. Evaluation of anti-tumor activity was achieved in an MCF-7/ADR multicellular tumor spheroid model and transgenic zebrafish model. DOX/CQ co-encapsulated liposome exerted a better anti-tumor effect in both models than that of liposomal DOX or DOX alone. These findings suggest that encapsulating CQ with DOX in liposomes significantly improves the sensitivity of DOX in DOX-resistant cancer cells.  相似文献   

2.
Failure of current anticancer drugs mandates screening for new compounds of synthetic or biological origin to be used in cancer therapy. Multidrug resistance (MDR) is one of the main obstacles in the chemotherapy of cancer. Efflux of cytotoxic agents mediated by P-glycoprotein (P-gp or MDR1) is believed to be an important mechanism of multidrug resistance. Therefore, we decided to investigate the antiproliferative effects of seven newly synthesized 1,4-dihydropyridine (DHP) derivatives in comparison to verapamil (VP) and doxorubicin (DOX) on human breast cancer T47D cells and its MDR1 overexpressed and moderately resistant cells (RS cells) using MTT cytotoxicity assay. We also examined the effects of these compounds on cytotoxicity of DOX in these two cell types. The cytotoxicity assays using MTT showed that most of the tested new DHP derivatives and VP at 10 μM concentration had varying levels of toxicity on both T47D and RS cells. The toxicity was mostly in the range of 10–25%. However, the cytotoxicity of these DHP derivatives, similar to VP, was significantly less than DOX when comparing IC50 values. Furthermore, these compounds in general had relatively more cytotoxicity on T47D vs RS cells at 10-μM concentration. Among new DHPs, compounds 7a (3,5-dibenzoyl-4-(2-methylthiazol-4-yl)-1,4-dihydro-2,6-dimethylpyridine) and 7d (3,5-diacetyl-4-[2-(2-chlorophenyl)thiazol-4-yl)]-1,4-dihydro-2,6-dimethylpyridine) showed noticeable potentiation of DOX cytotoxicity (reduction of DOX IC50) compared to DOX alone in both cells, particularly in RS cells. This effect was similar to that of VP, a known prototype of MDR1 reversal agent. In other words, compounds 7a and 7d resensitized RS cells to DOX or reversed their resistance. Results indicate that compound 7d exerts highest effect on RS cells. Therefore, these two newly synthesized DHP derivatives, compounds 7a and 7d, are promising as potential new MDR1 reversal agents and should be further studied on other highly resistant cells due to MDR1 overexpression and with further molecular investigation.  相似文献   

3.
Multidrug resistance (MDR) is a major obstacle to successful clinical cancer chemotherapy. Currently, there is still unsatisfactory demand for innovative strategies as well as effective and safe reversing agent to overcome MDR. In this study, we developed a novel nanoformulation, in which doxorubicin hydrochloride (DOX) and quinine hydrochloride (QN) were simultaneously loaded into liposomes by a pH-gradient method for overcoming MDR and enhancing cytotoxicity in a doxorubicin-resistant human breast cancer cell line (MCF-7/ADR). The various factors were investigated to optimize the formulation and manufacturing conditions of DOX and QN co-loaded liposomes (DQLs). The DQL showed uniform size distribution and high encapsulation efficiency (over 90%) for both the drugs. Furthermore, DQLs significantly displayed high intracellular accumulation and potential of MDR reversal capability in MCF-7/ADR cells through the cooperation of DOX with QN, in which QN played the role as a MDR reversing agent. The IC50 of DQL0.5:1 with the DOX/QN/SPC weight ratio of 0.5:1:50 was 1.80?±?0.03?μg/mL, which was 14.23 times lower than that of free DOX in MCF-7/ADR cells. And the apoptotic percentage induced by DQL0.5:1 was also increased to 62.2%. These findings suggest that DQLs have great potential for effective treatment of MDR cancer.  相似文献   

4.
A series of parthenolide-SAHA hybrids were synthesized and evaluated for their anti-AML activities against HL-60 and HL-60/ADR cell lines. The most active compound 26 exhibited high activity against HL-60/ADR cell line with IC50 value of 0.15 μM, which demonstrated 16.8-fold improvement compared to that of the parent compound PTL (IC50 = 2.52 μM). Moreover, it was six times more potent than the reference drug SAHA (IC50 = 0.90 µM) and fifty-one times more potent than ADR (IC50 = 7.72 µM). The preliminary molecular mechanism of 26 indicated that compound 26 could significantly induce apoptosis of HL-60/ADR cells. The effect of compound 26 was mainly through mitochondria pathway. Further investigation revealed that the protein level of HDAC1 and HDAC6 were reduced after the treatment of compound 26 with a dose-dependent manner. Compound 26 could significantly decrease ABCC1 expression, which increased the accumulation of intracellular drug for overcoming the drug resistance. On the base of these results, compound 26 might be considered as a promising candidate for further evaluation as a potential anti-AML drug.  相似文献   

5.
Phytochemical investigation of the roots of Ferula elaeochytris made it possible to isolate two sesquiterpene esters, 6-anthraniloyljaeschkeanadiol (elaeochytrin A) and 4β-hydroxy-6α-(p-hydroxybenzoyloxy)dauc-9-ene (elaeochytrin B), as well as eight known compounds: 6-angeloyljaeschkeanadiol, teferidin, ferutinin, 6-(p-hydroxybenzoyl)epoxyjaeschkeanadiol, 6-(p-hydroxybenzoyl)lancerotriol, 5-caffeoylquinic acid, 1,5-dicaffeoylquinic acid and sandrosaponin IX. The cytotoxic activities of all compounds were investigated on K562R (imatinib-resistant) human chronic myeloid leukaemia and DA1-3b/M2BCR-ABL (dasatinib-resistant) mouse leukemia cell line. Elaeochytrin A was the most active compound on both cell lines (IC50 = 12.4 and 7.8 μM, respectively). It was also tested on non-resistant human promyelocytic leukemia cells (HL60, IC50 = 13.1 μM) and was not toxic to normal peripheral blood mononuclear cells up to 100 μM.  相似文献   

6.
We compared the effects of four quaternary benzo[c]phenanthridine alkaloids – chelerythrine, chelilutine, sanguinarine, and sanguilutine – and two quaternary protoberberine alkaloids – berberine and coptisine – on the human cell line HeLa (cervix carcinoma cells) and the yeastsSaccharomyces cerevisiae andSchizosaccharomyces japonicus var. versatilis. The ability of alkaloids to display primary fluorescence, allowed us to record their dynamics and localization in cells. Cytotoxic, anti-microtubular, and anti-actin effects in living cells were studied. In the yeasts, neither microtubules nor cell growth was seriously affected even at the alkaloid concentration of 100 μg/ml. The HeLa cells, however, responded to the toxic effect of alkaloids at concentrations ranging from 1 to 50 μg/ml. IC50 values for individual alkaloids were: sanguinarine IC50 = 0.8 μg/ml, sanguilutine IC50 = 8.3 μg/ml, chelerythrine IC50 = 6.2 μg/ml, chelilutine IC50 = 5.2 μg/ml, coptisine IC50 = 2.6 μg/ml and berberine IC50 >10.0 μg/ml. In living cells, sanguinarine produced a decrease in microtubule numbers, particularly at the cell periphery, at a concentration of 0.1 μg/ml. The other alkaloids showed a similar effect but at higher concentrations (5–50 μg/ml). The strongest effects of sanguinarine were explained as a consequence of its easy penetration through the cell membrane owing to nonpolar pseudobase formation and to a high degree of molecular planarity. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Multidrug resistance (MDR) and disease relapse are challenging clinical problems in the treatment of leukaemia. Relapsed disease is frequently refractory to chemotherapy and exhibits multiple drug resistance. Therefore, it is important to identify the mechanism by which cancer cells develop resistance. In this study, we used microRNA (miRNA) microarray and qRT-PCR approaches to investigate the expression of miRNAs in three leukaemia cell lines with different degrees of resistance to doxorubicin (DOX) compared with their parent cell line, K562. The expression of miR-331-5p and miR-27a was inversely correlated with the expression of a drug-resistant factor, P-glycoprotein (P-gp), in leukaemia cell lines with gradually increasing resistance. The development of drug resistance is regulated by the expression of the P-gp. Transfection of the K562 and, a human promyelocytic cell line (HL) HL60 DOX-resistant cells with miR-331-5p and miR-27a, separately or in combination, resulted in the increased sensitivity of cells to DOX, suggesting that correction of altered expression of miRNAs may be used for therapeutic strategies to overcome leukaemia cell resistance. Importantly, miR-331-5p and miR-27a were also expressed at lower levels in a panel of relapse patients compared with primary patients at diagnosis, further illustrating that leukaemia relapse might be a consequence of deregulation of miR-331-5p and miR-27a.  相似文献   

8.
We investigated the relevance of signaling mechanisms regulated by the Ras-homologous GTPase Rac1 for survival of acute myeloid leukemia (AML) cells harbouring the MLL-AF9 oncogene due to t(9;11)(p21;q23) translocation. Monocytic MLL-AF9 expressing cells (MM6, THP-1) were hypersensitive to both small-molecule inhibitors targeting Rac1 (EHT 1864, NSC 23766) (IC50EHT ~12.5 μM) and lipid lowering drugs (lovastatin, atorvastatin) (IC50Lova ~7.5 μM) as compared to acute myelocytic leukemia (NOMO-1, HL60) and T cell leukemia (Jurkat) cells (IC50EHT >30 μM; IC50Lova >25 μM). Hypersensitivity of monocytic cells following Rac1 inhibition resulted from caspase-driven apoptosis as shown by profound activation of caspase-8,-9,-7,-3 and substantial (~90 %) decrease in protein expression of pro-survival factors (survivin, XIAP, p-Akt). Apoptotic death was preceded by S139-posphorylation of histone H2AX (γH2AX), a prototypical surrogate marker of DNA double-strand breaks (DSBs). Taken together, abrogation of Rac1 signaling causes DSBs in acute monocytic leukemia cells harbouring the MLL-AF9 oncogene, which, together with downregulation of survivin, XIAP and p-Akt, results in massive induction of caspase-driven apoptotic death. Apparently, Rac1 signaling is required for maintaining genetic stability and maintaining survival in specific subtypes of AML. Hence, targeting of Rac1 is considered a promising novel strategy to induce lethality in MLL-AF9 expressing AML.  相似文献   

9.
Using the whole-cell patch-clamp technique, the selectivity and pharmacology of 8-Br-cGMP-stimulated currents in the human alveolar cell line A549 was compared to 8-Br-cGMP-stimulated currents in HK293 cells transfected with hαCNC1. Whole cell currents stimulated by 8-Br-cGMP in HK293 cells transfected with hαCNC1 or A549 cells are carried by inward sodium and outward potassium with nearly the same selectivity. The whole-cell inward currents that are stimulated by 8-Br-cGMP in HK293 cells transfected with hαCNC1 are inhibited by l-cis-diltiazem with an IC50 of 154 μm, by 2′,4′-dichlorobenzamil with an IC50 of 50 μm and by amiloride with an IC50 of 133 μm. The whole-cell inward currents in A549 cells that are stimulated by 8-Br-cGMP, are inhibited by l-cis-diltiazem with an IC50 of 87 μm, by 2′4′-dichlorobenzamil with an IC50 of 38 μm and by amiloride with an IC50 of 32 μm suggesting that these airway cells contain cyclic nucleotide-gated cation channels. RT-PCR data suggest that mRNA of both αCNC1 and βCNC subunits are present in A549 cells and the presence of the βCNC subunit, may as previously reported, increase the affinity of these channel blockers compared to the hαCNC1 subunit alone. The mRNA of two other isoforms of this channel, CNC2 and CNC3, are also expressed in the A549 cell line. This study documents the IC50 of externally applied channel blockers that can be used for in vitro or in vivo experiments to document sodium absorption via cyclic nucleotide-gated cation channels in airway cells. Received: 24 February/Revised: 28 May 1999  相似文献   

10.
Nicotinic acetylcholine receptors (nAChR) are diverse members of the ligand-gated ion channel superfamily of neurotransmitter receptors and play critical roles in chemical signaling throughout the nervous system. Reports of effects of substance P (SP) on nAChR function prompted us to investigate interactions between several tachykinins and human nAChR subtypes using clonal cell lines as simple experimental models. Acute exposure to SP inhibits carbamylcholine- or nicotinestimulated function measured using86Rb+ efflux assays of human ganglionic (α3β4) nAChR expressed in SH-SY5Y neuroblastoma cells (IC50∼2.3 μM) or of human muscle-type (α1β1γδ) nAChR expressed in TE671/RD clonal cells (IC50∼21 μM). SP also acutely blocks function of rat ganglionic nAChR expressed in PC12 pheochromocytoma cells (IC50∼2.1 μM). Neurokinin A and eledoisin inhibit function (extrapolated IC50 values between 60 and 160 μM) of human muscle-type or ganglionic nAChR, but neurokinin B does not, and neither human nAChR is as sensitive as PC12 cell α3β4-nAChR to eledoisin or neurokinin A inhibition. At concentrations that produce blockade of nAChR function, SP fails to affect binding of [3H]acetylcholine to human muscle-type or ganglionic nAChR. SP-mediated blockade of rat or human ganglionic nAChR function is insurmountable by increasing agonist concentrations. Collectively, these results indicate that tachykinins act noncompetitively to inhibit human nAChR function with potencies that vary across tachykinins and nAChR subtypes. They also indicate that tachykinin actions at nAChR could further contribute to complex cross-talk between nicotinic cholinergic and tachykinin signals in regulation of nervous system activity.  相似文献   

11.
BackgroundRecalcitrant cancers appear as a major obstacle to chemotherapy, prompting scientists to intensify the search for novel drugs to tackle the cell lines expressing multi-drug resistant (MDR) phenotypes.PurposeThe purpose of this study was to evaluate the antiproliferative potential of a ferrulic acid derivative, 8,8-bis-(dihydroconiferyl)-diferulate (DHCF2) on a panel of 18 cancer cell lines, including various sensitive and drug-resistant phenotypes, belonging to human and animals. The mode of induction of cell death by this compound was further studied.MethodsThe antiproliferative activity, autophagy, ferroptotic and necroptotic cell death were evaluated by the resazurin reduction assay (RRA). CCRF-CEM leukemia cells were used for all mechanistic studies. A caspase-Glo assay was applied to evaluate the activity of caspases. Cell cycle analysis (PI staining), apoptosis (annexin V/PI staining), mitochondrial membrane potential (MMP) (JC-1) and reactive oxygen species (ROS) (H2DCFH-DA) were assessed by flow cytometry.ResultsDHCF2 demonstrated impressive cytotoxic effects towards the 18 cancer cell lines tested, with IC50 values all below 6.5 µM. The obtained IC50 values were in the range of 1.17 µM (towards CCRF-CEM leukemia cells) to 6.34 µM (towards drug-resistant HCT116 p53−/− human colon adenocarcinoma cells) for DHCF2 and from 0.02 µM (against CCRF-CEM cells) to 122.96 µM (against multidrug-resistant CEM/ADR5000 leukemia cells) for the reference drug, doxorubicin. DHCF2 had IC50 values lower than those of doxorubicin, against CEM/ADR5000 cells and on some melanoma cell lines, such as MaMel-80a cells, Mel-2a cells, MV3 cells and SKMel-505 cells. DHCF2 induced autophagy as well as apoptosis in CCRF-CEM cells though caspases activation, MMP alteration and increase of ROS production.ConclusionThe studied diferulic acid, DHCF2, is a promising antiproliferative compound. It deserves further indepth investigations with the ultimate aim to develop a novel drug to fight cancer drug resistance.  相似文献   

12.
Bisnaphthalimido compounds bis-intercalate to DNA via the major groove and are potentially potent cancer therapeutics. Previously, we incorporated natural polyamines as linkers connecting the two naphthalimido ring moieties to create a series of soluble bisnaphthalimidopropyl polyamines (BNIPPs). Here, extending earlier work on bisnaphthalimidopropylspermidine (BNIPSpd)-induced apoptosis in colon adenocarcinoma Caco-2 cells, we compare the cytotoxicity and genotoxicity of BNIPSpd relative to the spermine and oxaspermine derivatives, bisnaphthalimidopropylspermine (BNIPSpm) and bisnaphthalimidopropyloxaspermine (BNIPOSpm). The order of cytotoxicity after 24 h was BNIPSpd (IC50 = 0.47 μM) > BNIPSpm (IC50 = 10.04 μM) > BNIPOSpm (IC50 >50 μM). After a 72-h BNIPOSpm exposure, an IC50 = 10.25 μM was achieved. With 4-h exposure to BNIPSpd or BNIPSpm or 12-h exposure to BNIPOSpm, concentrations ≥1 μM induced a significant dose-dependent increase in DNA damage as measured by alkaline single-cell gel electrophoresis. The longer incubation times required for BNIPOSpm to induce DNA strand breaks reflect a slower rate of BNIPOSpm cellular distribution as monitored via BNIPP fluorescence within the cells. Moreover, exposure to a non-genotoxic concentration of BNIPSpd, BNIPSpm (0.1 μM for 4 h) or BNIPOSpm (0.1 μM for 12 h) induced a significant decrease in repair of oxidative DNA damage induced by hydrogen peroxide. In conclusion, BNIPP exposure in Caco-2 cells is associated with significant induction of DNA damage and inhibition of DNA repair at non-genotoxic concentrations. The latter is a novel consequence of BNIPP–cell interactions which adds to the spectrum of therapeutically relevant activities that may be exploited for the design and development of naphthalimide-based therapeutics.  相似文献   

13.
Scutellariae Radix is one of the well-known tocolytic Chinese herbs. Oroxylin A is isolated from the root of Scutellaria baicalensis. The main syndrome of preterm birth is caused by uterus contractions from excitatory factors. Administration of tocolytic agents is a strategy to prevent the occurrence of preterm births. The aim of this study was to investigate the effects of oroxylin A on contractions of uterine strips isolated from non-pregnant female Wistar rats (250~350 g). Contractions of the uterus were induced with acetylcholine (Ach) (1 μM), PGF (0.1 μM), oxytocin (10-3 U/ml), KCl (56.3 mM), tetraethylammonium (TEA; 1 and 10 mM), 4-aminopyridine (4-AP; 5 mM), glipizide (30 μM), a nitric oxide synthase (NOS) inhibitor (LNNA; 10-3M), a β-receptor blocker (propranolol; 10 μM), and a cyclooxygenase inhibitor (indomethacin; 60 μM). The inhibitory effects of the amplitude and frequency of spontaneous contractions by oroxylin A were antagonized with Ach (IC50 22.85 μM), PGF (IC5027.28 μM), oxytocin (IC50 12.34 μM), TEA; 1 and 10 mM (IC50 52.73 and 76.43 μM), 4-AP (IC50 67.16 μM), and glipizide (IC5027.53 μM), but oroxylin A was not influenced by Ca2+-free medium, LNNA, propranolol, or indomethacin. Otherwise, oroxylin A-mediated relaxation of the rat uterus might occur through opening of uterine calcium-dependent potassium channels or adenosine triphosphate potassium channel activation. This suggests that oroxylin A is the tocolytic principle constituent of Scutellariae Radix, and oroxylin A may provide a lead compound for new tocolytic drug development in the future.  相似文献   

14.
Resveratrol (RES), a component of red wine, possesses anti-inflammatory properties. The studies described in the present work were aimed at evaluating the potential for RES and related stilbene analogs (piceatannol, PIC; pterostilbene, TPS; trans-stilbene, TS; and trans-stilbene oxide, TSO) to exhibit toxicity towards RAW 264.7 mouse macrophages. The effect of TS, TSO, RES and TPS on RAW 264.7 macrophage viability was determined by two standard methods: (a) the MTT assay and (b) the trypan blue dye exclusion test. Whereas macrophages were more sensitive to PIC (LC50 trypan ∼ 1.3 μM) and to TPS (LC50 trypan ∼ 4.0 μM and LC50 MTT ∼ 8.3 μM) than to RES (LC50 trypan ∼ 8.9 μM and LC50 MTT ∼ 29.0 μM), they were relatively resistant to TSO (LC50 trypan ∼ 61.0 μM and LC50 MTT > 100 μM) and to TS (LC50 trypan ≥ 5.0 μM and LC50 MTT ≥ 5.0 μM). The ability of selected stilbenes (RES, TPS and PIC) to exhibit growth inhibitory effects was also examined. Although RES and TPS were observed to inhibit cell proliferation in macrophages (IC50 ≤ 25 μM), these cells were resistant to growth inhibition by PIC (IC50 ≥ 50 μM). The data obtained in the present analysis demonstrate that substituted stilbene compounds such as RES have the capacity to exhibit cytotoxic and anti-proliferative activities in macrophages.  相似文献   

15.
In this study, a new series of bis-benzimidazole derivatives were designed and synthesized. Most of these new compounds showed significant anti-tumor activity in vitro compared to Hoechst 33258. Among them, the most potent compound 8 had the IC50 values of 0.56 μM for HL60 (Human promyelocytic leukemia cells) tumor cell line and 0.58 μM for U937 (Human leukemic monocyte lymphoma cells) tumor cell line. Subsequent toxicity study on human peripheral blood mononuclear cells (PBMC) showed that compound 8 exhibited less toxicity than 5-FU. We also found that apoptosis and autophagy were simultaneously induced by compound 8 in HL60 cells, and inhibition of autophagy by 3-MA decreased compound 8-induced apoptosis, indicating that they acted in synergy to exert tumor cell death.  相似文献   

16.
Previous studies reported by our group have introduced a new antitumoural drug called Biphosphinic Palladacycle Complex (BPC). In this paper we show that BPC causes apoptosis in leukaemia cells (HL60 and Jurkat), but not in normal human lymphocytes. IC50 values obtained for both cell lines using the MTT and trypan blue exclusion assays 5 h after BPC treatment were lower than 8.0 μM. Using metachromatic fluorophore, acridine orange, we observed that BPC elicited lysosomal rupture of leukaemic cells. Furthermore, BPC triggered caspase-3 and caspase-6 activation and apoptosis in cell lines, inducing chromatin condensation, apoptotic bodies, and DNA fragmentation. Interestingly, the lysosomal cathepsin B inhibitor CA074 markedly decreased BPC-induced caspase-3 and caspase-6 activation as well as cell death. Lysosomal BPC-induced membrane destabilisation was not dependent on reactive oxygen species generation, which was consistent with the absence of cellular HL60 and Jurkat membrane lipid peroxidation. We conclude that, following BPC treatment, lysosomal membrane rupture precedes cell death and the apoptotic signalling pathway is initiated by the release of cathepsin B in the cytoplasm of leukaemia cells. As no toxic effects for human lymphocytes were observed, we suggest that BPC is more selective for transformed cells, mainly due to their exacerbated lysosome expression.  相似文献   

17.
Cancer cells escape cytotoxic effects of anticancer drugs by a process known as multidrug resistance (MDR). Identification of cell status by less time-consuming methods can be extremely useful in patient management and treatment. This study aims at evaluating the potentials of vibrational spectroscopic methods to perform cell typing and to differentiate between sensitive and resistant human cancer cell lines, in particular those that exhibit the MDR phenotype. Micro-Raman and Fourier transform infrared (FTIR) spectra have been acquired from the sensitive promyelocytic HL60 leukemia cell line and two of its subclones resistant to doxorubicin (HL60/DOX) and daunorubicin (HL60/DNR), and from the sensitive MCF7 breast cancer cell line and its MDR counterpart resistant to verapamil (MCF7/VP). Principal components analysis (PCA) was employed for spectral comparison and classification. Our data show that cell typing was feasible with both methods, giving two distinct clusters for HL60- and MCF7-sensitive cells. In addition, phenotyping of HL60 cells, i.e., discriminating between the sensitive and MDR phenotypes, was attempted by both methods. FTIR could not only delineate between the sensitive and resistant HL60 cells, but also gave two distinct clusters for the resistant cells, which required a two-step procedure with Raman spectra. In the case of MCF7 cell lines, both the sensitive and resistant phenotypes could be differentiated very efficiently by PCA analysis of their FTIR and Raman point spectra. These results indicate the prospective applicability of FTIR and micro-Raman approaches in the differentiation of cell types as well as characterization of the cell status, such as the MDR phenotype exhibited in resistant leukemia cell lines like HL60 and MCF7.  相似文献   

18.
The effect of a short-time (1 h) oxidative stress on multidrug resistance (MDR) of murine leukemic P388VR cells has been investigated. We studied the production of reactive oxygen species (ROS) in cells depending on the composition of medium and the concentration of cells and hydrogen peroxide, as well as the effect of hydrogen peroxide on MDR of cells. MDR was determined from the transport of calcein acetoxymethyl ester out of the cells and from a change in cell sensitivity to vincristine. The amount of ROS arising in cells was determined using 2′,7′-dichlorodihydrofluorescein diacetate (DCFH2-DA). It was shown that the rate of ROS formation in cells decreases after the addition of serum to the medium and with an increase of the cell number. By the action of hydrogen peroxide, the amount of ROS increases directly with its concentration. Oxidative stress generated by 30–300 μM hydrogen peroxide decreases the MDR of the cells. The effect of hydrogen peroxide increases with the treatment duration and concentration of hydrogen peroxide. MDR determined by the criterion of the efflux of calcein ester from cells is completely suppressed after 1-h exposure to 300 μM hydrogen peroxide. At a concentration of hydrogen peroxide of 60 μM and treatment duration of 1 h, the sensitivity of P388VR cells to vincristine increases to reach the sensitivity of the wild-type P388 cells. Rapid (about 1 h) suppression of MDR is caused by inhibition of the activity of transport proteins. MDR decrease induced by oxidative stress can be used in therapy of tumors resistant to anticancer drugs.  相似文献   

19.
A series of artemisinin derivatives with MDR reversal activity were designed and synthesized. All hybrids were screened to anticancer activities against four human cancer cell lines (A549, MCF-7, HepG-2, MDA-MB-231) and normal human hepatic cell (L02) in vitro. Most of the new compounds showed higher anticancer activities than artemisinin, among which compounds 11a and 11c displayed superior potency with IC50 6.78?μM and 5.25?μM against MCF-7, respectively. The further research indicated that the most potent 11c induced cell cycle arrest at G2 phase in MCF-7. Additionally, compound 11c showed remarkable MDR reversal activity which reversed adriamycin against MCF-7/ADR cells with IC50 0.76?μM.  相似文献   

20.
Triterpenoids are pentacyclic secondary metabolites present in many terrestrial plants. Natural triterpenoids have been reported to exhibit anti-inflammatory and anti-carcinogenic activities. Here, we show that modifications of ring A of boswellic acid (2 cyano, 3 enone) resulted in a highly active growth inhibitory, anti-inflammatory, pro-differentiative and anti-tumour triterpenoid compound called cyano enone of methyl boswellates (CEMB). This compound showed cytotoxic activity on a number of cancer cell lines with IC50 ranging from 0.2 to 0.6 μM. CEMB inhibits DNA synthesis and induces apoptosis in A549 cell line at 0.25 μM and 1 μM concentrations, respectively. CEMB induces adipogenic differentiation in 3T3-L1 cells at a concentration of 0.1 μM. Finally, administration of CEMB intra-tumourally significantly inhibited the growth of C6 glioma tumour xenograft in immuno-compromised mice. Collectively, these results suggest that CEMB is a very potent anti-tumour compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号