首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although there is general agreement that native mitochondrial malate dehydrogenase (MDH) exists as a dimer at pH 7, its aggregation state at pH 5 is less certain. The present amide hydrogen exchange study was performed to determine whether MDH remains a dimer at pH 5. To detect pH-induced changes in solvent accessibility, MDH was exposed to D(2)O at pH 5 or 7, then fragmented with pepsin into peptides that were analyzed by mass spectrometry. Even after adjustments for the effect of pH on the intrinsic rate of hydrogen exchange, large increases in deuterium levels were found at pH 5 only in peptic fragments derived from the subunit binding surface of MDH. In parallel experiments, elevated deuterium levels were also found in the same regions of MDH monomer trapped inside a mutant form of the chaperonin GROEL: This selective increase in hydrogen exchange rates, which was attributed to increased solvent accessibility of these regions, provides new evidence that MDH is a monomer at pH 5.  相似文献   

2.
The hydrogen exchange kinetics of Kunitz soybean trypsin inhibitor (STI) has been studied at pH 2, 3, and 6.5. From the temperature dependence of proton exchange at low pH, THE CONTRIBUTION OF MAJOR, REVERSIBLE PROTEIN UNFOLDING To the hydrogen exchange kinetics has been determined. Exchange directly from the folded conformation is characterized by an apparent activation energy (E*app) of approximately 25 kcal/mol, close to that of the chemical exchange step. At pH 6.5 the protein is more temperature stable than at low pH, and exchange of all but congruent to 8 protons can be observed to exchange with E*app congruent to 27 kcal/mol. This implies that all but congruent to 8 protons are accessible to exchange with solvent in the solution structure of folded STI. Estimates can be made of the average number of water molecules per molecule of STI consistent with a solvent accessibility model of hydrogen exchange kinetics. These estimates indicate that very few water molecules within the protein matrix are necessary to explain the exchange data. Calculations are done for the STI hydrogen exchange kinetics at pH 3, 30 degrees, approximating STI structure by a sphere of radius = 18 A. These calculations indicate an average of congruent to 4 water molecules in the shell from 13 to 16 A. from the center of the molecule, while less than 1 water molecule is indicated in the innermost 13 A. These calculations also suggest that there are congruent to 190 water molecules associated with the outermost 1.5-2 A of the sphere. While these values are consistent with a hydrophobic region in the central protein matrix, they indicate more solvent accessibility in the outer 1/3 of the molecule than the static accessibility estimates made from X-ray coordinates. Our results suggest that any protein movements or fluctuations responsible for solvent accessibility in proton exchange processes are localized in the outer regions of the globular structure.  相似文献   

3.
The kinetics of solvent accessibility at the protein-protein interface between thrombin and a fragment of thrombomodulin, TMEGF45, have been monitored by amide hydrogen/deuterium (H/2H) exchange detected by MALDI-TOF mass spectrometry. The interaction is rapid and reversible, requiring development of theory and experimental methods to distinguish H/2H exchange due to solvent accessibility at the interface from H/2H exchange due to complex dissociation. Association and dissociation rate constants were measured by surface plasmon resonance and amide H/2H exchange rates were measured at different pH values and concentrations of TMEGF45. When essentially 100% of the thrombin was bound to TMEGF45, two segments of thrombin became completely solvent-inaccessible, as evidenced by the pH insensitivity of the amide H/2H exchange rates. These segments form part of anion-binding exosite I and contain the residues for which alanine substitution abolishes TM binding. Several other regions of thrombin showed slowing of amide exchange upon TMEGF45 binding, but the exchange remained pH-dependent, suggesting that these regions of thrombin were rendered only partially solvent-inaccessible by TMEGF45 binding. These partially inaccessible regions of thrombin form both surface and buried contacts into the active site of thrombin and contain residues implicated in allosteric changes in thrombin upon TM binding.  相似文献   

4.
The tritium-hydrogen exchange kinetics of Torpedo californica AChR, in native membrane vesicles at pH 7.4 and 0 degrees C, have been analyzed in the presence of agonists, partial agonists, local anesthetics, and competitive antagonists. The agonists carbamylcholine (10 microM-1 mM) and suberyldicholine (10 microM) and the partial agonists decamethonium (25 microM and 1 mM) and hexamethonium (1 mM) have no effect on the exchange kinetics, although at lower concentration carbamylcholine may slightly accelerate exchange. Nondesensitizing local anesthetics do affect the exchange behavior, dependent on concentration. Procaine at 500 microM moderately retards exchange while procaine at 10 mM and tetracaine at 5 mM slightly accelerate exchange. The competitive antagonist alpha-bungarotoxin retards exchange significantly, as does d-tubocurarine although to a lesser extent. These results suggest that the resting and desensitized conformations of the AChR are very similar in overall solvent accessibility and that at lower concentrations noncompetitive blockers such as procaine may stabilize a less solvent-accessible state of the AChR. The competitive antagonists alpha-bungarotoxin and d-tubocurare also stabilize a dynamically restricted, less solvent-accessible conformation of the acetylcholine receptor, demonstrating that a large conformational change accompanies binding of these toxins. Any change in conformation which may accompany desensitization is very different from these effects.  相似文献   

5.
Hydrogen exchange kinetics of deoxyhemoglobin S gel and deoxyhemoglobin A solution were compared at 4.8 mM tetramer concentration, 25 degrees C, and in sodium phosphate buffer at pH 7.0 with gamma/2 = 0.2 by means of microdialysis using tritium as a trace label. Cyanomethemoglobin A in solution and as crosslinked crystals were compared under the same conditions. The exchange values from 15 to 10(4) min were fitted to a power law, and the distribution function of exchange rates was calculated. There was no significant difference in the distribution for deoxyhemoglobin S gel and deoxyhemoglobin A. Exchange from crosslinked cyanomethemoglobin crystals was less in the early time region than for the solution state, but after 600 min the exchange curves were the same. This resulted in a larger area for the distribution function, although the predominate rates were nearly the same. The effect of polymerization on conformational fluctuations was very small, smaller than the effect of crosslinking hemoglobin crystals.  相似文献   

6.
The exchange kinetics for the slowly exchanging amide hydrogens in three defensins, rabbit NP-2, rabbit NP-5, and human HNP-1, have been measured over a range of pH at 25°C using 1D and 2D NMR methods. These NHs have exchange rates 102 to 105 times slower than rates from unstructured model peptides. The observed distribution of exchange rates under these conditions can be rationalized by intramolecular hydrogen bonding of the individual NHs, solvent accessibility of the NHs, and local fluctuations in structure. The temperature dependencies of NH chemical shifts (NH temperature coefficients) were measured for the defensins and these values are consistent with the defensin structure. A comparison is made between NH exchange kinetics, NH solvent accessibility, and NH temperature coefficients of the defensins and other globular proteins. Titration of the histidine side chain in NP-2 was examined and the results are mapped to the three-dimensional structure. © 1994 Wiley-Liss, Inc.  相似文献   

7.
In a native protein, the exchange of a peptide amide proton with solvent occurs by one of two pathways, either directly from the folded protein, or via unfolding, exchange taking place from the unfolded protein. From the thermal unfolding rate constants, the contribution of unfolding to the over-all kinetics as a function of solvent and temperature has been determined. Exchange involving unfolding of the protein is characterized by a high activation energy, in the range of 50 to 60 Cal per mol. The activiation energy (Eapp) of the rates of exchange directly from the folded protein is approximately 20 to 25 Cal per mol. Because for the proton transfer step, Eapp approximately equal to 20 Cal per mol, the activation energy for any contributing protein conformational process(es) is approximately equal to 0 to 5 Cal per mol. Most, if not all, of the peptide amide protons in a folded protein can exchange directly with solvent without the protein unfolding. The number of "slowly" exchanging protons at a given condition of pH and temperature is not related to a discrete structural unit, but rather to the distribution of observed rates within the broader distribution of actual rates. The large attenuation of hydrogen exchange rates in folded proteins, resulting in a distribution of first order rates over 6 orders of magnitude, is primarily due to the effects of restricted solvent accessibility of labile protons in the three-dimensional structure. Any protein conformational process, such as protein fluctuations, invoked to explain the solvent accessibility must be of low activation energy and attenuated by ethanol and other co-solvents (Woodward, C. K., Ellis, L. M., and Rosenberg, A. (1974) J. Biol. Chem. 250, 440-444).  相似文献   

8.
The acid-catalyzed hydrogen exchange rate constants kH, and the base-catalyzed rate constants kOH, have been determined (in the preceding paper) for the 25 most rapidly exchanging NH groups of bovine pancreatic trypsin inhibitor. Most of these NH groups are at the protein-solvent interface. The correlation of kH, but not kOH, with the static accessibility and hydrogen bonding of the peptide carbonyl O atom indicates that the mechanism of acid catalysis in proteins involves O-protonation. Agreement between the ionic strength dependence observed for kH and kOH and the ionic strength dependence calculated for an O-protonation mechanism supports this conclusion. N-protonation for acid catalysis, as well as N-deprotonation for base catalysis, have traditionally been assumed in the mechanism of the chemical step in peptide amide proton exchange. A preference for the alternative O-protonation mechanism has far-reaching implications in the interpretation of protein hydrogen exchange kinetics. With an O-protonation mechanism, acid-catalyzed rates of surface NH groups are primarily a function of the average solvent accessibility of the carbonyl O atoms in the dynamic solution structure, while base-catalyzed rates of surface NH groups measure solvent accessibility of the peptide N. The relative dynamic accessibilities of peptide O atoms, as measured by relative values of kH (corrected for electrostatic effects), correlate with O static accessibilities in the crystal structure. A lower correlation of static accessibility of N atoms with kOH is observed for surface NH groups in peptide groups in which the carbonyl O is not hydrogen bonded. For some surface NH groups, the observed pH of minimum rate, pHmin, deviates widely from the pHmin of model compounds. This is explained as the combined result of electrostatic effects and of the differences in accessibility of the carbonyl O and N atoms that result in a change in the relative values of kH and kOH as compared to those of model peptides. A mechanism whereby exchange of interior sites is catalyzed by interactions of catalysis ions with protein surface atoms via charge transfer is suggested.  相似文献   

9.
Conformational study of the antitumor protein alpha-sarcin   总被引:3,自引:0,他引:3  
The antitumor protein alpha-sarcin is a single polypeptide chain produced by the mold Aspergillus giganteus. It inhibits protein synthesis in some tumor cells by inactivating the larger ribosomal subunit. The secondary structure of the molecule has been studied by circular dichroism and predictive methods. The protein contains about 40% of periodic structures, mainly located at both extremes of the polypeptide chain. beta-Turns and aperiodic conformation appear at the central part of the molecule. Two different tyrosine populations have been observed in alpha-sarcin. Attempts to correlate solvent accessibility and particular protein regions have been carried out by using CD in the near-ultraviolet region, fluorescence and absorbance spectroscopies as well as acrylamide quenching and hydropathy profiles. Five different pH-induced conformational transitions are detected. Two of them, at pH 2.5 and 10.2, are denaturing transitions. These results are explained in terms of the structural features of this molecule, and related to its ribonucleolytic activity and ability to cross cell membranes.  相似文献   

10.
The kinetics of hydrogen-tritium exchange were studied in the range pH-3 for both the fully and partially tritiated protein. Exchange constants for an intermediate class and slow class of hydrogens were determined and found to give a parabolic curve characteristic of acid and base catalysis about the observed pHmin of 4.03. The anomalous rate retardation on the acid portion of the curve was attributed to electrostatic interactions which could be evaluated quantitatively from the titration data. Partial tritation and pH cross-over experiments indicated that the rank order was pH-independent thus eliminating the possiblitity of a major conformational change. Consequently, the data are most likely explicable in terms of restricted solvent accessibility.  相似文献   

11.
The effect of solvent conditions on the conformation of rabbit Clq was studied by both spectroscopic and nonspectroscopic methods. The conformation of Clq in buffered saline solutions at pH 7.4 or 6.0 did not differ significantly from Clq at twice the saline concentration as determined with circular dichroism, difference spectroscopy, and tritium-hydrogen exchange techniques. Addition of calcium to the buffers had no structural effects in any of the conditions examined. Hydrogen exchange experiments performed at pH 7.4 were also unaffected by magnesium, manganese, or ethylenediaminetetraacetic acid. With all the methods used a pH effect was observable between 5.1 and 8.3. From solvent perturbation difference spectroscopy results it was calculated that the equivalent of 10 +/- 2 and 6 +/- 1 mol of tyrosine and tryptophan/mol of Clq, respectively, became exposed at the lower pH. A small positive CD band in the 231 to 235 nm region decreased in wavelength and increased in magnitude as a function of decreasing pH, indicating tyrosine exposure at the lower pH and possibly changes in the collagen-like structure of Clq. Hydrogen exchange experiments indicate a small, but significant, conformation transition occurring in the pH 5 region and a stabilization of conformation between pH 6 to 8. From these results the conformational pH dependence was interpreted as an acid expansion of Clq with a minor conformational transition occurring between pH 5 AND 6. These effects may in part be associated with decreased Clq-Ig interactions which have been observed at the lower pH.  相似文献   

12.
The electrostatic free energy contribution to the stability of sperm whale ferrimyoglobin was evaluated according to the static accessibility modified Tanford-Kirkwood model. The electrostatic free energy contribution of each distinct structural element was divided into one term arising from interactions between it and other elements (interelemental) and another from interactions within the particular element itself (intraelemental). At pH 7 the majority of the terms were found to be stabilizing. The interelemental terms are the dominant ones for most structural elements. The small interelemental terms of the C and D helices are compensated by large intraelemental interactions which stabilize these short helices. Perturbations in pH can be accommodated by the structural elements through a redistribution of stabilizing and destabilizing interactions. The electrostatic potentials calculated at the surface of the protein indicate that the internal compensation of local potentials achieved during folding results in a generally neutral protein-solvent interface save for two distinct areas of nonzero potential. The accessibility of each charged atom to solvent was analyzed in terms of the surface area lost to charged, polar and nonpolar atoms separately. The net solvent accessibility lost parallels closely that lost to nonpolar atoms alone, indicating a specific role for nonpolar atoms in defining dielectric shielding of charged atoms, aside from their participation in the well-known hydrophobic interactions.  相似文献   

13.
A single Cys replacement of Glu at position 252 (E252C) in loop VIII-IX of NhaA increases drastically the Km for Na(+) (50-fold) of the Na(+)/H(+) antiporter activity of NhaA and shifts the pH dependence of NhaA activity, by one pH unit, to the alkaline range. In parallel, E252C causes a similar alkaline pH shift to the pH-induced conformational change of loop VIII-IX. Thus, although both the Na(+)/H(+) antiporter activity of wild type NhaA and its accessibility to trypsin at position Lys(249) in loop VIII-IX increase with pH between pH 6.5 and 7.5, the response of E252C occurs above pH 8. Furthermore, probing accessibility of pure E252C protein in dodecyl maltoside solution to 2-(4'-maleimidylanilino)-naphthalene-6-sulfonic acid revealed that E252C itself undergoes a pH-dependent conformational change, similar to position Lys(249), and the rate of the pH-induced conformational change is increased specifically by the presence of Na(+) or Li(+), the specific ligands of the antiporter. Chemical modification of E252C by N-ethylmaleimide, 2-(4'-maleimidylanilino)-naphthalene-6-sulfonic acid; [2-(trimethylammonium)ethyl]methane thiosulfonate, or (2-sulfonatoethyl)methanethiosulfonate reversed, to a great extent, the pH shift conferred by E252C but had no effect on the K(m) of the mutant antiporter.  相似文献   

14.
The crystal structure of NhaA Na(+)/H(+) antiporter of Escherichia coli has provided a basis to explore the mechanism of Na(+) and H(+) exchange and its regulation by pH. However, the dynamics and nature of the pH-induced changes in the proteins remained unknown. Using molecular mechanics methods, we studied the dynamic behavior of the hydrogen-bonded network in NhaA on shifting the pH from 4 to 8. The helical regions preserved the general architecture of NhaA throughout the pH change. In contrast, large conformational drifts occurred at pH 8 in the loop regions, and an increased flexibility of helix IVp was observed on the pH shift. A remarkable pH-induced conformational reorganization was found: at acidic pH helix X is slightly curved, whereas at alkaline pH, it is kinked around residue Lys(300). The barrier that exists between the cytoplasmic and periplasmic funnels at low pH is removed, and the two funnels are bridged by hydrogen bonds between water molecules and residues located in the TMSs IV/XI assembly and helix X at alkaline pH. In the variant Gly(338)Ser that lost pH control, a hydrogen-bonded chain between Ser(338) and Lys(300) was found to block the pH-induced conformational reorganization of helix X.  相似文献   

15.
Mucin glycoproteins consist of tandem-repeating glycosylated regions flanked by non-repetitive protein domains with little glycosylation. These non-repetitive domains are involved in polymerization of mucin and play an important role in the pH-dependent gelation of gastric mucin, which is essential for protecting the stomach from autodigestion. We examine folding of the non-repetitive sequence of PGM-2X (242 amino acids) and the von Willebrand factor vWF-C1 domain (67 amino acids) at neutral and low pH using discrete molecular dynamics (DMD) in an implicit solvent combined with a four-bead peptide model. Using the same implicit solvent parameters, folding of both domains is simulated at neutral and low pH. In contrast to vWF-C1, PGM-2X folding is strongly affected by pH as indicated by changes in the contact order, radius of gyration, free-energy landscape, and the secondary structure. Whereas the free-energy landscape of vWF-C1 shows a single minimum at both neutral and low pH, the free-energy landscape of PGM-2X is characterized by multiple minima that are more numerous and shallower at low pH. Detailed structural analysis shows that PGM-2X partially unfolds at low pH. This partial unfolding is facilitated by the C-terminal region GLU236-PRO242, which loses contact with the rest of the domain due to effective “mean-field” repulsion among highly positively charged N- and C-terminal regions. Consequently, at low pH, hydrophobic amino acids are more exposed to the solvent. In vWF-C1, low pH induces some structural changes, including an increased exposure of CYS at position 67, but these changes are small compared to those found in PGM-2X. For PGM-2X, the DMD-derived average β-strand propensity increases from 0.26 ± 0.01 at neutral pH to 0.38 ± 0.01 at low pH. For vWF-C1, the DMD-derived average β-strand propensity is 0.32 ± 0.02 at neutral pH and 0.35 ± 0.02 at low pH. The DMD-derived structural information provides insight into pH-induced changes in the folding of two distinct mucin domains and suggests plausible mechanisms of the aggregation/gelation of mucin.  相似文献   

16.
The haem-iron accessibility to solvent molecules in human aquomet- and fluoromethaemoglobin was studied by the magnetic relaxation of protons from a stereochemical probe (methanol in deuterated solutions) in its dependence on allosteric effects induced by inositol hexaphosphate and pH between 5.5 and 8.5. The exchange of methanol with bulk solvent was observed only when inositol hexaphosphate was bound to aquomethaemoglobin, which is consistent with a widening of the haemcrevice compared to the conformation in the absence of inositol hexaphosphate. An increase in alkalinity in the physiological range of the Bohr effect results in a gradual impedence of the solvent dynamics inside the haem-pocket. The fast-relaxation phase of methyl protons indicates that a large number of methanol molecules are under the strong influence of the protein; this effect is considerably smaller with inositol hexaphosphate bound to aquomethaemoglobin. The hypothesis which implies a proton from the coordinated water molecule is responsible for the observed relaxation rates has been critically discussed. The model with a water molecule exchanging between a position next to the sixth-ligand site of the haem-iron and the bulk solvent is further substantiated experimentally. This model has been found to be the simplest and most self consistent in the interpretation of all these proton magnetic relaxation data.  相似文献   

17.
The rate of exchange of the labile hydrogens of lysozyme was measured by out-exchange of tritium from the protein in solution and from powder samples of varied hydration level, for pH 2, 3, 5, 7, and 10 at 25 degrees C. The dependence of exchange of powder samples on the level of hydration was the same for all pHs. Exchange increased strongly with increased hydration until reaching a rate of exchange that is constant above 0.15 g of H2O/g of protein (120 mol of H2O/mol of protein). This hydration level corresponds to coverage of less than half the protein surface with a monolayer of water. No additional hydrogen exchange was observed for protein powders with higher water content. Considered in conjunction with other lysozyme hydration data [Rupley, J. A., Gratton, E., & Careri, G. (1983) Trends Biochem. Sci. (Pers. Ed.) 8, 18-22], this observation indicates that internal protein dynamics are not strongly coupled to surface properties. The use of powder samples offers control of water activity through regulation of water vapor pressure. The dependence of the exchange rate on water activity was about fourth order. The order was pH independent and was constant from 114 to 8 mol of hydrogen remaining unexchanged/mol of lysozyme. These results indicate that the rate-determining step for protein hydrogen exchange is similar for all backbone amides and involves few water molecules. Powder samples were hydrated either by isopiestic equilibration, with a half-time for hydration of about 1 h, or by addition of solvent to rapidly reach final hydration. Samples hydrated slowly by isopiestic equilibration exhibited more exchange than was observed for samples of the same water content that had been hydrated rapidly by solvent addition. This difference can be explained by salt and pH effects on the nearly dry protein. Such effects would be expected to contribute more strongly during the isopiestic equilibration process. Solution hydrogen exchange measurements made for comparison with the powder measurements are in good agreement with published data. Rank order was proven the same for all pHs by solution pH jump experiments. The effect of ionic strength on hydrogen exchange was examined at pH 2 and pH 5 for protein solutions containing up to 1.0 M added salt. The influence of ionic strength was similar for both pHs and was complex in that the rate increased, but not monotonically, with increased ionic strength.  相似文献   

18.
Laser Raman spectroscopy of the cowpea chlorotic mottle virus (CCMV) in native (pH 5.0) and partially swollen (pH 7.5) states reveals the presence of small percentages of protonated adenine (less than 15%) and cytosine (less than 7%) bases in the encapsidated RNA molecule of the native virion. The protonated bases are titrated with pH-induced swelling of the virus. Titration of putative COOH groups of aspartic and glutamic side chains of the virion subunit cannot be detected over the same pH range, which suggests that carboxyl anions (CO-2) and protonated bases are both available at pH 5 to stabilize the ribonucleoprotein particles by electrostatic interactions. The highly (95%) ordered secondary structure of encapsidated RNA may undergo a small additional increase (less than 3%) in ordered structure with release from the virion, suggesting at most a marginal structure-distorting influence from protein contacts in the native particle. The Raman spectra of the virion are also compared by difference spectroscopy with spectra of capsids (empty shells devoid of RNA), subunit dimers, and protein-free RNA. The results indicate that the subunit structure is altered by the release of RNA from the virion, as well as by the swelling of the virion. Amino acid residues and protein secondary structures that are affected in these in vitro assembly and disassembly processes are identified from their characteristic Raman lines. Two classes of cysteinyl SH groups, solvent exposed and solvent protected, are revealed for the capsid and virion subunit.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The wide ligand affinity range previously observed for carp hemoglobin is bounded at both extremes by regions of constant affinity. Within these regions, pH, organic phosphates, and the extent of ligand binding have no effect on the measured affinity and the cooperativity of ligand binding is greatly reduced or absent. The rates of CO recombination to fully and partially unliganded carp hemoglobin, under various organic phosphate and pH conditions, are shown to reflect this behavior. Constant kinetic rates are seen to directly correspond to the regions of constant affinity. Therefore, these are taken to be single protein conformations, one of high and one of low ligand affinity. In the simplest view, these conformations represent the R and T states of a two-state model, and most of the properties of carp hemoglobin are explained quite well within this framework. Increases in either hydrogen or phosphate ion concentrations favor the stabilization of the low affinity structure of even fully liganded carp hemoglobin. We have studied the structural transition from high to low affinity by monitoring the absorption spectra of carp hemoglobins at constant pH as a function of organic phosphate concentration. We find that different spectra are induced in both carp methemoglobin and cyanomethemoglobin by inositol hexaphosphate addition. Furthermore, the dependence of the magnitude of the spectral changes on pH and organic phosphate concentration is the close agreement with that predicted from studies of the ligand binding properties of the molecule.  相似文献   

20.
Hydrogen/deuterium exchange, which depends on solvent accessibility, can be probed by mass spectrometry (MS) to get information on protein conformation or protein–ligand interaction. In this work, the conformational properties of the cyanobacterium Anabaena wild-type ferredoxin as well as of two single-site mutants (Phe 65 Ala and Arg 42 Ala) were studied. After incubation of the wild type and mutant proteins in deuterated water and quenching of the exchange at low pH, the proteins were rapidly digested at high enzyme-to-substrate ratio using immobilized pepsin, and the resulting peptides were characterized using ESI-MS. We have identified specific regions for which the H-bonding or solvent accessibility properties were perturbed by the mutations. These results show that this approach can provide local information on the influence of mutations, even for a highly structured protein like ferredoxin, and sometimes in regions distant from the mutation point.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号