首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

Ets-1 controls osteoblast differentiation and bone development; however, its downstream mechanism of action in osteoblasts remains largely undetermined. CCN2 acts as an anabolic growth factor to regulate osteoblast differentiation and function. CCN2 is induced by TGF-β1 and acts as a mediator of TGF-β1 induced matrix production in osteoblasts; however, the molecular mechanisms that control CCN2 induction are poorly understood. In this study, we investigated the role of Ets-1 for CCN2 induction by TGF-β1 in primary osteoblasts.

Results

We demonstrated that Ets-1 is expressed and induced by TGF-β1 treatment in osteoblasts, and that Ets-1 over-expression induces CCN2 protein expression and promoter activity at a level similar to TGF-β1 treatment alone. Additionally, we found that simultaneous Ets-1 over-expression and TGF-β1 treatment synergize to enhance CCN2 induction, and that CCN2 induction by TGF-β1 treatment was impaired using Ets-1 siRNA, demonstrating the requirement of Ets-1 for CCN2 induction by TGF-β1. Site-directed mutagenesis of eight putative Ets-1 motifs (EBE) in the CCN2 promoter demonstrated that specific EBE sites are required for CCN2 induction, and that mutation of EBE sites in closer proximity to TRE or SBE (two sites previously shown to regulate CCN2 induction by TGF-β1) had a greater effect on CCN2 induction, suggesting potential synergetic interaction among these sites for CCN2 induction. In addition, mutation of EBE sites prevented protein complex binding, and this protein complex formation was also inhibited by addition of Ets-1 antibody or Smad 3 antibody, demonstrating that protein binding to EBE motifs as a result of TGF-β1 treatment require synergy between Ets-1 and Smad 3.

Conclusions

This study demonstrates that Ets-1 is an essential downstream signaling component for CCN2 induction by TGF-β1 in osteoblasts, and that specific EBE sites in the CCN2 promoter are required for CCN2 promoter transactivation in osteoblasts.  相似文献   

3.
Ets-2 controls the activities of many genes characteristically up-regulated in trophoblast. One apparent exception has been the gene for the human chorionic gonadotropin subunit alpha (hCGalpha). Here, we show that the hCGalpha gene contains two overlapping Ets binding sites adjacent to an activator protein-1-like site in its proximal promoter. Transactivation by Ets-2 is susceptible to truncation and mutation of these sites, which bind Ets-2 during in vitro mobility shift assays, as well as in vivo as determined by chromatin immunoprecipitation in choriocarcinoma cells. Knockdown of Ets-2 with short interfering RNA decreases both promoter activity and synthesis of hCGalpha. Ets-2 acts in combination with the protein kinase A (PKA) signal transduction pathway to activate the hCGalpha promoter expression. Mutation of the Ets-2 binding sites dramatically reduces up-regulation by PKA, whereas mutations within the two cAMP-responsive elements abolish responsiveness of the promoter to Ets-2. cAMP-responsive element binding protein (CREB) and Ets-2 form a complex that can be coimmunoprecipitated from choriocarcinoma cells, and association of CREB and Ets-2 is increased by activation of PKA. Regulation of hCGalpha subunit gene activity by cAMP involves the binding of CREB and Ets-2 to discrete elements in the promoter as well as a physical interaction between the two proteins. We propose that regulation of hCGalpha by Ets-2 and CREB enables coordinated expression of hCGalpha with its partner hCGbeta subunit.  相似文献   

4.
5.
6.
7.
Expression of the mouse cytokeratin EndoA gene is restricted in endodermal and epithelial cells, and is regulated by an enhancer that is located 1 kilobase (kb) 3' downstream from the gene. The enhancer consists of six direct repeats, of which each contains two predicted Ets binding sites (EBS1 and EBS2) containing GGAA as a core. Mutation analysis showed that EBS1 is essential for the enhancer activity and additional effects of EBS2, suggesting that some Ets-related proteins bind and activate the enhancer through EBS1. We also showed that Ets-2 mRNA is expressed in PYS-2 cells and that Ets-2 protein produced by E. coli interacts with EBS1 but not with EBS2. Using co-transfection assays, we showed that Ets-2 can trans-activate the enhancer in PYS-2 cells. Mutations that impair Ets-2 binding abolished the activity of the EndoA enhancer. The results obtained from the binding competition assay using an Ets-2 specific antibody, however, suggest that EBS1 binds to an Ets protein which is distinct from Ets-2. These data show that Ets-2 related protein binds and activates the EndoA enhancer in a sequence-specific fashion.  相似文献   

8.
9.
10.
11.
12.
13.
The lymphocyte-specific immunoglobulin mu heavy-chain gene intronic enhancer is regulated by multiple nuclear factors. The previously defined minimal enhancer containing the muA, muE3, and muB sites is transactivated by a combination of the ETS-domain proteins PU.1 and Ets-1 in nonlymphoid cells. The core GGAAs of the muA and muB sites are separated by 30 nucleotides, suggesting that ETS proteins bind to these sites from these same side of the DNA helix. We tested the necessity for appropriate spatial alignment of these elements by using mutated enhancers with altered spacings. A 4- or 10-bp insertion between muE3 and muB inactivated the mu enhancer in S194 plasma cells but did not affect in vitro binding of Ets-1, PU.1, or the muE3-binding protein TFE3, alone or in pairwise combinations. Circular permutation and phasing analyses demonstrated that PU.1 binding but not TFE3 or Ets-1 bends mu enhancer DNA toward the major groove. We propose that the requirement for precise spacing of the muA and muB elements is due in part to a directed DNA bend induced by PU.1.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号