首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the freshwater snail Biomphalaria glabrata the formation and composition of yolk granules and the role of the follicle cells were studied by histochemical and electron microscopical techniques. The rough endoplasmic reticulum and the Golgi apparatus appeared to be involved in yolk formation, which is a continuous process throughout oogenesis. From the very beginning of yolk formation two main types of yolk granules were distinguished morphologically. However, with histochemical and enzyme cytochemical methods no differences were observed between these types. The granules acquire lysosomal enzymes after oviposition, indicating that their main function is probably digestion of perivitelline fluid, which contains nutrients for the developing embryo.Yolk formation and the activity of the follicle cells were studied in successive stages of oogenesis by quantitative electron microscopy. The data strongly suggest that the follicle cells are involved in the formation of the follicular cavity and hence in the ovulation process.  相似文献   

2.
The process of egg formation in the body cavity of a phytoseiid mite, Phytoseiulus persimilis, was observed to examine fertilization of male eggs. After insemination, one of the ova at the periphery of the ovary began to expand, taking up yolk. Two pronuclei appeared in the expanded egg, located dorsally in the ovary, and yolk granules were formed gradually. After the egg became filled with yolk granules the two pronuclei fused. The egg moved via the narrow entrance at the ventral region into the oviduct, where the eggshell was formed. When the eggshell was complete, and while embryogenesis proceeded, the egg was deposited. In the meantime some ova began to expand sequentially and two joining pronuclei appeared in expanding eggs. The joining pronuclei in the first egg proved male diploidy. This is additional evidence of pseudo-arrhenotoky in this phytoseiid mite species, since the first eggs developed into males.  相似文献   

3.
Summary Oocytes of the toad Bufo marinus have been studied by means of thin section and particularly freeze-fracture electron microscopy to characterize the cytoplasmic membranes around the yolk organelle, and the storage of yolk material in precursors and platelets. This appears to be a previously unknown type of yolk-platelet formation. During yolk-organelle development from the primordial precursor to the bi-partite fully grown yolk platelet, numerous lipoid droplets are attached to the periphery of the platelet, indicating an intense uptake of lipids. As is typical for amphibians, the fully grown yolk platelet has a crystalline internum covered by a dense osmiophilic externum, and the whole organelle is enveloped by a plasma membrane that shows no direct connection or fusion with endocytotic vesicles. The yolk membrane exhibits few intramembraneous particles (IMPs) at the core areas and some more where it borders fields of lipoid droplets. Here the IMPs show a net-like arrangement in the furrows between adjacent droplets.  相似文献   

4.
Summary Developing oocytes of the newt Triturus cristatus were studied in order to clarify the role played by the Golgi apparatus in the formation of yolk. The cytochemical method used for this purpose was that of Maillet (1968) which employs an Osmium Zinc Iodide (OZI) complex.Previtellogenic oocytes reveal a pattern of OZI staining only after hormonal (HCG) stimulation, following which both the Golgi apparatus and the multivesicular bodies are stained.Vitellogenic oocytes taken from non-hormonally stimulated females reveal OZI deposits in a number of vesicles peripheral to the Golgi apparatus as well as within the superficial layer of the forming yolk platelets. Following hormone stimulation, many of the Golgi apparatus located in the central ooplasm of vitellogenic oocytes have all their cisternae blackened by the OZI deposits; other apparatuses, more peripherally located, remain essentially unchanged in their staining pattern. Further, a large number of OZI stained vesicles becomes visible in the vicinity of the Golgi apparatus and within the superficial layer of the forming yolk platelets.The present findings are interpreted as indicating the occurrence of fusion between Golgi derived vesicles and forming yolk platelets. It is also suggested that the vesicles in question function as carriers of Golgi produced enzymes which are presumably required to accomplish the final elaboration of the yolk material.Supported by a grant from the Consiglio Nazionale delle RicercheWe acknowledge the valuable help received from Prof. G. Mancino throughout this investigation  相似文献   

5.
An account is given of the runcinaceans Runcina adriatica, R.brenkoae and R. zavodniki collected on diving expeditions inthe northern Adriatic Sea. The new data permit a clear separationof these from other runcinaceans of the north Atlantic Ocean.Several diagnostic features of the radulae and the oral cuticu-lararmature are corrected or amplified. Dental metamorphoses aredescribed for R. adriadca and R. zavodniki. The world's runcinaceanfamilies, genera and species are reviewed, and Runcina fijiensisn.sp. is described from the Pacific island of Viti Levu, Fiji (Received 14 December 1987; accepted 7 January 1988)  相似文献   

6.
Summary Insoluble proteins from the maturing follicle ofLocusta migratoria were analyzed by SDS-PAGE. A reproducible pattern of low molecular weight proteins was observed. Five of these proteins did not correspond to yolk or haemolymph proteins. At least two of these show marked quantitative changes during oocyte development. By in vitro incubation of follicles and fat body with a labelled precursor, and by the identification of the labelled polypeptides by SDS-PAGE, we could demonstrate that these two proteins are synthesized only during the time of vitellogenin uptake. This protein is probably a follicle product necessary for yolk formation. The other protein might be necessary for vitelline membrane and/or chorion formation.  相似文献   

7.
Reproduction in Varroa jacobsoni occurs only in cells of the capped honey bee brood. Female mites were sampled at different times after cell sealing and ovaries containing a vitellogenic oocyte of the first gonocycle were examined under an electron microscope. It was found that the cytoplasmic connection between the lyrate organ and the oocyte persists far into the vitellogenic growth phase. In addition, a large amount of yolk material is taken up from the haemolymph. All ultrastructural features characteristic of vitellogenesis, such as microvilli, coated pits, vesicles and growing yolk platelets, are present. If more than four Varroa females live in an overcrowded brood cell, they appear to be in stress conditions and their vitellogenic oocytes may become atretic. Alterations typical for oocyte degradation and oosorption were observed in such situations.  相似文献   

8.
Summary The yolk platelets ofXenopus laevis have been studied by thin-section and freeze-fracture electron microscopy to characterize the boundary membrane during yolk formation. Throughout vitellogenesis, large yolk platelets are in close contact with smaller nascent yolk organelles. Two types of primordial yolk platelets (I and II) have been discriminated. After membrane fusion these precursors can be completely incorporated into the main body of existing platelets, numerous yolk crystals then merge and form one uniformly stratified core. Lipid droplets are tightly attached to the membrane at all developmental stages of yolk platelets. A direct connection of endoplasmic reticulum to the membranes of yolk platelets was not observed. On freezeetching replicas, yolk-platelet membranes present fracture faces with intramembranous particles (IMP) of various sizes and a heterogeneous distribution of approximately 200–600 IMP/μm2 at the E face, and 1200–2100 IMP/μm2 at the P face. Again, this presentation of the membrane exhibits neither anastomoses to the endoplasmic reticulum, nor caveolae that exclude the uptake of yolk-containing vesicles into these yolk organelles. Proteinaceous yolk platelets tend to fracture along their periphery through the superficial layers.  相似文献   

9.
Summary Yolk proteins are transported from the hemolymph into the oocytes of insects during vitellogenesis by receptor-mediated endocytosis. Since other hemolymph proteins, both native and foreign, are not accumulated in the oocyte, the process of uptake is selective for yolk proteins. Peptide domains within the yolk proteins must therefore be involved in receptor recognition. With the longterm aim of identifying these domains and to open the possibility of understanding the molecular basis of receptor-mediated endocytosis of yolk proteins, we began investigating how well this mechanism has been conserved in evolution. We studied the uptake of yolk proteins from 13 different Drosophila species and five other dipteran species, namely, Calliphora erythrocephala, Sarcophaga argyrostoma, Musca domestica, Lucilia servicata, and Protophormia terrae-novae, into the ovaries of Drosophila melanogaster and Drosophila funebris. The results from these experiments showed that in all cases the foreign yolk proteins were taken up by the host ovaries, indicating that the mechanism and peptide domains of the yolk proteins involved in recognition of the receptor have been well conserved in dipteran evolution. Offprint requests to: M. Bownes  相似文献   

10.
The structure and functional significance of the yolk nucleus in Garra are described. The study shows that the yolk nucleus appears in the cytoplasm of the early perinucleolus stage of the oocyte. It is present as a deeply stained structure enclosed in a vesicle. It disappears in the yolk vesicle stage and vitellogenesis begins soon afterwards. This probably indicates that it plays a role in the initiation of vitellogenesis. When yolk formation starts, the yolk nucleus disappears; this also suggests that it is of functional significance in yolk synthesis.  相似文献   

11.
Chicken oocyte growth: receptor-mediated yolk deposition   总被引:8,自引:0,他引:8  
During the rapid final stage of growth, chicken oocytes take up massive amounts of plasma components and convert them to yolk. The oocyte expresses a receptor that binds both major yolk lipoprotein precursors, vitellogenin (VTG) and very low density lipoprotein (VLDL). In the present study, in vivo transport tracing methodology, isolation of coated vesicles, ligand- and immuno-blotting, and ultrastructural immunocytochemistry were used for the analysis of receptor-mediated yolk formation. The VTG/VLDL receptor was identified in coated profiles in the oocyte periphery, in isolated coated vesicles, and within vesicular compartments both outside and inside membrane-bounded yolk storage organelles (yolk spheres). VLDL particles colocalized with the receptor, as demonstrated by ultrastructural visualization of VLDL-gold following intravenous administration, as well as by immunocytochemical analysis with antibodies to VLDL. Lipoprotein particles were shown to reach the oocyte surface by passage across the basement membrane, which possibly plays an active and selective role in yolk precursor accessibility to the oocyte surface, and through gaps between the follicular granulosa cells. Following delivery of ligands from the plasma membrane into yolk spheres, proteolytic processing of VTG and VLDL by cathepsin D appears to correlate with segregation of receptors and ligands which enter disparate sub-compartments within the yolk spheres. In small, quiescent oocytes, the VTG/VLDL receptor was localized to the central portion of the cell. At onset of the rapid growth phase, it appears that this pre-existing pool of receptors redistributes to the peripheral region, thereby initiating yolk formation. Such a redistribution mechanism would obliterate the need for de novo synthesis of receptors when the oocyte's energy expenditure is to be utilized for plasma membrane synthesis, establishment and maintenance of intracellular topography and yolk formation, and preparation for ovulation.  相似文献   

12.
Kress A  Schmekel L 《Tissue & cell》1992,24(1):95-110
Runcina is a small hermaphroditic opisthobranch which possesses a monaulic reproductive system. In previous studies the male copulatory apparatus, the structure of the spermatophore and also the process of oogenesis have been described. The present paper gives an account of the ultrastructure of the female genital glands of the oviduct. In Runcina the oviduct comprises three primary regions, the albumen gland, the egg capsule gland and the mucous gland. Eggs enter the fertilization chamber and as they pass the opening of the albumen gland they become surrounded by albumen or perivitelline fluid. The eggs appear to become encapsulated as they traverse the egg-capsule gland and are eventually stuck together by mucus to form an egg mass. The epithelial lining of the three glands consists of alternating ciliated and secretory cells. The characteristics in secretory products of the glandular cells are described, and are discussed with reference to the way they contribute to egg vestment.  相似文献   

13.
Summary The developing oocytes of the crab Cancer pagurus L. were studied with the light and electron microscope.Protein yolk formation was found to take place in two different ways. Yolk precursors of type 1 accumulate within the cisternae of an extensively developed granular endoplasmic reticulum. Also further growth and transformation into the definite yolk body occur within the reticular membranes. There is no structural indication that any other cell organelle contributes to the synthesis of this type of yolk building.Protein yolk formation of type 2 involves accumulation and transformation of material within a limiting membrane of the smooth type. The enclosed material is presumably derived from micropinocytosis, enclosed cellular elements and vesicles originating from the Golgi complex.It thus appears that the cell organelles play an important role in the process of drotein yolk formation in the growing oocytes of Cancer pagurus.  相似文献   

14.
Summary The follicular cells in the oocytes of Oryzias latipes were studied by electron microscopy in order to clarify the fine structure, and the role of the cells during yolk formation and ovulation. The smallest follicles were observed during the early phase of peri-nucleolus stage of the oocyte. The cells have flattened nuclei, and perikarya with undeveloped organelles. But when the oocytes attain diameter of about 250 (yolk vesicle stage), both types of endoplasmic reticula are present. Moreover, the microvilli of the plasma membrane of oocyte as well as the follicles protrude into the pore canals of the zona radiata. In the oocytes of yolk stage the rough-surfaced endoplasmic-reticulum is typically developed and observed around the nuclei. Other organelles (lysosomes, mitochondria and Golgi) increase in number. The relation between the changes of cytoarchitecture in the follicles and yolk formation is discussed.At 17.00 p.m. on the day preceding ovulation the microvilli withdraw somewhat. Ribosomes are attached to the vesicular and cisternal endoplasmic reticula. When the oocytes attain complete maturation (24.00 p.m. at near ovulation), striking changes of the follicles are observed. The microvilli are almost withdrawn. In the degenerating follicles the lamellar structure is formed, and lipids are deposited at the center. At this time the contents of lysosomes have mostly disappeared.  相似文献   

15.
本文运用电镜的冰冻蚀刻术研究了莫桑鼻给非鲫滤泡闭锁中液晶形成的过程.结果表明,卵巢内的颗粒细胞吞噬大量的卵黄物质,消化后形成同心圆片层体,这是一种类脂加水以及镶嵌少量的蛋白质的溶致液晶态;细胞内的酶类参与液晶的形成;同时讨论了生物体内相变及液晶态存在的意义.  相似文献   

16.
本文运用电镜的冰冻蚀刻术研究了莫桑鼻给非鲫滤泡闭锁中液晶形成的过程.结果表明,卵巢内的颗粒细胞吞噬大量的卵黄物质,消化后形成同心圆片层体,这是一种类脂加水以及镶嵌少量的蛋白质的溶致液晶态;细胞内的酶类参与液晶的形成;同时讨论了生物体内相变及液晶态存在的意义.  相似文献   

17.
The present investigation describes the fine structural changes that occur during proteid yolk formation in the developing oocytes of the guppy (Lebistes reticulatus), an ovoviviparous teleost. These changes suggest the operation of a number of different intra- and extraoocyte processes that may account for the synthesis and deposition of the proteid yolk. Early in oogenesis, the egg's Golgi systems proliferate and begin to disclose an electron-opaque content. Numerous 70-mµ diameter vesicles apparently pinch off from the Golgi systems, transport this material through the egg, and probably then fuse to form a crenate, membrane-limited yolk droplet. At the same time, the rough-surfaced endoplasmic reticulum accumulates a flocculent substance that differs in appearance from the Golgi content. Smooth vesicles, presumably derived from the ER, then coalesce to form a second type of intraoocyte yolk droplet. These dissimilar, separately derived droplets subsequently fuse, thus combining the materials that constitute the intraoocyte contribution to the proteid yolk. Somewhat later in development, the egg appears to ingest extracellular material via 75-mµ diameter bristle-coated micropinocytotic pits and vesicles. These structures apparently fuse to form tubules which then coalesce into large yolk droplets. At a later stage, bristle-coated micropinocytotic vesicles of 100 mµ diameter presumably take up a material that is then probably immediately deposited into a second type of proteid yolk droplet. It is postulated that these two different micropinocytotic structures are specifically involved with the selective uptake of dissimilar extracellular proteid materials.  相似文献   

18.
中华稻蝗卵子卵黄发生期超微结构研究   总被引:8,自引:1,他引:7  
利用透射电镜研究了中华稻蝗Oxya chinesis卵子发生中卵黄发生期的超微结构.卯黄发生初期,滤泡上皮细胞胞质内出现大量粗面内质网及线粒体等细胞器,可能与为卵母细胞提供营养有关.卵黄发生期卵母细胞胞质内卵黄球逐渐增多,它也许有多种来源.观察到环形片层结构,并讨论了其可能功能.  相似文献   

19.
Summary The structure of the yolk syncytial-endoderm complex of the preimplantation yolk sac of the shark is examined by light- and transmission electron microscopy. The yolk syncytium is bounded by a membrane that is anchored to the plasmalemma of adjacent endoderm cells by desmosomes. Enlarged nuclei, rough endoplasmic reticulum, Golgi complexes, mitochondria, and other cellular organelles populate the syncytium. Microtubules and filamentous elements are also observed free in the syncytium. Yolk is present as pleomorphic droplets, the profiles of which are generally spherical but may be vesicular, especially at the periphery of large yolk droplets. Occasionally, large yolk droplets have a paracrystalline configuration. Small yolk droplets are modulated through the Golgi complex of the yolk syncytium, and it is suggested that acid hydrolases are added there. Small yolk droplets released from the maturing face of the Golgi complex are sequestered in membrane-limited packets. The membrane of the packets fuses with the membrane enveloping the yolk syncytium and the yolk droplets are released into the yolk syncytialendoderm interspace. Subsequently, the yolk droplets are endocytosed by the endoderm. Yolk droplets disperse and fuse to form the large irregular yolk inclusions of the endoderm. Yolk metabolites are transported out of the endoderm through the yolk sac endothelium. The yolk sac endoderm thus mediates the transfer of metabolites from the yolk mass to the extraembryonic circulation.  相似文献   

20.
Inorganic 35S-sulfate was injected into Xenopus laevis embryos before first cleavage to study incorporation of the label into the yolk platelets in order to localize glycosaminoglycan synthesis. Electron microscope autoradiography of embryonic thin sections from blastulae and gastrulae revealed that the primary site of label incorporation is at the edge of the yolk platelets, and, to a lesser extent, in their interiors. Autoradiography of isolated yolk platelets, lacking unit membranes, indicated the absence of label. Thus, edge associated label comes from the yolk platelets membrane, and interior label is solubilized in the glycerol-water gradient during yolk platelets isolation. Ruthenium red staining of yolk platelet in situ shows haavy deposits of the dye on the yolk platelet membrane surface facing the cytoplasmic surface. The crystalline main body of isolated yolk platelets does not take up the dye. It appears that continuous synthesis or sulfation of glycosaminoglycan occurs primarily at the outer surface yolk platelet membranes during early development, providing a novel site for this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号