首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Guanosine 3′,5′-monophosphate (cGMP) is an intracellular messenger in various kinds of cell. We investigated the regulation of cGMP production by nitric oxide (NO) in rabbit submandibular gland cells. Methacholine, a muscarinic cholinergic agonist, stimulated cGMP production in a dose- and time-dependent manner, but the α-agonist phenylephrine, substance P and the β-agonist isoproterenol failed to evoke cGMP production. In fura-2-loaded cells, methacholine induced an increase in intracellular Ca2+ ([Ca2+]i) in a concentration-dependent manner, which was similar to that for cGMP production. When the external Ca2+ was chelated with EGTA, methacholine failed to induce cGMP production. Ca2+ ionophore A23187 and thapsigargin, which induce the increase in [Ca2+]i without activation of Ca2+-mobilizing receptors, mimicked the effect of methacholine. cGMP production induced by methacholine, A23187 and thapsigargin was clearly inhibited by NG-nitro- -arginine methylester (L-NAME), a specific inhibitor of nitric oxide synthase (NOS). S-Nitroso-N-acetyl- -penicillamine (SNAP), a NO donor, induced cGMP formation. In the lysate of rabbit submandibular gland cells, Ca2+-regulated nitric oxide synthase activity was detected. These findings suggest that cGMP production induced by the activation of muscarinic cholinergic receptors is regulated by NO generation via the increase in [Ca2+]i.  相似文献   

2.
In rabbit parotid acinar cells, the muscarinic cholinergic agonist methacholine induced an increase in the intracellular Ca(2+) concentration and provoked nitric oxide (NO) generation. Ca(2+)-mobilizing reagents such as thapsigargin and the Ca(2+) ionophore A23187 mimicked the effect of methacholine on NO generation. Methacholine-induced NO generation was inhibited by the removal of extracellular Ca(2+). Immunoblot analysis indicated that the antibody against the neuronal type of nitric oxide synthase (NOS) cross-reacted with NOS in the cytosol of rabbit parotid gland cells. Immunofluorescence testing showed that neuronal NOS is present in the cytosol of acinar cells but less in the ductal cells. NOS was purified approximately 8100-fold from the cytosolic fraction of rabbit parotid glands by chromatography on Sephacryl S-200, DEAE-Sephacel, and 29,59-ADP-Sepharose. The purified NOS was a NADPH- and tetrahydroxybiopterin-dependent enzyme and was activated by Ca(2+) within the physiological range in the presence of calmodulin. These results suggest that NO is generated by the activation of the neuronal type of NOS, which is regulated in rabbit parotid acinar cells by the increase in intracellular Ca(2+) levels induced by the activation of muscarinic receptors.  相似文献   

3.
Nitric oxide (NO) is an important vasorelaxant produced along with L-citrulline from L-arginine in a reaction catalyzed by endothelial nitric oxide synthase (eNOS). Previous studies suggested that the recycling of L-citrulline to L-arginine is essential for NO production in endothelial cells. However, there is no direct evidence demonstrating the degree to which the recycling of L-citrulline to L-arginine is coupled to NO production. We hypothesized that the amount of NO formed would be significantly higher than the amount of L-citrulline formed due to the efficiency of L-citrulline recycling via the citrulline-NO cycle. To test this hypothesis, endothelial cells were incubated with [14C]-L-arginine and stimulated by various agents to produce NO. The extent of NO and [14C]-L-citrulline formation were simultaneously determined. NO production exceeded apparent L-citrulline formation of the order of 8 to 1, under both basal and stimulated conditions. As further support, alpha-methyl-DL-aspartate, an inhibitor of argininosuccinate synthase (AS), a component of the citrulline-NO cycle, inhibited NO production in a dose-dependent manner. The results of this study provide evidence for the essential and efficient coupling of L-citrulline recycling, via the citrulline-NO cycle, to endothelial NO production.  相似文献   

4.
It is well-known that amylase is secreted in response to extracellular stimulation from the acinar cells. However, amylase is also secreted without stimulation. We distinguished vesicular amylase as a newly synthesized amylase from the accumulated amylase in secretory granules by short time pulse and chased with 35S-amino acid. The newly synthesized amylase was secreted without stimulation from secretory vesicles in rat parotid acinar cells. The secretion process did not include microtubules, but was related to microfilaments. p-Nitrophenyl β-xyloside, an inhibitor of proteoglycan synthesis, inhibited the newly synthesized amylase secretion. This indicated that the newly synthesized amylase was secreted from secretory vesicles, not via the constitutive-like secretory route, which includes the immature secretory granules, and that proteoglycan synthesis was required for secretory vesicle formation.  相似文献   

5.
An elevation in inorganic phosphate(Pi) concentration activates epiphyseal chondrocyteapoptosis. To determine the mechanism of apoptosis,tibial chondrocytes were treated with Pi, andnitrate/nitrite (NO/NO) levelswere determined. Pi induced a threefold increase in the NO/NO concentration; inhibitorsof nitric oxide (NO) synthase activity and Pi transportsignificantly reduced NO/NO levels and prevented cell death. Furthermore, a dose-dependent increasein cell death was observed after exposure of chondrocytes toS-nitrosoglutathione. Pi increased caspase 3 activity 2.7-fold. Both caspase 1 and caspase 3 inhibitors protectedchondrocytes from Pi-induced apoptosis.Pi caused a significant decrease in the mitochondrialmembrane potential, while NO synthase inhibitors maintainedmitochondrial function. While Pi caused thiol depletion, inhibition of Pi uptake or NO generation served tomaintain glutathione levels. The results suggest that NO serves tomediate key metabolic events linked to Pi-dependentchondrocyte apoptosis.

  相似文献   

6.
Summary The localization of complex carbohydrates in the Golgi apparatus, secretory granules and plasmalemma of mouse parotid acinar cells was studied using the fracture-labelling method. The hexose residues of glycoconjugates were identified using ferritin conjugated with Wheat Germ Agglutinin (WGA-), Ricinnus Communis Agglutinin II (RCA-II-), Phaseolus Vulgaris Agglutinin (PHA-) and Limulus Polyphemus Agglutinin (LPA-). We found that the tracture-labelling method allows not only the labelling of membrane faces but also analysis of the compartment's content that is exposed during the fracturing of the tissue. Our results revealed differences in the hexose residues located in the Golgi apparatus, secretory granules and the apical and lateral plasmalemma. Numerous binding sites for WGA-, PHA-and RCA-II-ferritin were demonstrable in the Golgi apparatus. In secretory granules, the WGA-and RCA-II-ferritin binding sites were most numerous, while LPA-ferritin binding sites were very rate. The density of the binding sites for PHA-ferritin showed considerable variation in secretory granules. The apical plasmalemma exhibited a high density of binding sites for all of the lectins used. In the lateral plasmalemma, LPA-ferritin was not bound, and there were fewer binding sites for WGA-, RCA-H-and PHA-ferritin.  相似文献   

7.
8.
The Ca2+ dependence of surface membrane retrieval (i.e., the process by which the excess surface membrane resulting from exocytosis is recycled to the cytoplasm of secretory cells) has been investigated in rat parotid tissue lobules first incubated for 40 min in the presence of a secretagogue drug (the β-adrenergic agonist isoprenaline) and then in the presence of the β-blocker, 1-propranolol, up to 4 h. The dynamics of the luminal surface membrane was monitored by measuring, in ultrathin sections, the length of the luminal profile of all examined acinar cells abutting to a lumen before and immediately at the end of the stimulation, as well as at various times thereafter. Such a profile doubled during isoprenaline stimulation, concomitantly with the discharge of most secretion granules. After the stimulation was blocked, the luminal profile decreased to reach values even lower than those observed in unstimulated cells. The kinetics of this reduction was apparently first-order, both in the presence and in the absence of extracellular Ca2+. However, its rate differed appreciably in these two situations: it was relatively fast (apparent ) in lobules incubated in complete medium (Ca2+ concentration, 2 mM), and much slower (apparent ) in lobules incubated in a Ca2+-free medium containing 1 mM EGTA. The slowing down of the membrane retrieval occurring in Ca2+-free conditions was rapidly reversed by reintroduction of Ca2+ into the medium. These findings indicate that the retrieval of the luminal surface membrane in parotid acinar cells is Ca2+-dependent.  相似文献   

9.
Conclusions While it is generally accepted that Ca2+ plays an important regulatory role in the physiology of a number of non-excitable cells, the mechanisms which regulate intracellular [Ca2+ are far from well established. Ca2+ transporting mechanisms which distribute Ca2+ intracellularly as well as those which allow influx of extracellular Ca2+ are involved in mediating intracellular Ca2+ homestasis. In this paper we have described recent studies on the regulation of the Ca2+ influx system in the data, it appears that the process of Ca2+ entry is extremely complex and may involve several levels of regulation. Understanding the molecular basis of these regulatory mechanisms presents a challeging problem for future studies.  相似文献   

10.
The presence of the epsilon4 allele of apolipoprotein E (APOE) is considered a risk factor for sporadic Alzheimer's disease (AD). Our recent data demonstrated that the systemic modulation of oxidative stress in platelets and erythrocytes is disrupted in aging and AD. In this study, the relationship between APOE genotype and oxidative stress markers, both in AD patients and controls, was evaluated. The AD group showed an increase in the content of thiobarbituric acid-reactive substances (TBARS) and in the activities of nitric oxide synthase (NOS) and Na, K-ATPase, when compared to controls. Both groups had a similar cGMP content and superoxide dismutase activity. APOE epsilon4 allele carriers showed higher NOS activity than non-carriers. These results suggest a possible influence of APOE genotype on nitric oxide (NO) production that might enhance the effects of age-related specific factor(s) associated with neurodegenerative disorders.  相似文献   

11.
Zhao X  Li X  Trusa S  Olson SC 《Regulatory peptides》2005,132(1-3):113-122
We previously demonstrated that angiotensin II (Ang II) stimulates an increase in nitric oxide synthase (NOS) mRNA levels, eNOS protein expression and NO production via the type 2 (AT2) receptor, whereas signaling via the type 1 (AT1) receptor negatively regulates NO production in bovine pulmonary artery endothelial cells (BPAECs). In the present study, we investigated the components of the AT1 receptor-linked signaling pathway(s) that are involved in the downregulation of eNOS protein expression in BPAECs. Treatment of BPAECs with either AT1 receptor antagonists or an anti-AT1 receptor antibody induced eNOS protein expression. Furthermore, intracellular delivery of GP-Antagonist-2A, an inhibitor of Galphaq proteins, and treatment of BPAECs with U73122, a phosphatidylinositol-phospholipase C (PLC)-specific inhibitor, enhanced eNOS protein expression. Treatment of BPAECs with the cell-permeable calcium chelator, BAPTA/AM, increased eNOS protein expression at 8 h, while increasing intracellular calcium with either thapsigargin or A23187 prevented Ang II-induced eNOS protein expression. Phorbol myristate acetate (PMA), a protein kinase C (PKC) activator, completely prevented Ang II-stimulated eNOS protein expression at 8 h, whereas depletion of PKC by long-term treatment with PMA, induced eNOS protein expression. Treatment of BPAECs with a PKCalpha-specific inhibitor or transfection of BPAECs with an anti-PKCalpha neutralizing antibody stimulated eNOS protein expression. Conversely, rottlerin, a PKCdelta specific isoform inhibitor had no effect on basal or Ang II-stimulated eNOS protein expression. Moreover, treatment of BPAECs with U73122, BAPTA/AM and PKCalpha-specific inhibitors increased NO production at 8 h. In conclusion, Ang II downregulates eNOS protein expression via an AT1 receptor-linked pathway involving Galphaq/PLC/calcium/PKCalpha signaling pathway in BPAECs.  相似文献   

12.
Capacitative calcium entry in parotid acinar cells.   总被引:13,自引:0,他引:13       下载免费PDF全文
The intracellular Ca2+ indicator, fura-2, was used to monitor changes in cytosolic [Ca2+] in parotid acinar cells. When parotid cells were incubated in a medium containing low [Ca2+], and [Ca2+] was restored to the physiological range, there was a small increase in cytosolic [Ca2+]. If, however, the cells were first activated by a muscarinic agonist, and receptor activation was terminated before the addition of Ca2+ by the addition of a pharmacological excess of the muscarinic-receptor antagonist atropine, the initial increase in cytosolic [Ca2+] was faster and transiently larger than in the control cells which had not been previously stimulated. This suggested that a stimulation of Ca2+ entry occurred owing to the prior emptying of the agonist-regulated intracellular Ca2+ pool. This extra Ca2+ influx seen in pool-depleted cells persisted even when the interval between the addition of atropine and Ca2+ was increased from 1 to 20 min. Also, when the pool was allowed to refill by adding atropine in the presence of extracellular Ca2+, and Ca2+ was then sequentially removed and restored, the rise in cytosolic [Ca2+] after the addition of extracellular Ca2+ was not rapid, and resembled the increase seen in unstimulated cells. These results indicate that, when the agonist-sensitive Ca2+ pool is emptied by an agonist, Ca2+ influx across the plasma membrane is increased. This influx of Ca2+ occurs independently of the concentrations of inositol phosphates and probably of any second messengers linked directly to receptor activation. It appears rather to be a consequence of the empty state of the Ca2+ pool. Further, we suggest that, whenever the agonist-sensitive Ca2+ pool is emptied by agonist activation, the plasma-membrane permeability to Ca2+ will be increased, and this may account, at least in part, for the phenomenon of receptor-activated Ca2+ entry.  相似文献   

13.
Transferrin is the major iron transporter in blood plasma, and is also found, at lower concentrations, in saliva. We studied the synthesis and secretion of transferrin in rat parotid acinar cells in order to elucidate its secretory pathways. Two sources were identified for transferrin in parotid acinar cells: synthesis by the cells (endogenous), and absorption from blood plasma (exogenous). Transferrin from both sources is secreted from the apical side of parotid acinar cells. Endogenous transferrin is transported to secretory granules. It is secreted from mature secretory granules upon stimulation with a β-adrenergic reagent and from smaller vesicles in the absence of stimulation. Exogenous transferrin is internalized from the basolateral side of parotid acinar cells, transported to the apical side by transcytosis, and secreted from the apical side. Secretory processes for exogenous transferrin include transport systems involving microfilaments and microtubules.  相似文献   

14.
Although cellular levels of arginine greatly exceed the apparent K(m) for endothelial nitric-oxide synthase, current evidence suggests that the bulk of this arginine may not be available for nitric oxide (NO) production. We propose that arginine regeneration, that is the recycling of citrulline back to arginine, defines the essential source of arginine for NO production. To support this proposal, RNA interference analysis was used to selectively reduce the expression of argininosuccinate synthase (AS), because the only known metabolic role for AS in endothelial cells is in the regeneration of l-arginine from l-citrulline. Western blot analysis demonstrated a significant and dose-dependent reduction of AS protein as a result of AS small interfering RNA treatment with a corresponding diminished capacity to produce basal or stimulated levels of NO, despite saturating levels of arginine in the medium. Unanticipated, however, was the finding that the viability of AS small interfering RNA-treated endothelial cells was significantly decreased when compared with control cells. Trypan blue exclusion analysis suggested that the loss of viability was not because of necrosis. Two indicators, reduced expression of Bcl-2 and an increase in caspase activity, which correlated directly with reduced expression of AS, suggested that the loss of viability was because of apoptosis. The exposure of cells to an NO donor prevented apoptosis associated with reduced AS expression. Overall, these results demonstrate the essential role of AS for endothelial NO production and cell viability.  相似文献   

15.
The accumulated ultrastructural and biochemical evidence is highly suggestive of the existence of mitochondrial nitric oxide (NO) synthase (mtNOS), where local production of NO regulates the electron transport along the respiratory chain. Here, the functional competence of mtNOS in situ in a living cell was examined using an intravital fluorescent NO indicator, 4,5-diaminofluorescein, employing a new procedure for loading it into the mitochondria to demonstrate local NO generation in undisrupted endothelial cells and in isolated mitochondria as well as in human embryonic kidney cells stably expressing endothelial NOS. With the use of this approach, we showed that endothelial cells incubated in the presence of high concentration of D-glucose (but not L-glucose) are characterized by the reduced NO synthetic function of mitochondria despite the unaltered abundance of the enzyme. In parallel, mitochondrial generation of superoxide was augmented in endothelial cells incubated in the presence of a high concentration of D-glucose. Both the NO generation and superoxide production in hyperglycemic environment could be restored to control levels by treating cells with a cell-permeable superoxide dismutase mimetic. In addition, enhanced mitochondrial superoxide production could be suppressed with an inhibitor of NOS in stimulated endothelial cells. In conclusion, the data 1) provide direct evidence of mitochondrial NO production in endothelial cells, 2) demonstrate its suppression and enhanced superoxide generation in hyperglycemic environment, and 3) provide evidence that "uncoupled" mtNOS represents an important source of superoxide anions in endothelial cells incubated in high glucose-containing medium.  相似文献   

16.
Nitric oxide (NO) is an important modulator of immune, endocrine and neuronal functions; however, measuring physiological levels of NO in cell cultures is generally difficult because of the lack of suitable methodologies. We have selected three cell lines from different origins: the neuroblastoma-derived Neuro2A (N2A), the cholinergic SN56 and the non-neuronal COS-1. We first demonstrated the presence of NADPH-diaphoretic activity, a potential marker of the NO-synthesizing (NOS) enzyme. By immunocytochemistry, using specific antibodies for each NOS subtype, we observed that subtype I was present in all cell lines and that subtype II was present in COS-1 and N2A cell lines. The presence of these NOS subtypes was further verified by Western blot analysis. Control cells treated with DAF-2 DA exhibited significant fluorescent levels corresponding to basal NO production. The subcellular distribution of the synthesizing enzyme was consistent with the NO-fluorescence signal; whereas, fixation affected the subcellular pattern of NO fluorescence signal. Addition of NOS inhibitors or NO scavengers to the incubation medium reduced the intensity of the NO fluorescence signal in a concentration-dependent manner. Conversely, increasing concentrations of a NO donor, or incident light, increased the fluorescence intensity. Our observation of NO production and distribution using the DAF-2 method has a direct impact on studies using these cell lines.  相似文献   

17.
18.
The Golgi apparatus (GA) is a membranous organelle composed of stacked cisterns with associated vesicles. This study was undertaken to determine its origin in rat parotid acinar cells. The morphogenesis of the GA could be recognized in the developmental process as well as in mitotic division of cells. EM studies depicted an aggregation of small vesicles in the early stage of postnatal development or mitosis, that appeared to be the rudimental element of GA. Brefeldin A induced rapid degradation of the cisternal structure to vesicular aggregates. Reconstruction of the GA structure based on these remnant vesicles was observed upon removal of the drug. Similar membranous assembly could be observed after destruction of microtubules. These membranous aggregates presumably corresponded to 'buds of the GA' in parotid acinar cells. However, conventional cytochemical markers for GA were not detected on such immature form of GA. We found that the GA matrix protein GM130 and osmium reductivity (a classical marker for cis-Golgi elements) were consistently localized in the GA elements. Therefore, immunohistochemical distribution of GM130 and osmium impregnation of parotid acinar cells were studied under various dynamic conditions that produced structural modification of the GA.  相似文献   

19.
Intracellular transport of sulfated macromolecules in parotid acinar cells   总被引:2,自引:0,他引:2  
Intracellular transport of sulfated macromolecules in parotid acinar cells was investigated by electron microscopic radioautography after injection of 35S-sulfate. Ten minutes after injection radiosulfate was concentrated in the Golgi region. By 1 hr, much of the radioactive material had been transported to condensing vacuoles. These vacuoles were subsequently transformed into zymogen granules which contained almost 70% of the radioactivity 4 hrs after injection. These results indicate that, in addition to its packaging function, the Golgi apparatus in parotid acinar cells is capable of utilizing inorganic sulfate for the production of sulfated macromolecules. These molecules, following an intracellular route similar to that taken by digestive enzymes, become an integral component of zymogen granules. The possibility that sulfated macromolecules play a role in exocrine secretion by aiding in the packaging of exportable proteins is discussed.  相似文献   

20.
H Sugiya  S Furuyama 《FEBS letters》1991,286(1-2):113-116
In fura-2-loaded parotid acinar cells, 50-200 microM sphingosine induced an increase in cytosolic Ca2+ ([Ca2+]i). When extracellular Ca2+ was chelated by EGTA, 50 microM sphingosine failed to increase [Ca2+]i, but 100 or 200 microM sphingosine induced a slight and transient increase in [Ca2+]i. The addition of LaCl3 to the medium resulted in the same effect as chelation of extracellular Ca2+. When cells were incubated in low Ca2+ medium containing sphingosine, and extracellular Ca2+ was subsequently added, a rapid increase in [Ca2+]i depending on the concentration of sphingosine was shown. In low Ca2+ medium, a slight increase in [Ca2+]i induced by high concentrations of sphingosine was not shown after the transient increase in [Ca2+]i elicited by methacholine. Inhibitors of protein kinase C, H-7 and K252a, did not mimic the effect of sphingosine on [Ca2+]i. These results suggest that sphingosine stimulates Ca(2+)-influx and further stimulates the release of Ca2+ from agonist-sensitive intracellular pools by a mechanism that is independent of protein kinase C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号