首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Halobacteroides acetoethylicus grew in media with 6 to 20% NaCl and displayed optimal growth at 10% NaCl. When grown in medium with an [NaCl] of 1.7 M, the internal cytoplasmic [Na+] and [Cl-] were 0.92 and 1.2 M, respectively, while K+ and Mg2+ concentrations in cells were 0.24 and 0.02 M, respectively. Intracellular [Na+] was fourfold higher than intracellular [K+]. Since Na+ and Cl- ions were not excluded from the cell, the influence of high salt concentrations on key enzyme activities was investigated in crude cell extracts. Activities greater than 60% of the maximal activity of the following key catabolic enzymes occurred at the following [NaCl] ranges: glyceraldehyde-3-phosphate dehydrogenase, 1 to 2 M; alcohol dehydrogenase (NAD linked), 2 to 4 M; pyruvate dehydrogenase, 0.5 to 1 M; and hydrogenase (methyl viologen linked), 0.5 to 3 M. These studies support the hypothesis that obligately halophilic, anaerobic eubacteria adapt to extreme salt concentrations differently than do halophilic, aerobic eubacteria, because they do not produce osmoregulants or exclude Cl-. This study also demonstrated that these halophilic, anaerobic eubacteria have a physiological similarity to archaebacterial halophiles, since Na+ and Cl- are present in high concentrations and are required for enzymatic activity.  相似文献   

2.
Methanobacterium thermoautotrophicum delta H and Marburg were adapted to grow in medium containing up to 0.65 M NaCl. From 0.01 to 0.5 M NaCl, there was a lag before cell growth which increased with increasing external NaCl. The effect of NaCl on methane production was not significant once the cells began to grow. Intracellular solutes were monitored by nuclear magnetic resonance (NMR) spectroscopy as a function of osmotic stress. In the delta H strain, the major intracellular small organic solutes, cyclic-2,3-diphosphoglycerate and glutamate, increased at most twofold between 0.01 and 0.4 M NaCl and decreased when the external NaCl was 0.5 M. M. thermoautotrophicum Marburg similarly showed a decrease in solute (cyclic-2,3-diphosphoglycerate, 1,3,4,6-tetracarboxyhexane, and L-alpha-glutamate) concentrations for cells grown in medium containing > 0.5 M NaCl. At 0.65 M NaCl, a new organic solute, which was visible in only trace amounts at the lower NaCl concentrations, became the dominant solute. Intracellular potassium in the delta H strain, detected by atomic absorption and 39K NMR, was roughly constant between 0.01 and 0.4 M and then decreased as the external NaCl increased further. The high intracellular K+ was balanced by the negative charges of the organic osmolytes. At the higher external salt concentrations, it is suggested that Na+ and possibly Cl- ions are internalized to provide osmotic balance. A striking difference of strain Marburg from strain delta H was that yeast extract facilitated growth in high-NaCl-containing medium. The yeast extract supplied only trace NMR-detectable solutes (e.g., betaine) but had a large effect on endogenous glutamate levels, which were significantly decreased. Exogenous choline and glycine, instead of yeast extract, also aided growth in NaCl-containing media. Both solutes were internalized with the choline converted to betaine; the contribution to osmotic balance of these species was 20 to 25% of the total small-molecule pool. These results indicate that M. thermoautotrophicum shows little changes in its internal solutes over a wide range of external NaCl. Furthermore, they illustrate the considerable differences in physiology in the delta H and Marburg strains of this organism.  相似文献   

3.
The adaptation of microorganisms to life in brines allows two strategies: the accumulation of organic osmoregulators in the cell (as in many moderate halophiles, halomonads in particular) or the accumulation of inorganic ions at extremely high intracellular concentrations (as, for example, in haloanaerobes). To reveal the regularities of osmoregulation in haloalkaliphiles developing in soda lakes, Halomonas campisalis Z-7398-2 and Halomonas sp. AIR-2 were chosen as representatives of halomonads, and Natroniella acetigena, as a representative of haloanaerobes. It was established that, in alkaliphilic halomonads, the intracellular concentrations of inorganic ions are insufficient for counterbalancing the environmental osmotic pressure and balance is attained due to the accumulation of organic osmoregulators, such as ectoine and betaine. On the contrary, the alkaliphilic haloanaerobe N. acetigena employs K+, Na+, and Cl- ions for osmoregulation. High intracellular salt concentrations increasing with the content of Na+ in the medium were revealed in this organism. At a concentration of 1.91 M Na+ in the medium, N. acetigena accumulated 0.83 M K+, 0.91 M Na+, and 0.29 M Cl- in cells, and, with an increase in the Na+ content in the medium to 2.59 M, it accumulated 0.94 M K+, 1.98 M Na+, and 0.89 M Cl-, which counterbalanced the external osmotic pressure and provided for cell turgor. Thus, it was shown that alkaliphilic microorganisms use osmoregulation strategies similar to those of halophiles and these mechanisms are independent of the mechanism of pH homeostasis.  相似文献   

4.
The intracellular solute composition of the salt-tolerant yeast Debaryomyces hansenii was studied in glucose-limited chemostat cultures at different concentrations of NaCl (4 mM, 0.68 M, and 1.35 M). A strong positive correlation between the total intracellular polyol concentration (glycerol and arabinitol) and medium salinity was demonstrated. The intracellular polyol concentration was sufficient to balance about 75% of the osmotic pressure of the medium in cultures with 0.68 and 1.35 M NaCl. The intracellular concentration of K+ and Na+, which at low external salinity gave a considerable contribution to the intracellular water potential, was only slightly enhanced with raised medium salinity. However, the ratio of intracellular K+ to Na+ decreased; but this decrease was less drastic in the cells than in the surrounding medium, i.e., the cells were able to select for K+ in favor of Na+. The turgor pressure, which was estimated on the basis of intracellular solute concentrations, was 2,200 kPa in cultures with 4 mM NaCl and decreased when the external salinity was raised, resulting in a value of about 500 kPa in cultures with 1.35 M NaCl. The maintenance of a positive turgor pressure at high salinity was mainly due to an increased production and accumulation of glycerol.  相似文献   

5.
采用沙培法,对盐胁迫下坪山柚和福橘幼苗体内矿质元素的变化进行了研究。结果表明,随着NaCl浓度的增加,坪山柚和福橘幼苗根部及地上部Na^+、Cl-含量增加,且相同浓度下,福橘比坪山柚高。40mmol/L NaCI胁迫下,坪山柚和福橘幼苗地上部的K^+、Fe含量,根部的Ca^2+、Mg^2+、Zn含量显著下降,而根部Fe含量及地上部Zn含量显著增加。随NaCl浓度增大,坪山柚根部K^+含量,地上部Ca^2+、Mg^2+含量变化不明显,而福橘根部、地上部上述离子含量在NaCl浓度≥160mmol/L时均显著下降。因此,根部K^+含量,地上部Ca^2+、Mg^2+含量存在品种问差异,或许可作为耐盐性鉴定指标。NaCl胁迫降低坪山柚和福橘幼苗根部及地上部P、Mn含量,而Cu含量在较高浓度NaCl胁迫下显著增加。NaCl胁迫明显降低坪山柚和福橘幼苗地上部K^+/Na^+、Ca^2+/Na^+和Mg^2+/Na^+值,其中K^+/Na^+值的变化可考虑作为柑橘耐盐性鉴定的指标。  相似文献   

6.
对经逐代耐盐性筛选的栽培和野生大豆杂交组合(‘Jackson’בBB52’)F4代‘JB185’株系及其亲本幼苗以不同浓度NaCl和等渗(-0.53 MPa)PEG-6000、NaCl、钠盐(无Cl-)和氯盐(无Na )溶液处理6d。结果表明:(1)随NaCl浓度的提高,3种遗传材料幼苗叶片相对电解质渗漏率和MDA含量均呈上升趋势,叶绿素含量除‘BB52’和‘JB185’在NaCl 50mmol/L处理时显著上升外,其余处理呈下降趋势,‘JB185’变化介于两亲本之间。(2)不同离子胁迫下,它们叶片相对电解质渗漏率和MDA含量较对照多表现增加趋势,其中‘BB52’和‘JB185’在钠盐(无Cl-)处理下的变化明显大于氯盐(无Na )处理。叶片中游离态和束缚态Put、Spd和Spm含量都较对照明显提高,但‘BB52’和‘JB185’在钠盐(无Cl-)处理下游离态(Spd Spm)/Put比值和束缚态多胺总量为3种盐处理中最低。表明‘JB185’与野生大豆‘BB52’种群一样对Na 敏感而对Cl-表现较强的耐性。  相似文献   

7.
Glycerol production by yeasts under osmotic and sulfite stress.   总被引:3,自引:0,他引:3  
The yeasts Saccharomyces cerevisiae, Candida boidinii, Pichia augusta, and Pichia anomala were tested for glycerol production both under osmotic stress and by addition of a sulfite-steering agent. The osmotic pressure was increased by employing glucose concentrations from 50 to 200 g/L and by supplementing with NaCl (40 g/L). Of all the yeasts, S. cerevisiae exhibited the highest level of osmotolerance. The increased osmotic pressure affected glycerol formation the most in C. boidinii. In both Pichia species, glycerol formation was not sufficiently induced when exposed to sugar and salt stress. The addition of 40 g/L Na2SO3 to the medium containing 100 g/L glucose shifted the metabolism of all yeasts towards glycerol formation. Saccharomyces cerevisiae achieved 68.6%, while C. boidinii reached 25.5% of the theoretical glycerol yield, respectively. The highest glycerol yield, 82.3% of the theoretical, was produced by S. cerevisiae under microaerophilic conditions.  相似文献   

8.
盐胁迫下盐地碱蓬体内无机离子含量分布特点的研究   总被引:18,自引:2,他引:16  
用不同浓度NaCl溶液处理盐地碱蓬(Suaeda salsa)植株后,测定并比较老叶、幼叶及根部的无机离子含量和对K的选择性,叶片及根部的Na^ 、Cl^-含量随盐度的增加而升高,且累积趋势相似,盐胁迫下根部Na^ 、Cl^-及总离子含量(K^ 、Na^ 、Ca^2 ,NO3^-,Cl^-)明显低于叶片,说明盐地碱蓬地盐胁迫下,以叶片优先积累大量离子(如Na^ ,Cl^-) 为其适应特征。NaCl处理下,叶片的K^ ,Ca^2 含量低于对照,但随盐度的增加保持相对稳定,而根部K^ 含量,K/Na比、对K的选择性则高于叶片,这对盐胁迫下地上部的K^ 亏缺有一定补偿作用。低盐度处理(100mmol/LNaCl)促进NO3^-的吸收,另外随盐度的增加,叶片渗透势下降,渗透调节能力增强,幼叶渗透势低于老叶,但渗透调节能力相同。  相似文献   

9.
盐胁迫下水稻叶绿体中Na+、Cl-积累导致叶片净光合速率下降   总被引:18,自引:0,他引:18  
研究了0-200mmol/L的NaCl胁迫下耐盐性不同的水稻品种Pokkali(耐盐)和Peta(盐敏感)根系,叶片和叶绿体中Na^ ,K^ 和Cl^-含量的变化及其与叶片光合作用的关系。结果表明:随着NaCl胁迫时间和浓度的增加,供试2个品种在根,叶片和叶绿体中Na^ ,Cl^-含量增加,K^ 含量下降。耐盐品种体内Na^ ,Cl^-含量增加或K^ 含量减少的幅度小于盐敏感品种。在200mmol/L的NaCl胁迫下盐敏感品种根,叶片和叶绿体中的Na^ /K^ 分别是耐盐品种的208%,308%和297%。与Na^ 相比,耐盐品种根系对K^ 吸收和向叶片运输的选择性(SK,Na)较强。但在经过0,100和200mmol/L的NaCl处理后2个品种叶绿体中的Na^ /K^ 均高于叶片(SK,Na均小于1)。盐胁迫下水稻叶绿体中Na^ ,Cl^-含量和Na^ /K^ 与叶片净光合速度呈极显著负相关。  相似文献   

10.
研究了 0~ 2 0 0mmol/L的NaCl胁迫下耐盐性不同的水稻品种Pokkali(耐盐 )和Peta(盐敏感 )根系、叶片和叶绿体中Na 、K 和Cl-含量的变化及其与叶片光合作用的关系。结果表明 :随着NaCl胁迫时间和浓度的增加 ,供试 2个品种在根、叶片和叶绿体中Na 、Cl-含量增加 ,K 含量下降。耐盐品种体内Na 、Cl-含量增加或K 含量减少的幅度小于盐敏感品种。在 2 0 0mmol/L的NaCl胁迫下盐敏感品种根、叶片和叶绿体中的Na /K 分别是耐盐品种的 2 0 8%、30 8%和 2 97%。与Na 相比 ,耐盐品种根系对K 的吸收和向叶片运输的选择性 (SK ,Na)较强。但在经过0、10 0和 2 0 0mmol/L的NaCl处理后 2个品种叶绿体中的Na /K 均高于叶片 (SK ,Na均小于 1)。盐胁迫下水稻叶绿体中Na 、Cl-含量和Na /K 与叶片净光合速率呈极显著负相关。  相似文献   

11.
12.
Transepithelial fluid transport (Jv) and intracellular Na+ and Cl- activities (aNai, aCli) were measured in isolated Necturus gallbladders to establish the contribution of different proposed apical membrane entry mechanisms to transepithelial salt transport. In 10 mM HCO3- Ringer's, Jv was 13.5 +/- 1.1 microliter X cm-2 X h-1, and was significantly reduced by a low bicarbonate medium and by addition of amiloride (10(-3)M) or SITS (0.5 X 10(-3)M) to the mucosal bathing solution. Bumetanide (10(-5)M) was ineffective. Bilateral Na+ removal abolished Jv. The hypothesis of NaCl cotransport was rejected on the basis of the following results, all obtained during mucosal bathing solution changes: during Na+ removal, aNai fell 4.3 times faster than aCli; during Cl- removal, aCli fell 7.5 times faster than aNai; amiloride (10(-3) M) reduced aNai at a rate of 2.4 +/- 0.3 mM/min, whereas aCli was not changed; bumetanide (10(-5) M) had no significant effects on Jv or aCli. The hypothesis of Na-K-Cl cotransport was rejected for the same reasons; in addition, K+ removal from the mucosal bathing solution (with concomitant Ba2+ addition) did not alter aNai or aCli. The average rate of NaCl entry under normal transporting conditions, estimated from Jv, assuming that the transported fluid is an isosmotic NaCl solution, was 22.5 nmol X cm-2 X min-1. Upon sudden cessation of NaCl entry, assuming no cell volume changes, aNai and aCli should fall at an average rate of 4.8 mM/min. To compare this rate with the rates of Na+ and Cl- entry by ion exchange, the Na+ or Cl- concentration in the mucosal bathing solution was reduced rapidly to levels such that electroneutral cation or anion exchange, respectively, should cease. The rate of Na+ or Cl- entry before this maneuver was estimated from the initial rate of fall of the respective intracellular ionic activity upon the mucosal solution substitution. aNai and aCli decreased at initial rates of 3.7 +/- 0.4 and 5.9 +/- 0.8 mM/min, respectively. The rate of fall of aNai upon reduction of external [Na] was not affected by amiloride (10(-3) M), and the rate of fall of aCli upon reduction of external [Cl] was unchanged by SITS (0.5 X 10(-3) M), which indicates that net cation or anion exchange was, in fact, abolished by the changes in Na+ and Cl- gradients, respectively. I conclude that double exchange (Na+/H+ and Cl-/HCO-3) is the predominant or sole mechanism of apical membrane NaCl entry in this epithelium.  相似文献   

13.
Natural-abundance 13C-nuclear magnetic resonance spectroscopy has shown glycerol to be the major osmotically significant low-molecular-weight solute in exponentially growing, salt-stressed cells of the yeasts Saccharomyces cerevisiae, Zygosaccharomyces rouxii, and Debaromyces hansenii. Measurement of the intracellular nonosmotic volume (i.e., the fraction of the cell that is osmotically unresponsive) by using the Boyle-van't Hoff relationship (for nonturgid cells, the osmotic volume is directly proportional to the reciprocal of the external osmotic pressure) showed that the nonosmotic volume represented up to 53% of the total cell volume; the highest values were recorded in media with maximum added NaCl. Determinations of intracellular glycerol levels with respect to cell osmotic volumes showed that increases in intracellular glycerol may counterbalance up to 95% of the external osmotic pressure due to added NaCl. The lack of other organic osmotica in 13C-nuclear magnetic resonance spectra indicates that inorganic ions may constitute the remaining component of intracellular osmotic pressure.  相似文献   

14.
Natural-abundance 13C-nuclear magnetic resonance spectroscopy has shown glycerol to be the major osmotically significant low-molecular-weight solute in exponentially growing, salt-stressed cells of the yeasts Saccharomyces cerevisiae, Zygosaccharomyces rouxii, and Debaromyces hansenii. Measurement of the intracellular nonosmotic volume (i.e., the fraction of the cell that is osmotically unresponsive) by using the Boyle-van't Hoff relationship (for nonturgid cells, the osmotic volume is directly proportional to the reciprocal of the external osmotic pressure) showed that the nonosmotic volume represented up to 53% of the total cell volume; the highest values were recorded in media with maximum added NaCl. Determinations of intracellular glycerol levels with respect to cell osmotic volumes showed that increases in intracellular glycerol may counterbalance up to 95% of the external osmotic pressure due to added NaCl. The lack of other organic osmotica in 13C-nuclear magnetic resonance spectra indicates that inorganic ions may constitute the remaining component of intracellular osmotic pressure.  相似文献   

15.
寇江涛 《生态学杂志》2020,39(3):855-864
为了探讨外源2,4-表油菜素内酯(2,4-epibrassinolide,EBR)诱导燕麦(Avena sativa L.)幼苗抗盐性的效果及其生理调节机制,以"青引2号"和"加燕2号"燕麦为材料,研究NaCl胁迫下施用外源EBR对燕麦幼苗无机离子吸收、运输和分配的影响。结果表明:100mmol·L-1NaCl胁迫下,"青引2号"和"加燕2号"燕麦幼苗叶片和根系中的Na+、Cl-含量均显著升高,对阳离子的吸收产生了拮抗作用,导致燕麦幼苗叶片和根系中的K+、Ca2+、Mg2+、Mn2+、Fe2+、Zn2+、Cu2+含量显著降低,离子稳态平衡被打破; 100 mmol·L-1NaCl胁迫下,施用0.01μmol·L-1外源EBR后,"青引2号"和"加燕2号"燕麦幼苗叶片和根系中的Na+和Cl-含量显著降低,促进了燕麦幼苗根系对K+、Ca2+、Mg2+、Fe2+、Mn2+、Cu2+和Zn2+的吸收,叶片和根系中K+/Na+、Cl-/Na+、Ca2+/Na+、Mg2+/Na+、Fe2+/Na+、Mn2+/Na+、Cu2+/Na+和Zn2+/Na+显著升高,并且有效调控燕麦幼苗体内无机离子的运输...  相似文献   

16.
17.
10-5 M methyl jasmonate (JA-Me) treatment itself did not considerably change the 14CO2 fixation, parameters of room temperature chlorophyll fluorescence induction, proline content, and Na+ as well as Cl- accumulation. Salt stress (30 mM NaCl) lead to a decrease of both 14CO2 fixation and relative water content, and to an increase of proline content. Immediate nonvariable fluorescence (F0) also increased and the variable to maximal fluorescence ratio (Fv/Fm) decreased. Pretreatment with JA-Me for 3 d before salt treatment diminished the inhibitory effect of NaCl on the rate of 14CO2 fixation, protein content, and activity and content of ribulose-1,5-bisophosphate carboxylase/oxygenase. The Na+ and Cl- contents in leaves decreased in JA-Me pretreated plants. The JA-Me pretreatment prevented the increase of F0 level and restored the values of Fv/Fm.  相似文献   

18.
Karandashova IV  Elanskaia IV 《Genetika》2005,41(12):1589-1600
Exposure to high concentrations of environmental NaCl exerts two stress effects on living cells, increasing the osmotic pressure and the concentration of inorganic ions. Salt stress dramatically suppresses the photosynthetic activity in cells of phototrophic organisms, such as cyanobacteria. During salt adaptation, cyanobacterial cells accumulate osmoprotectors, export excessive Na+ with the help of Na+/H+ antiporters, and actively absorb K+ with the help of K+-transporting systems. These physiological processes are accompanied by induction or suppression of several genes involved in salt adaptation. The review considers the main mechanisms responsible for the resistance of cyanobacterial cells to salt and hyperosmotic stresses. Special emphasis is placed on recent achievements in studying the genetic control of salt resistance and regulation of gene expression during adaptation of cyanobacteria to salt and hyperosmotic stresses.  相似文献   

19.
Influence of high salt culture conditions on the expression of immediate early gene egr-1 in rat C6 glioma cells was investigated by measuring both Egr-1 mRNA and protein levels in the cells exposed to the medium containing high concentrations of NaCl. The exposure to high salt medium reduced Egr-1 mRNA and protein levels, while Egr-1 mRNA levels were not altered by the medium containing either sucrose or glycerol. Veratridine and monensin also reduced Egr-1 mRNA levels, similar in extent to that induced by high salt medium. Imaging analysis indicated that the exposure to high salt medium induced the elevation of Na+ levels within the cells. These results indicate that neither hyperosmotic pressure nor ionic strength of high salt medium contribute to the reduction of Egr-1 expression, and suggest that the elevation of intracellular Na+ concentration is closely associated with the down-regulation of egr-1 gene expression.  相似文献   

20.
Yeast cells sense and respond to hypertonicity. Saccharomyces cerevisiae MTCC 2918 was tested for its metabolic status in 1 M NaCl by cell viability analysis, intracellular glycerol content and total antioxidant capacity. Yeast cell viability was maximum in 1 M NaCl and 24 h addition of 1 M NaCl was effective in induction of hyperosmolarity. Increased glycerol contents in cells treated with salt indicated adaptation to osmotic stress with a maximum of 240.87 ± 0.38 mg/g dry weight (DW) at 72 h. The total antioxidant status with 1 M NaCl was 9.29 ± 0.39 mM/g DW at 96 h reflecting free radical quenching to overcome stress with increasing growth period. Considering that pre-adaptation to one type of stress evoked a protective response to other stress factors, we have attempted the cross adaptation of osmotic shock to high ethanol concentrations. In effect, we observed that osmotic shock lowered the cell survival by augmentation of cell toxicity by ethanol due to stress induction during exponential phase. Glycerol accumulation to an order of 470.27 ± 0.53 mg/g DW at 48 h in 1 M NaCl and 12% ethanol indicated that both stresses culminated in membrane disruption further leading to cell burst and contributed to the stress overload.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号