首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 334 毫秒
1.
This study investigated the fusion of apposing floating bilayers of egg L-alpha-phosphatidylcholine (egg PC) or 1,2-dimyristoyl-sn-glycero-3-phosphocholine. Atomic force microscope measurements of fusion forces under different compression rates were acquired to reveal the energy landscape of the fusion process under varied lipid composition and temperature. Between compression rates of approximately 1000 and approximately 100,000 pN/s, applied forces in the range from approximately 100 to approximately 500 pN resulted in fusion of floating bilayers. Our atomic force microscope measurements indicated that one main energy barrier dominated the fusion process. The acquired dynamic force spectra were fit with a simple model based on the transition state theory with the assumption that the fusion activation potential is linear. A significant shift in the energy landscape was observed when bilayer fluidity and composition were modified, respectively, by temperature and different cholesterol concentrations (15% < or = chol < or = 25%). Such modifications resulted in a more than twofold increase in the width of the fusion energy barrier for egg PC and 1,2-dimyristoyl-sn-glycero-3-phosphocholine floating bilayers. The addition of 25% cholesterol to egg PC bilayers increased the activation energy by approximately 1.0 k(B)T compared with that of bilayers with egg PC alone. These results reveal that widening of the energy barrier and consequently reduction in its slope facilitated membrane fusion.  相似文献   

2.
SNARE proteins mediate the fusion of lipid bilayers by the directed assembly of coiled-coil domains arising from apposing membranes. We have utilized inverted cone-shaped lipids, antagonists of the necessary membrane deformation during fusion to characterize the extent and range of SNARE assembly up to the moment of stalk formation between bilayers. The inverted cone-shaped lipid family of acyl-CoAs specifically inhibits the completion of fusion in an acyl-chain length-dependent manner. Removal of acyl-CoA from the membrane relieves the inhibition and initiates a burst of membrane fusion with rates exceeding any point in the control curves lacking acyl-CoA. This burst indicates the accumulation of semi-assembled fusion complexes. These preformed complexes are resistant to cleavage by botulinum toxin B and thus appear to have progressed beyond the "loosely zippered" state of docked synaptic vesicles. Surprisingly, application of the soluble domain of VAMP2, which blocks SNARE assembly by competing for binding on the available t-SNAREs, blocks recovery from the acyl-CoA inhibition. Thus, complexes formed in the presence of a lipidic antagonist to fusion are incompletely assembled, suggesting that the formation of tightly assembled SNARE pairs requires progression all the way through to membrane fusion. In this regard, physiologically docked exocytic vesicles may be anchored by a highly dynamic and potentially even reversible SNAREpin.  相似文献   

3.
Li Y  Han X  Tamm LK 《Biochemistry》2003,42(23):7245-7251
The fusion peptides of viral membrane fusion proteins play a key role in the mechanism of viral spike glycoprotein mediated membrane fusion. These peptides insert into the lipid bilayers of cellular target membranes where they adopt mostly helical secondary structures. To better understand how membranes may be converted to high-energy intermediates during fusion, it is of interest to know how much energy, enthalpy and entropy, is provided by the insertion of fusion peptides into lipid bilayers. Here, we describe a detailed thermodynamic analysis of the binding of analogues of the influenza hemagglutinin fusion peptide of different lengths and amino acid compositions. In small unilamellar vesicles, the interaction of these peptides with lipid bilayers is driven by enthalpy (-16.5 kcal/mol) and opposed by entropy (-30 cal mol(-1) K(-1)). Most of the driving force (deltaG = -7.6 kcal/mol) comes from the enthalpy of peptide insertion deep into the lipid bilayer. Enthalpic gains and entropic losses of peptide folding in the lipid bilayer cancel to a large extent and account for only about 40% of the total binding free energy. The major folding event occurs in the N-terminal segment of the fusion peptide. The C-terminal segment mainly serves to drive the N-terminus deep into the membrane. The fusion-defective mutations G1S, which causes hemifusion, and particularly G1V, which blocks fusion, have major structural and thermodynamic consequences on the insertion of fusion peptides into lipid bilayers. The magnitudes of the enthalpies and entropies of binding of these mutant peptides are reduced, their helix contents are reduced, but their energies of self-association at the membrane surface are increased compared to the wild-type fusion peptide.  相似文献   

4.
Biological membranes define not only the cell boundaries but any compartment within the cell. To some extent, the functionality of membranes is related to the elastic properties of the lipid bilayer and the mechanical and hydrophobic matching with functional membrane proteins. Supported lipid bilayers (SLBs) are valid biomimetic systems for the study of membrane biophysical properties. Here, we acquired high-resolution topographic and quantitative mechanics data of phase-separated SLBs using a recent atomic force microscopy (AFM) imaging mode based on force measurements. This technique allows us to quantitatively map at high resolution the mechanical differences of lipid phases at different loading forces. We have applied this approach to evaluate the contribution of the underlying hard support in the determination of the elastic properties of SLBs and to determine the adequate indentation range for obtaining reliable elastic moduli values. At ~200 pN, elastic forces dominated the force-indentation response and the sample deformation was <20% of the bilayer thickness, at which the contribution of the support was found to be negligible. The obtained Young's modulus (E) of 19.3 MPa and 28.1 MPa allowed us to estimate the area stretch modulus (k(A)) as 106 pN/nm and 199 pN/nm and the bending stiffness (k(c)) as 18 k(B)T and 57 k(B)T for the liquid and gel phases, respectively.  相似文献   

5.
SNARE (SNAP [soluble NSF {N-ethylmaleimide–sensitive fusion protein} attachment protein] receptor) proteins are required for many fusion processes, and recent studies of isolated SNARE proteins reveal that they are inherently capable of fusing lipid bilayers. Cis-SNARE complexes (formed when vesicle SNAREs [v-SNAREs] and target membrane SNAREs [t-SNAREs] combine in the same membrane) are disrupted by the action of the abundant cytoplasmic ATPase NSF, which is necessary to maintain a supply of uncombined v- and t-SNAREs for fusion in cells. Fusion is mediated by these same SNARE proteins, forming trans-SNARE complexes between membranes. This raises an important question: why doesn''t NSF disrupt these SNARE complexes as well, preventing fusion from occurring at all? Here, we report several lines of evidence that demonstrate that SNAREpins (trans-SNARE complexes) are in fact functionally resistant to NSF, and they become so at the moment they form and commit to fusion. This elegant design allows fusion to proceed locally in the face of an overall environment that massively favors SNARE disruption.  相似文献   

6.
It has been established that the fusion of both biological membranes and phospholipid bilayers can be modulated by altering their lipid composition (Chernomordik et al., 1995 .J. Membr. Biol. 146:3). In particular, when added exogenously between apposing membranes, monomyristoylphosphatidylcholine (MMPC) inhibits membrane fusion, whereas glycerol monoleate (GMO), oleic acid (OA), and arachidonic acid (AA) promote fusion. This present study uses x-ray diffraction to investigate the effects of MMPC, GMO, OA, and AA on the bending and stability of lipid bilayers when bilayers are forced together with applied osmotic pressure. The addition of 10 and 30 mol% MMPC to egg phosphatidylcholine (EPC) bilayers maintains the bilayer structure, even when the interbilayer fluid spacing is reduced to approximately 3 A, and increases the repulsive pressure between bilayers so that the fluid spacing in excess water increases by 5 and 15 A, respectively. Thus MMPC increases the undulation pressure, implying that the addition of MMPC promotes out-of-plane bending and decreases the adhesion energy between bilayers. In contrast, the addition of GMO has minor effects on the undulation pressure; 10 and 50 mol% GMO increase the fluid spacing of EPC in excess water by 0 and 2 A, respectively. However, x-ray diffraction indicates that, at small interbilayer separations, GMO, OA, or AA converts the bilayer to a structure containing hexagonally packed scattering units approximately 50 A in diameter. Thus GMO, OA, or AA destabilizes bilayer structure as apposing bilayers are brought into contact, which could contribute to their role in promoting membrane fusion.  相似文献   

7.
We have created phospholipid bilayers supported on soft polymer "cushions" which act as deformable substrates (see accompanying paper, Wong, J. Y., J. Majewski, M. Seitz, C. K. Park, J. N. Israelachvili, and G. S. Smith. 1999. Biophys. J. 77:1445-1457). In contrast to "solid-supported" membranes, such "soft-supported" membranes can exhibit more natural (higher) fluidity. Our bilayer system was constructed by adsorption of small unilamellar dimyristoylphosphatidylcholine (DMPC) vesicles onto polyethylenimine (PEI)-supported Langmuir-Blodgett lipid monolayers on mica. We used the surface forces apparatus (SFA) to investigate the long-range forces, adhesion, and fusion of two DMPC bilayers both above and below their main transition temperature (T(m) approximately 24 degrees C). Above T(m), hemi-fusion activation pressures of apposing bilayers were considerably smaller than for solid-supported bilayers, e.g., directly supported on mica. After separation, the bilayers naturally re-formed after short healing times. Also, for the first time, complete fusion of two fluid (liquid crystalline) phospholipid bilayers was observed in the SFA. Below T(m) (gel state), very high pressures were needed for hemi-fusion and the healing process became very slow. The presence of the polymer cushion significantly alters the interaction potential, e.g., long-range forces as well as fusion pressures, when compared to solid-supported systems. These fluid model membranes should allow the future study of integral membrane proteins under more physiological conditions.  相似文献   

8.
p115 tethers coat protein (COP)I vesicles to Golgi membranes. The acidic COOH-terminal domain of p115 links the Golgins, Giantin on COPI vesicles, to GM130 on Golgi membranes. We now show that a SNARE motif-related domain within p115 stimulates the specific assembly of endogenous Golgi SNAREpins containing the t-SNARE, syntaxin 5. p115 catalyzes the construction of a cognate GOS-28-syntaxin-5 (v-/t-SNARE) complex by first linking the SNAREs to promote their direct interaction. These events are essential for NSF-catalyzed reassembly of postmitotic Golgi vesicles and tubules into mature cisternae. Staging experiments reveal that the linking of Golgins precedes SNAREpin assembly. Thus, p115 coordinates sequential tethering and docking of COPI vesicles by first using long tethers (Golgins) and then short tethers (SNAREs).  相似文献   

9.
We report the effects of calcium ions on the adhesion and hemifusion mechanisms of model supported myelin lipid bilayer membranes of differing lipid composition. As in our previous studies Min et al. [1,2], the lipid compositions used mimic "healthy" and "diseased-like" (experimental autoimmune encephalomyelitis, EAE) membranes. Our results show that the interaction forces as a function of membrane separation distance are well described by a generic model that also (and in particular) includes the hydrophobic interaction arising from the hydrophobically exposed (interior) parts of the bilayers. The model is able to capture the mechanical instability that triggers the onset of the hemifusion event, and highlights the primary role of the hydrophobic interaction in membrane fusion. The effects of lipid composition on the fusion mechanism, and the adhesion forces between myelin lipid bilayers, can be summarized as follows: in calcium-free buffer, healthy membranes do not present any signs of adhesion or hemifusion, while diseased membranes hemifuse easily. Addition of 2mM calcium favors adhesion and hemifusion of the membranes independently of their composition, but the mechanisms involved in the two processes were different: healthy bilayers systematically presented stronger adhesion forces and lower energy barriers to fusion compared to diseased bilayers. These results are of particular relevance for understanding lesion development (demyelination, swelling, vacuolization and/or vesiculation) in myelin associated diseases such as multiple sclerosis and its relationship to lipid domain formation in myelin membranes.  相似文献   

10.
The chemical and spectroscopic properties of the new fluorescent acids all(E)-8, 10, 12, 14, 16-octadecapentaenoic acid (t-COPA) and its (8Z)-isomer (c-COPA) have been characterized in solvents of different polarity, synthetic lipid bilayers, and lipid/protein systems. These compounds are reasonably photostable in solution, present an intense UV absorption band (epsilon(350 nm) approximately 10(5) M(-1) cm(-1)) strongly overlapped by tryptophan fluorescence and their emission, centered at 470 nm, is strongly polarized (r(O) = 0.385 +/- 0.005) and decays with a major component (85%) of lifetime 23 ns and a faster minor one of lifetime 2 ns (D,L-alpha-dimyristoylphosphatidylcholine (DMPC), 15 degrees C). Both COPA isomers incorporate readily into vesicles and membranes (K(p) approximately 10(6)) and align parallel to the lipids. t-COPA distributes homogeneously between gel and fluid lipid domains and the changes in polarization accurately reflect the lipid T(m) values. From the decay of the fluorescence anisotropy in spherical bilayers of DMPC and POPC it is shown that t-COPA also correctly reflects the lipid order parameters, determined by 2H NMR techniques. Resonance energy transfer from tryptophan to the bound pentaenoic acid in serum albumin in solution, and from the tryptophan residues of gramicidin in lipid bilayers also containing the pentaenoic acid, show that this probe is a useful acceptor of protein tryptophan excitation, with R(O) values of 30-34 A.  相似文献   

11.
The distribution of ganglioside in supported lipid bilayers has been studied by atomic force microscopy. Hybrid dipalmitoylphosphatidylcholine (DPPC)/dipalmitoylphosphatidylethanolamine (DPPE) and (2:1 DPPC/cholesterol)/DPPE bilayers were prepared using the Langmuir Blodgett technique. Egg PC and DPPC bilayers were prepared by vesicle fusion. Addition of ganglioside GM1 to each of the lipid bilayers resulted in the formation of heterogeneous surfaces that had numerous small raised domains (30--200 nm in diameter). Incubation of these bilayers with cholera toxin B subunit resulted in the detection of small protein aggregates, indicating specific binding of the protein to the GM1-rich microdomains. Similar results were obtained for DPPC, DPPC/cholesterol, and egg PC, demonstrating that the overall bilayer morphology was not dependent on the method of bilayer preparation or the fluidity of the lipid mixture. However, bilayers produced by vesicle fusion provided evidence for asymmetrically distributed GM1 domains that probably reflect the presence of ganglioside in both inner and outer monolayers of the initial vesicle. The results are discussed in relation to recent inconsistencies in the estimation of sizes of lipid rafts in model and natural membranes. It is hypothesized that small ganglioside-rich microdomains may exist within larger ordered domains in both natural and model membranes.  相似文献   

12.
We derive equations that describe changes in the steady-state fluorescence polarization of the probe 1,6-diphenyl-1,3,5-hexatriene (DPH) or in the spectrum of electron spin resonance (ESR) nitroxide spin-labeled lipid probes as a function of the intrinsic molecule concentration in lipid bilayer membranes. We make use of an assumption used by us in an earlier paper. The equations are independent of any membrane model. They are valid when a DPH probe or a spin-labeled chain is equivalent to an unlabeled lipid hydrocarbon chain only as far as their general space-filling properties are concerned. We consider cases where the bilayer is either in a single homogeneous phase or in a two-phase region. We apply our equations to analyze ESR data from delipidated sarcoplasmic reticulum membranes and from egg yolk phosphatidylcholine bilayers containing Ca2+-ATPase, and DPH data from dipalmitoylphosphatidylcholine (DPPC) bilayers containing Ca2+-ATPase, both for T greater than Tc. The following conclusions were derived: (i) Ca2+-ATPase oligomers are "randomly" distributed, for the concentrations studied, in the fluid phase. (ii) There is no fixed stoichiometric ratio of "boundary" lipids and oligomers. (iii) Between 24k and 28k lipid molecules are able to surround each isolated oligomer composed of k Ca2+-ATPase monomers. Finally, we apply our equations to analyze DPH studies on DPPC bilayers containing Ca2+-ATPase for T less than Tc. We find that the results reported are in accord with the predictions of the model. In the Appendix, we show that an analytical expression for probabilities used by us is in very good agreement with the results of computer simulation.  相似文献   

13.
Florian Seiler 《FEBS letters》2009,583(14):2343-9646
Complexins (Cpxs) and synaptotagmins regulate calcium-dependent exocytosis. A central helix in Cpx confers specific binding to the soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE) fusion machinery. An accessory helix in the amino-terminal region inhibits membrane fusion by blocking SNAREpin zippering. We now show that an amphipathic helix in the carboxy-terminal region of CpxI binds lipid bilayers and affects SNARE-mediated lipid mixing in a liposome fusion assay. The substitution of a hydrophobic amino acid within the helix by a charged residue abolishes the lipid interaction and the stimulatory effect of CpxI in liposome fusion. In contrast, the introduction of the bulky hydrophobic amino acid tryptophan stimulates lipid binding and liposome fusion. This data shows that local Cpx-lipid interactions can play a role in membrane fusion.  相似文献   

14.
A crucial step in human immunodeficiency virus (HIV) infection is fusion between the viral envelope and the T-cell membrane, which must involve intermediate membrane states with high curvature. Our main result from diffuse x-ray scattering is that the bending modulus K(C) is greatly reduced upon addition of the HIV fusion peptide FP-23 to lipid bilayers. A smaller bending modulus reduces the free energy barriers required to achieve and pass through the highly curved intermediate states and thereby facilitates fusion and HIV infection. The reduction in K(C) is by a factor of 13 for the thicker, stiffer 1,2-sn-dierucoylphosphatidylcholine bilayers and by a factor of 3 for 1,2-sn-dioleoylphosphatidylcholine bilayers. The reduction in K(C) decays exponentially with concentration of FP-23, and the 1/e concentration is <1 mol % peptide/lipid, which is well within the physiological range for a fusion site. A secondary result is, when FP-23 is added to the samples which consist of stacks of membranes, that the distance between membranes increases and eventually becomes infinite at full hydration (unbinding); we attribute this both to electrostatic repulsion of the positively charged arginine in the FP-23 and to an increase in the repulsive fluctuation interaction brought about by the smaller K(C). Although this latter interaction works against membrane fusion, our results show that the energy that it requires of the fusion protein machinery to bring the HIV envelope membrane and the target T-cell membrane into close contact is negligible.  相似文献   

15.
The fusion between two lipid membranes is a ubiquitous mechanism in cell traffic and pathogens invasion. Yet it is not well understood how two distinct bilayers overcome the energy barriers towards fusion and reorganize themselves to form a unique continuous bilayer. The magnitudes and numbers of these energy barriers are themselves an open question. To tackle these issues, we developed a new tool that allows to control the forces applied between two supported lipid bilayers (SLBs) deposited on superparamagnetic beads. By applying a magnetic field, the beads self-organize along field lines in chains of beads and compress the two membranes on the contact zone. Using the diffusion of fluorescently labelled lipids from one bilayer to the other allows us to identify fusion of the bilayers in contact. We applied increasing forces on SLBs and increased the occurrence of fusion. This experimental system allows the simultaneous study of tens of facing bilayers in a single experiment and mitigates the stochasticity of the fusion process. It is thus a powerful tool to test the various parameters involved in the membrane fusion process.  相似文献   

16.
This study investigated the effect of soluble N-ethylmaleimide-sensitive factor-attachment protein (SNAP) receptors (SNAREs) on the fusion of egg L-α-phosphatidylcholine bilayers using atomic force microscope (AFM) spectroscopy. AFM measurements of the fusion force under compression were acquired to reveal the energy landscape of the fusion process. A single main energy barrier governing the fusion process was identified in the absence and presence of SNAREs in the bilayers. Under compression, a significant downward shift in the fusion dynamic force spectrum was observed when cognate v- and t-SNAREs were present in the opposite bilayers. The presence of vesicle-associated membrane protein (VAMP) and binary syntaxin and SNAP 25 in the apposed bilayers resulted in a reduction in the height of the activation potential by ∼1.3 kBT and a >2-fold increase in the width of the energy barrier. The widening of the energy barrier in the presence SNAREs is interpreted as an increase in the compressibility of the membranes, which translates to a greater ease in the bilayer deformation and subsequently the fusion of the membranes under compression. Facilitation of membrane fusion was observed only when SNAREs were present in both bilayers. Moreover, addition of the soluble cytoplasmic domain of VAMP, which interferes with the interaction between opposing v- and t-SNAREs, prevented such facilitation. These observations implicated the interaction between the cytoplasmic domains of opposing SNAREs in the observed fusion facilitation, possibly by destabilizing the bilayers through pulling on their transmembrane segments. Our AFM compression measurements revealed that SNARE-mediated membrane fusion proceeded through a sequence of two ∼5 nm collapses of the membrane, an observation that is consistent with the existence of a hemifused state during the fusion process.  相似文献   

17.
Recent experiments have shown that liquid crystals can be used to image mammalian cell membranes and to amplify structural reorganization in phospholipid-laden liquid crystal-aqueous interfaces. In this work, molecular dynamics simulations were employed to explore the interactions between commonly used liquid crystal-forming molecules and phospholipid bilayers. In particular, umbrella sampling was used to obtain the potential of mean force of 4-cyano-4'-pentylbiphenyl (5CB) and 4'-(3,4-difluor-phenyl)-4-pentyl-bicylohexyl (5CF) molecules partitioning into a dipalmitoylphosphatidylcholine bilayer. In addition, results of simulations are presented for systems consisting of a fully hydrated bilayer with 5CB or 5CF molecules at the lowest (4.5 mol %) and highest (20 mol %) concentrations used in recent laboratory experiments. It is found that mesogens preferentially partition from the aqueous phase into the membrane; the potential of mean force exhibits highly favorable free energy differences for partitioning (-18 k(B)T for 5CB and -26 k(B)T for 5CF). The location and orientation of mesogens associated with the most stable free energies in umbrella sampling simulations of dilute systems were found to be consistent with those observed in liquid-crystal-rich bilayers. It is found that the presence of mesogens in the bilayer enhances the order of lipid acyl tails, and changes the spatial and orientational arrangement of lipid headgroup atoms. These effects are more pronounced at higher liquid-crystal concentrations. In comparing the behavior of 5CB and 5CF, a stronger spatial correlation (i.e., possibly leading to aggregation) is observed between 5CB molecules within a bilayer than between 5CF molecules. Also, the range of molecular orientations and positions along the bilayer normal is larger for 5CB molecules. At the same time, 5CF molecules were found to bind more strongly to lipid headgroups, thereby slowing the lateral motion of lipid molecules.  相似文献   

18.
The early stages of membrane fusion have been investigated theoretically. It has been shown that the hydration repulsion, operating between apposed membranes, is overcome locally under the action of out-of-plane thermal fluctuations of the bilayers. The fluctuations lead to the formation of close (less than 0.5 nm) contact between the membranes within a small area (approximately 10 nm2). Increasing hydration repulsion between apposed polar heads of lipid molecules in this area causes the rupture of interacting monolayers. The rupture results in monolayer fusion of the membranes, i.e. in the formation of a bridge connecting the monolayers, which is usually named the monolayer stalk. The influence of degree of hydration of the monolayers and their spontaneous curvature on conditions of monolayer fusion have been analysed. The proposed mechanism of early stages of fusion process can proceed without preliminary formation of tight dehydrated contact between the membranes and even without any dehydration.  相似文献   

19.
Docking and fusion of single proteoliposomes reconstituted with full-length v-SNAREs (synaptobrevin) into planar lipid bilayers containing binary t-SNAREs (anchored syntaxin associated with SNAP25) was observed in real time by wide-field fluorescence microscopy. This enabled separate measurement of the docking rate k(dock) and the unimolecular fusion rate k(fus). On low t-SNARE-density bilayers at 37 degrees C, docking is efficient: k(dock) = 2.2 x 10(7) M(-1) s(-1), approximately 40% of the estimated diffusion limited rate. Full vesicle fusion is observed as a prompt increase in fluorescence intensity from labeled lipids, immediately followed by outward radial diffusion (D(lipid) = 0.6 microm2 s(-1)); approximately 80% of the docked vesicles fuse promptly as a homogeneous subpopulation with k(fus) = 40 +/- 15 s(-1) (tau(fus) = 25 ms). This is 10(3)-10(4) times faster than previous in vitro fusion assays. Complete lipid mixing occurs in <15 ms. Both the v-SNARE and the t-SNARE are necessary for efficient docking and fast fusion, but Ca2+ is not. Docking and fusion were quantitatively similar on syntaxin-only bilayers lacking SNAP25. At present, in vitro fusion driven by SNARE complexes alone remains approximately 40 times slower than the fastest, submillisecond presynaptic vesicle population response.  相似文献   

20.
Kim JY  Choi BK  Choi MG  Kim SA  Lai Y  Shin YK  Lee NK 《The EMBO journal》2012,31(9):2144-2155
Synaptotagmin-1 (Syt1) is a major Ca(2+) sensor for synchronous neurotransmitter release, which requires vesicle fusion mediated by SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors). Syt1 utilizes its diverse interactions with target membrane (t-) SNARE, SNAREpin, and phospholipids, to regulate vesicle fusion. To dissect the functions of Syt1, we apply a single-molecule technique, alternating-laser excitation (ALEX), which is capable of sorting out subpopulations of fusion intermediates and measuring their kinetics in solution. The results show that Syt1 undergoes at least three distinct steps prior to lipid mixing. First, without Ca(2+), Syt1 mediates vesicle docking by directly binding to t-SNARE/phosphatidylinositol 4,5-biphosphate (PIP(2)) complex and increases the docking rate by 10(3) times. Second, synaptobrevin-2 binding to t-SNARE displaces Syt1 from SNAREpin. Third, with Ca(2+), Syt1 rebinds to SNAREpin, which again requires PIP(2). Thus without Ca(2+), Syt1 may bring vesicles to the plasma membrane in proximity via binding to t-SNARE/PIP(2) to help SNAREpin formation and then, upon Ca(2+) influx, it may rebind to SNAREpin, which may trigger synchronous fusion. The results show that ALEX is a powerful method to dissect multiple kinetic steps in the vesicle fusion pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号