首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This study evaluated effects of estradiol valerate on synthesis, secretion and direction of movement of immunoreactive prostaglandin F2alpha (PGF) in swine. Gilts were randomly assigned to provide uterine flushings representing days 11, 13, 15, 17 and 19 of the estrous cycle (three gilts/day). The same gilts then were allowed one estrous cycle for recovery. During the second postoperative estrous cycle they were treated with estradiol valerate (EV) (5mg/day, SC) on days 11 through 15 and uterine flushings again were obtained on the same respective days with the same gilts represented within each day. Total recoverable PGF per uterine horn increased from day 11 (X - 1.98 ng) to day 17 (X = 210.20 ng) and then declined to day 19 (X = 66.20 ng) during the control period. Following EV treatment average total recoverable PGF was the control period. Following EV treatment average total recoverable PGF was 1.9, 4,144.3 and 4,646.7 ng on the same respective days. EV treatment also resulted in maintenance of elevated levels of total protein and acid phosphatase activity in uterine flushings. These data suggest that estradiol may exert its luteotrophic effect by preventing the release of PGF from the uterine endometrium into the uterine venous system (endocrine secretion) while maintaining the movement of endometrial secretions into the uterine lumen (exocrine secretion).  相似文献   

2.
Uterine flushings were collected from 38 gilts representing Days 6,8,10,12,14,15,16 and 18 of the estrous cycle and pregnancy. The same group of gilts were represented within each of the respective days of the estrous cycle and pregnancy, i.e., three to six gilts per day per status. Uterine flushings (about 40ml) were assayed for prostaglandin F (PGF), estrone (E1), estradiol (E2), progestins (P) and protein. Nonpregnant gilts had higher (P<.01) concentrations of P in uterine flushings than pregnant gilts, but pregnant gilts had higher (P<.01) E1 and E2 concentrations. Significant day by status interactions were detected for E1 (P<.05), but not for E2 concentrations in uterine flushings. Total recoverable PGF and PGF concentrations in uterine flushings were greater (P<.01) in pregnant than nonpregnant gilts and significant (P<.01) day by status interactions were detected. In nonpregnant gilts, PGF increased between Days 12 and 16, i.e., during the period of corpora lutea (CL) regression. In pregnant gilts, PGF in uterine flushings increased markedly between Days 10 and 18. Total recoverable PGF on Day 18 of the estrous cycle was only 464.5 ± 37.6 ng as compared to 22,688.1 ± 1772.4 ng on Day 18 of pregnancy. Total recoverable protein was also higher (P<.01) in pregnant gilts. These data indicate that PGF synthesis and secretion by the uterine endometrium and/or conceptuses is not inhibited during pregnancy and suggest that PGF is sequestered within the uterine lumen of pregnant gilts, as is the total protein component of endometrial secretions referred to as histotroph.  相似文献   

3.
Polyvinyl catheters were placed into the right and left utero-ovarian veins and saphenous vein and artery of three control (C) and four estradiol valerate (EV) treated gilts on Day 9 after onset of estrus. The EV treated gilts received 5mg EV/day on Days 11 through 15 after onset of estrus. On Days 12 through 17 utero-ovarian vein blood samples were collected at 15 min intervals from 0700 to 1000 hr and 1900 to 2200 hr and single samples were taken at 1100 and 2300 hr. Peripheral blood samples (saphenous vein or artery) were taken at 0700, 1100, 1900 and 2300 hr from Day 12 until the control gilts returned to estrus or until Day 25 for EV treated gilts and used to measure plasma steroid hormone concentrations. Utero-ovarian vein prostaglandin F (gf) concentrations (ng/ml, n-1,177) were measured by RIA. Status (control vs EV treated gilts) by day interactions were detected (P=.10). Curvilinear day trends were detected for plasma PGF concentrations in control (P less than .01) but not EV treated gilts. PGF concentrations (X +/- S.D.) for control and EV treated gilts were 1.20 +/- 2.08 and .26 +/- .84 ng/ml, respectively. PGF peaks (concentrations greater than X + 2 S.D.) occurred with greater frequency in control gilts (X2 =4.87; P less than .05). The interestrus interval (X +/- S.E.) for control and treated gilts was 19.0 +/- .6 and 146.5 +/- 74.8 days, respectively. Data indicate tht t estradiol valerate may exert its luteotrophic effect by preventing PGF release from the uterus.  相似文献   

4.
Polyvinyl catheters were placed into the right and left utero-ovarian veins and saphenous vein and artery of three control (C) and four estradiol valerate (EV) treated gilts on Day 9 after onset of estrus. The EV treated gilts received 5mg EV/day on Days 11 through 15 after onset of estrus. On Days 12 through 17 utero-ovarian vein blood samples were collected at 15 min intervals from 0700 to 1000 hr and 1900 to 2200 hr and single samples were taken at 1100 and 2300 hr. Peripheral blood samples (saphenous vein or artery) were taken at 0700, 1100, 1900 and 2300 hr from Day 12 until the control gilts returned to estrus or until Day 25 for EV treated gilts and used to measure plasma steroid hormone concentrations. Utero-ovarian vein prostaglandin F (PGF) concentrations (ng/ml, n=1,177) were measured by RIA. Status (control EV treated gilts) by day interactions were detected (P=.10). Curvilinear day trends were detected for plasma PGF concentrations in control (P<.01) but not EV treated gilts. PGF concentrations ( ) for control and EV treated gilts were 1.20 ± 2.08 and .26 ± .84 ng/ml, respectively. PGF peaks (concentrations greater than + 2 S.D.) occured with greater frequency in control gilts (X2 = 4.87; P<.05). The interestrus interval ( ) for control and treated gilts was 19.0 ± .6 and 146.5 ± 74.8 days, respectively. Data indicate that estradiol valerate may exert its luteotrophic effect by preventing PGF release from the uterus.  相似文献   

5.
To test the endocrine-exocrine theory of maternal recognition of pregnancy in the pig 16 gilts were assigned randomly to a 2 X 2 factorial involving pretreatment with sesame oil (SO) or estradiol valerate (5 mg; EV) injected on Days 11 through 14 of the estrous cycle and an intrauterine injection of saline (5 ml; SA) or prostaglandin F2 alpha (50 micrograms; PGF) on Day 14. Peripheral blood samples were collected for 120 min postinjection and analyzed for 15-keto-13,14-dihydro-PGF2 alpha (PGFM). PGFM concentrations were lower in EV than SO gilts (438 vs. 844 pg/ml; p less than 0.05). There was heterogeneity of regression between EV and SO gilts (p less than 0.01), with EV gilts having a slower release of PGF from the uterine lumen into the vasculature. Prostaglandin F2 alpha did not increase mean PGFM concentrations (p greater than 0.10), but resulted in an altered temporal pattern of PGFM (p less than 0.05) compared to SA gilts. There was an interaction between the two treatments over time, with EV-PGF gilts demonstrating a slower, more gradual release of PGFM than SO-PGF gilts. To test whether prostaglandins of the E series were involved in this mechanism, gilts were assigned to two 4 X 4 latin squares balanced for residual effects and treated with saline or flunixen meglumine (Banamine). Each gilt was treated with four PGE:PGF infusion sequences (SEQ) in each uterine horn: phosphate-buffered saline (PBS; PBS-SEQ), PGE1 (50 micrograms), PGE2 (50 micrograms), and PGE1 (25 micrograms) + PGE2 (25 micrograms) (PGE-SEQ), with each infusion followed 15 min later by PGF (25 micrograms).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
During gestation, pigs have constant circulating levels of prolactin (PRL), and lack decidual PRL and placental lactogens. Effects of PRL on uterine physiology in pigs may be due to changes in endometrial PRL receptors. In this study, effects of the conceptus and cyclic hormonal environment on endometrial PRL receptors were investigated. Endometrial PRL receptor numbers were similar between Days 8 and 15 for cyclic gilts. In contrast, endometrial PRL receptor numbers for pregnant gilts were similar between Days 8 and 11, then increased (p less than 0.05) on Day 12 and remained elevated between Days 14 and 30. This day-by-status interaction approached significance (p less than 0.06) and overall receptor numbers were higher (p less than 0.01) for pregnant than for cyclic gilts. Pig conceptuses secrete estrogen between Days 11 and 12; therefore, regulation of endometrial PRL receptors by acute administration of estradiol was investigated. Uterine flushings and endometrium were collected from one uterine horn of cyclic gilts on Day 11; then, at 1, 6, 12, and 24 h following a single injection of estradiol valerate (EV; 5 mg, into adipose tissue), uterine flushings and endometrium were collected from the second uterine horn. Endometrial PRL receptor numbers were higher (p less than 0.05) at both 1 h and 6 h after treatment with EV and then decreased (p less than 0.02) by 12 h to below pretreatment values. In uterine flushings, total recoverable protein (p less than 0.05), uteroferrin (p less than 0.01), leucine aminopeptidase (p less than 0.05), calcium (p less than 0.03), sodium (p less than 0.01), and potassium (p less than 0.05) increased between 12 and 24 h following EV treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
In Exp. 1, administration of 5 mg oestradiol valerate i.m. to pregnant gilts on Days 9 or 9 and 10 advanced the uterine secretion of calcium, protein, and acid phosphatase as demonstrated by levels recovered in the uterine flushings of females unilaterally hysterectomized on Day 11. Upon removal of the remaining uterine horn on Day 12, protein and acid phosphatase increased while Ca2+ decreased in oestradiol-treated gilts as did PGF. In contrast, a 4-fold increase in recoverable Ca2+ occurred from Days 11 to 12 in control gilts. Recoverable oestradiol-17 beta was increased in all 3 groups on Day 12 and plasmin inhibitor concentration increased in oestradiol-treated gilts. Two-dimensional PAGE demonstrated the appearance of a group of very acidic polypeptides in oestradiol-treated gilts. Blastocysts recovered from the second uterine horn had undergone elongation to the filamentous morphology in all 3 groups. In Exp. 2, oestradiol valerate was administered to pregnant gilts on Day 9 or Days 9 and 10 followed by total hysterectomy on Day 16. No differences in recoverable Ca2+ or protein were found, but acid phosphatase was decreased by 75% after oestradiol treatment. Recoverable oestradiol was decreased in oestradiol-treated gilts while PGF and plasmin inhibitor concentrations were unaffected. Compared with the control gilts, blastocysts recovered from oestradiol-treated gilts were fragmented and degenerating on Day 16. PAGE demonstrated greatly intensified staining of the group of acidic polypeptides in oestradiol-treated gilts. These results indicate that oestradiol treatment on Day 9 of pregnancy advances uterine secretory response, but that blastocyst elongation can occur in this uterine environment and in the presence of declining intraluminal Ca2+ levels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Hypoprolactinaemia was induced by bromocriptine (CB154; 100 mg/day) which decreased circulating prolactin by 40% (P less than 0.06), but did not affect conceptus survival at Day 25 when administered on Days 10-16 when compared to saline:ethanol-treated control gilts. Bromocriptine or vehicle was administered to cyclic gilts on Days 10-11, oestradiol valerate was injected on Day 11 and uterine flushings were collected on Day 12. Total recoverable protein and uteroferrin in uterine flushings were not affected by treatment. However, leucine aminopeptidase activity (P less than 0.02) and total recoverable Ca2+, Na+, K+ and Cl- (P less than 0.05) were decreased in uterine flushings of gilts that received bromocriptine, suggesting that hypoprolactinaemia decreased general secretory activity of the endometrial epithelium and modulated ionic changes, respectively, in the uterine environment of pigs. Subcutaneous administration of pig prolactin (1 mg/12 h) increased (P less than 0.001) serum prolactin 4.5-fold. The interaction between hyperprolactinaemia and progesterone, without oestrogen, on components of uterine flushings were determined using gilts that received progesterone (200 mg/day) and prolactin or saline on Days 4-14 after ovariectomy on Day 4. On Day 15, there were no differences (P greater than 0.05) in any of the uterine secretory components measured. Hyperprolactinaemia (1 mg pig prolactin on Days 6-11) enhanced overall uterine secretory response on Day 12 to oestradiol (5 mg) administered on Day 11 compared to gilts that received 1 ml saline on Days 6-11 of the oestrous cycle. Total recoverable protein and leucine aminopeptidase activity were greater (P less than 0.05) for oestradiol-treated gilts, but effects of prolactin were not significant. Total recoverable glucose (P less than 0.01), PGF-2 alpha (P less than 0.02), uteroferrin (P less than 0.01) and specific activity of uteroferrin (P less than 0.001) were increased by prolactin and oestradiol, but not oestradiol alone. Calcium (P less than 0.05), chloride (P less than 0.05) and potassium (P less than 0.01) were increased in response to oestradiol. These results indicate an interaction between oestradiol and prolactin, but not progesterone and prolactin, which enhances secretion of some products of the pig uterine endometrium.  相似文献   

9.
Routine embryo transfer techniques were used to establish recipient groups in which blastocysts were either asynchronous (blastocysts 24 h behind recipient uterus) or synchronous with their uterine environment. Oestradiol valerate (5 mg) was administered on Day 11 of the recipient's cycle to stimulate release of uterine secretion in the synchronous gilts (Group SE) and one group (AE) of asynchronous gilts. The gilts in the other asynchronous group (Group AC) were injected with vehicle (sesame oil). Embryos recovered on Day 14 by hysterectomy and flushing were evaluated for morphological development. Oestradiol treatment resulted in a failure of blastocyst development in Group AE gilts only. Recoverable oestradiol in the uterine flushings was increased in gilts in Groups AC and SE which contained elongated blastocysts. Plasmin inhibitor levels were lower in Groups AC and SE while PGF tended to be increased. Acid phosphatase activity was higher and recoverable Ca2+ was lower in Groups AE and SE. Failure of blastocyst development in Group AE is believed to have resulted from a failure to undergo trophoblastic elongation due to premature alteration of the uterine environment at a critical period of blastocyst development or from the presence of an unfavourable uterine environment for blastocyst attachment and development shortly after Day 12.  相似文献   

10.
Two experiments were conducted to assess the effect of exogenous hormone treatment on uterine luminal prostaglandin F (PGF). In the first experiment ovariectomized pony mares received either corn oil (21 days, n = 3), estradiol valerate (21 days, n = 3), progesterone (21 days, n = 3) or estradiol valerate (7 days) followed by progesterone (14 days, n = 4). Progesterone treated mares had higher (P<.01) uterine luminal PGF compared with all other groups, and no differences were detected between other treatment comparisons. In Experiment II, uterine fluid was collected from 4 ovariectomized horse mares before and after treatment with estradiol valerate (7 days) followed by progesterone (50 days). Pretreatment uterine luminal PGF levels were lower (P<.001) than post-treatment levels (.03 vs 76.80 ng/ml). In a third experiment PGF was measured in uterine fluid of pony mares on days 8, 12, 14, 16, 18 and 20 of the estrous cycle and pregnancy. In nonpregnant mares a day effect P<.03) was observed in which uterine fluid PGF increased during the late luteal phase and declined thereafter. In contrast, no day effect was observed in pregnant animals and uterine luminal PGF was lower (P<.001) than in cycling animals. These studies indicate that exogenous progesterone administration results in a large increase in uterine luminal PGF, whereas, pregnancy results in suppression. Taken collectively with previous work from our laboratory, these results suggest that while the endometrium of pregnant mares is capable of producing large amounts of PGF, the presence of a conceptus impedes its synthesis and/or release which allows for luteal maintenance.  相似文献   

11.
In seminatural environments, prepartum sows leave the herd and construct a maternal nest (a dug out hollow lined with vegetation) prior to the birth of their piglets. The endocrine drives motivating this behavior are not understood, but may involve prostaglandin (PG) F2alpha. This study examined the effect of PGF2alpha treatment on the behavior of pseudopregnant gifts housed in a large enclosure. Pseudopregnancy was induced using 5 mg/ml estradiol valerate/day im from days 11 to 15 of the estrous cycle (first day of estrus = day 0). The gifts' behavior was recorded on a control day, during which no treatment was given, and a test day (= 45.9 +/- 0.42 days of pseudopregnancy) when gilts received either 15 mg PGF2alpha (dinoprost: Lutalyse, Upjohn, Crawley, UK, n = 11) or 0.9% saline (n = 10) im at 11.00 h. PGF2alpha-treated gilts traveled further and were more frequently >10 m from the nearest pig than saline-treated animals. In the hour following injection, PGF2alpha-treated animals also showed increased frequencies of rooting and pawing the ground and stood for longer than saline-treated animals. However, gathering and carrying nest materials were not increased. These results suggest that PGF2alpha, given as a single dose to extensively housed gilts, initiated many, but not all, of the behaviors characteristic of prepartum nest building. The dose and duration of PGF2alpha treatment may have limited the observed behaviors. In addition, environmental feedback is likely to affect the degree to which some nest building behaviors are expressed.  相似文献   

12.
Prostaglandin F (PGF) and progestins in utero-ovarian vein (UOV) plasma during the late luteal phase of the estrous cycle in unbred mature gilts and following induced ovulation in unbred prepuberal gilts were determined. Prepuberal gilts (120 to 130 days of age) were induced to ovulate with Pregnant Mare Serum Gonadotropin and Human Chorionic Gonadotropin (HCG). The day following HCG was designated as Day 0. Mature gilts which had displayed two or more estrous cycles of 18 to 22 days (onset of estrus = Day 0) were used. Polyvinyl catheters were inserted into the UOV of all gilts and blood was collected at 15 min intervals from 0800 to 1045 hr on Days 10 through 20 or Days 12 through 18. Plasma PGF concentrations in the mature gilts were elevated on Days 13, 14, 15, 16 and 17, whereas, plasma PGF concentrations in the prepuberal gilts were elevated only on Days 15, 16 and 17 resulting in a reproductive age (mature vs prepuberal) by day interaction (P<.01). In addition, the PGF concentrations on Days 13 through 17 were consistently greater in the mature gilts than in the prepuberal gilts as was the overall mean PGF concentration (1.95 vs .83 ng/ml). The average peak PGF concentration throughout the sampling period (4.6 vs 2.5 ng/ml; P<.01) and the average peak PGF concentration prior to luteal regression (3.8 vs 1.1 ng/ml; P<.05) were also greater in the mature than in the prepuberal gilts. Based on these results, we suggest that luteal regression in the bred prepuberal gilt following induced ovulation may not be due to an excessive production of the uterine luteolysin, but rather that the induced corpora lutea (CL) of the prepuberal gilt may be more sensitive to the uterine luteolysin than the spontaneously formed CL of the mature gilt.  相似文献   

13.
Two experiments were conducted to examine the effect of estradiol-17beta (E(2)-17beta) on content of immunoreactive prostagladin F(2)alpha (PGF, ng) and total protein (TUP, mg) in uterine flushings, as well as concentrations of 13, 14-dihydro-15-keto-PGF(2)alpha (PGFM) in plasma (Pg/ml). In experiment 1, Holstein heifers were utilized in a single reversal trial in which either E(2)-17beta (3 mg in 2 ml saline/ethanol 50:50; n=5) or vehicle alone (n=6) were given intravenously on day 14 or 15 of the estrous cycle (Period 1) following an induced estrus (day of estrus = day 0). Treatment (Trt) groups were reversed in Period 2 (Day 14 or 15 of the second estrous cycle). Jugular venous plasma was obtained before treatment (Oh), and at 5, 6, and 9h posttreatment (PT). Uterine flushings were collected nonsurgically in vivo , per cervix, via Foley catheter at 6h PT (20 ml of .9% saline per uterine horn). E(2)-17beta did not significantly alter (E(2)-17beta vs vehicle; x(-) +/- S.E.M.) PGF (1674 +/- .11 +/- 338.39 vs 1889.91 +/- 400.24 ng; P> .10) or TUP (33.25 +/- 2.57 vs 39.16 +/- 3.04 mg; P > .10). However, E(2)-17beta increased (P < .05) plasma PGFM (E(2)-17beta vs vehicle) after treatment (0h, 113.2 vs 163.8; 5h, 312.5 vs 203.9; 6h, 324.5 vs 198.0; 9h, 323.2 vs 246.8, pg/ml). In experiment 2, crossbred beef cattle received comparable treatments of either E(2)-17beta (n=5) or vehicle (n=5) on day 14 or 15 postestrus. Jugular venous plasma was obtained at 0h PT, and at 6h PT. Uterine flushings (1.9% saline, 20 ml per uterine horn) and peripheral plasma were collected at slaughter. Estradiol-17beta increased PGF (30.07 +/- 5.94 vs 8.46 +/- 2.01 ng; P> <.05) in uterine flushings as well as PGFM in plasma (E(2)-17beta : 55.82 +/- 19.13 pg/ml, at 0h and 89.31 +/- 14.02 pg/ml, at 6h, vs saline: 103.46 +/- 50.73 pg/ml, at 0h and 17.78 +/- 14.22, at 6h). Estradiol-17beta stimulated uterine production and release of PGF and protein as measured in flushings (experiment 2) as well as plasma PGFM responses (experiments 1 and 2). Uterine and/or cervical stimulation of experiment 1 may have masked uterine response to E(2)-17beta.  相似文献   

14.
The indirect 125I-fibrin plate assay has been used to measure the levels of plasminogen activator (PA) in uterine flushings from pigs through the estrous cycle and during early pregnancy, and to measure the production of PA by pig conceptuses cultured in vitro. Activity in the flushings was high at the beginning and end of the estrous cycle, but only low levels were detected in mid cycle (the luteal phase). In pregnant animals, uterine PA levels became low around day 12 and did not show any further increase. Cultured day 12 blastocysts, however, released large amounts of PA into the medium in a time-dependent fashion over a 48 hr period, suggesting that this activity was inhibited in vivo. The presence of a protease inhibitor in uterine flushings has been demonstrated in cycling gilts, and follows a hormone-directed trend, with flushings taken during the luteal phase showing inhibitory activity against PA secreted early or late in the cycle. By assaying flushings from ovariectomized gilts given daily injections of progesterone, estrogen, both hormones together, or corn coil, it has been verified that the inhibitor is progesterone-induced and is also active against both PA produced by day 12 conceptuses and urokinase. It also inhibits PA, as determined using a direct fluorometric assay with glutaryl-glycyl-L-arginine-4-methyl-coumarinyl-7-amide as substrate. The PA inhibitor is acid-stable, and of low molecular weight (15,000 ± 5000), as determined by Sephacryl S-200 gel filtration. Unlike most animals, the trophoblast of the pig is not invasive in the uterus, but is invasive if transplanted to some ectopic site. The progesterone-induced inhibitor may possibly play a role in preventing invasive implantation.  相似文献   

15.
Prostaglandins F (PGF) were measured in uterine vein, ovarian artery, and jugular vein plasma and in the endometrial tissues at various times during the bovine estrous cycle, and were compared to peripheral plasma progesterone levels. Four groups of heifers at days 1-5, 10-14, 15-17 and 20-0 of the estrous cycle were studied. Low levels of PGF (48 plus or minus 12 ng/g dry tissue were measured in the endometrium on days 1-14 of the cycle. Higher values (131 plus or minus 9.0) were found at days 15 until the day of estrus (p less than 0.001). Similarly, very low levels of PGF were observed in the uterine vein plasma at days 1-14 (0.162) plus or minus 0.044) ng/mlM plus or minus S.E.), whereas on days 15 until the day of estrus the levels ranged from 1.5 to 3.0 ng/ml. The increases in uterine vein PGF on day 15 occurred even while peripheral plasma progesterone levels were still high. However, PGF was not elevated in either the ovarian artery or the jugular vein at any time during the cycle, even when uterine vein levels were greatly elevated. No differences in PGF content were detected in endometrial tissue from uterine horns adjacent or opposite to the functional corpus luteum.  相似文献   

16.
The aim of this study was to determine the effect of oxytocin on PGF2 alpha secretion into the uterine lumen of pigs and subsequent endometrial responsiveness to oxytocin in vitro. Cyclic, pregnant and oestradiol-induced pseudopregnant gilts were injected i.v. with vehicle or 20 iu oxytocin 10 min before hysterectomy on day 16 after oestrus. Concentrations of PGF2 alpha and 13,14-dihydro-15-keto PGF2 alpha (PGFM) were significantly increased in uterine flushings collected at hysterectomy (P < 0.05) in pregnant oxytocin-injected gilts. Concentrations of PGF2 alpha and PGFM were greater (P < 0.001) in pregnant than in pseudopregnant and cyclic gilts, and greater (P < 0.01) in pseudopregnant than in cyclic gilts. The ratio of PGFM:PGF2 alpha tended to be greater in cyclic (P < 0.06) and pseudopregnant gilts (P < 0.1) than in pregnant gilts. At 85 +/- 5 min after oxytocin injection, endometrium from each gilt was incubated for 3 h for determination of phosphoinositide hydrolysis and PGF2 alpha secretion in response to treatment with 0 or 100 nmol oxytocin l-1. Endometrial phosphoinositide hydrolysis in response to 100 nmol oxytocin l-1 in vitro was greater (P < 0.05) in cyclic oxytocin-injected gilts than in cyclic vehicle-injected gilts. Treatment with oxytocin in vitro did not stimulate phosphoinositide hydrolysis significantly in vehicle- or oxytocin-injected pregnant gilts or pseudopregnant gilts. Endometrial PGF2 alpha secretion increased after treatment with 100 nmol oxytocin l-1 in vitro in cyclic vehicle-injected (P < 0.01), cyclic oxytocin-injected (P < 0.01), pregnant vehicle-injected (P = 0.06), pseudopregnant vehicle-injected (P < 0.05) and pseudopregnant oxytocin-injected (P < 0.05) gilts, but not in pregnant oxytocin-injected gilts. The increase in PGF2 alpha in pseudopregnant oxytocin-injected gilts was less (P < 0.05) than that in cyclic oxytocin-injected gilts. These results indicate that oxytocin increases the concentration of PGF2 alpha and PGFM in the uterine lumen during pregnancy and may upregulate endometrial responsiveness to oxytocin during late dioestrus in pigs, but does not have the latter effect during early pregnancy or oestradiol-induced pseudopregnancy.  相似文献   

17.
To determine the effects of cortisol concentrations during pregnancy, gilts, made pseudopregnant through twice daily administration of 5 mg estradiol benzoate on Days 11 to 15 (Day 0 = first day of estrus), received either 5 mg/kg body weight of hydrocortisone acetate (HA) in sesame oil (n=5) or sesame oil alone (n=6) twice daily on Days 21 to 30. Blood samples (20 ml) were collected on Days 11, 21 and 31. Uterine flushings were obtained surgically on Day 31. The HA-treated gilts had higher (P<0.01) plasma cortisol (295.7 vs 35.6 ng/ml) and lower (P<0.01) plasma progesterone (8.9 vs 17.8 ng/ml) concentrations than did controls. Uterine flushings recovered from HA-treated gilts had significantly (P<0.01) higher cortisol (9.9 vs 5.6 ng/ml), lower progesterone (2.1 vs 6.8 ng/ml) and lower total protein (8.3 vs 21.4 mg/ml) levels than the control animals. Cortisol measured in the uterine flushings of the gilts was more than 85% unbound. Plasma corticosteroid binding globulin binding capacity was lower (P<0.05) in HA-treated gilts (7.4 nmol/l) than in the control (38.7 nmol/l) animals on Day 31. Corpora lutea (CL) number and weight were lower (P<0.05) in HA-treated than control gilts. However, progesterone concentration per CL did not differ between the 2 groups. These results indicate that elevated cortisol levels can alter endocrine and uterine functions related to pregnancy using the pseudopregnant gilt as a model.  相似文献   

18.
The objective was to understand how two forms of folate-binding protein interact to accomplish folate transport during pregnancy in swine. Specific folate binding was measured in uterine flushings during the estrous cycle and early pregnancy and in allantoic fluid (secreted form) and placental membranes (membrane form) throughout later pregnancy. In addition, the localization of the secreted form of folate-binding protein (sFBP) in uterine wall sections was assessed. Uterine flushings were collected on Days 10, 13, and 15 of the estrous cycle and pregnancy. Allantoic fluid and placentas were collected on Days 20, 35, 50, 70, 90, and 105 of pregnancy. Uterine-wall sections were collected on all days of the experiment. Folate binding was measured by incubation of aliquots of uterine flushings, allantoic fluid, or placental microsomal membranes with 0.5-4 nM [(3)H]folate. Uterine-wall sections were incubated with purified anti-FBP IgG or normal rabbit serum IgG to localize sFBP. Folate binding did not differ between early pregnancy and the estrous cycle in uterine flushings, was greatest from Day 50 to 70 of pregnancy in allantoic fluid, and was greatest from Day 50 of pregnancy onward in placental microsomal membranes. Staining for sFBP was present in the endometrial glands from Day 10 to 15 in cyclic gilts and from Day 10 to 20 in pregnant gilts. The pattern of folate binding and sFBP staining supports the concept that sFBP transports folate to the developing conceptus until placentation and then the placental form takes over folate transport.  相似文献   

19.
Pig blastocysts isolated between Days 10 and 16 of pregnancy release the protease, plasminogen activator (PA), into the medium in a time-dependent manner when cultured in vitro. Production is biphasic. The initial phase (Days 10-12) coincides with the early elongation stages, while release during the second phase (Days 14-16) occurs during a time at which the DNA content of the blastocysts is increasing markedly. Uterine flushings from these pregnant animals contain the zymogen substrate for PA, plasminogen, presumably as a serum transudate. Plasminogen is present in highest amounts at Day 12. The blastocyst, therefore, has the potential ability to generate the broadly specific protease, plasmin, within the uterine lumen. However, during this same period, the endometrium secretes an inhibitor of plasmin into the uterine lumen. In pregnant animals the amount of plasmin inhibitory activity rose 7-fold between Day 10.5, when the blastocysts were spherical, and Day 12, when they had become filamentous. At Day 12 each uterine horn contained about 3 to 4 mg of plasmin inhibitor. A similar release of inhibitor can be initiated in nonpregnant gilts given a single, intramuscular injection of estradiol valerate on Day 11 of the estrous cycle. It is suggested that the initiation of estrogen production by the elongating blastocyst triggers the release of plasmin inhibitor by the maternal endometrium and that the inhibitor serves to prevent a proteolytic cascade of reactions initiated by blastocyst PA, which might otherwise damage the uterine epithelium.  相似文献   

20.
This study examined the role of oestrogen supplementation on PGF2alpha-induced nest-building in pseudopregnant gilts. Oestradiol valerate (5 mg/day) injections were given on Days 11-15 of the oestrous cycle to induce pseudopregnancy. A further series of injections of either oestradiol valerate (5 mg/day) or vehicle were given on days 44-46 of pseudopregnancy to reflect more closely the hormone profile seen in pregnancy. Nest-building was induced by a single intramuscular injection of 15 mg of PGF2alpha (Lutalyse) on Day 47 of pseudopregnancy. The gilts were housed in pens (2.8 x 1.7 m) containing straw in experiment 1 or chronically confined in crates (0.6 x 1.7 m) that did not contain straw on days 44-48 of pseudopregnancy for experiment 2. Oestrogen supplemented gilts had significantly higher concentrations of circulating 17beta-oestradiol on day 47 of pseudopregnancy but there were no significant differences between treatments for circulating levels of prolactin, progesterone, cortisol or oxytocin, or for any behavioural measure in either experiment. These results indicate that there is no direct effect of supplementing already pseudopregnant gilts with oestradiol valerate on PGF2alpha-induced nest-building. The results also show that the pre-partum environment has a pronounced effect on nest-building behaviours and that non-pregnant pigs might be a useful model for pre-partum nest-building in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号